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(Matemáticas)

Presenta:

Adriana Ocejo Monge

Director de Tesis: Dr. Oscar Vega Amaya
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Introduction 1

Introduction

An American option is a financial contract between two parties; in the case of
an American put, one pays to the other for the right to sell certain asset at any time
in the future before an expiration date; or in the case of the American call, one pay
for the right to buy the asset. There are two important questions to answer here.
The first one is,

When is the right moment to exercise such an option? or equivalently, when is the
optimal time to stop in order to maximize revenue (at least in average)?

The second question is

What should be the right price of such a contract?

In this thesis we deal with both questions, and provide satisfactory answers for each
one. Both questions are important to solve in financial markets; the first one is of
interest to the buyer of the option, and second to the seller. Indeed, for the first
question one looks for a policy to exercise efficiently the contract, that is to say we
try to find an optimal stopping rule that solves an optimal stopping problem. For
the second question, one is willing to determine the ”fair” price of the contract.

It turns out that in order to provide good answers to these questions, one relies
heavily on strong mathematical tools. However, the solutions of the problems are
somewhat elegant and quite straightforward to understand, as well as to carry out
in practical implementations. We shall see how both issues are intertwined, we shall
be able to understand the insights the problem.

We will see that for the American call the problem is simplified when assuming
assets with no dividends, and the main problem becomes the American put, still
assuming non-dividend paying stocks. Thus, the main part of the thesis is about
American put. The starting point is the Risk Neutral framework, based on the
celebrated works of Black and Scholes. Indeed, one uses a geometric Brownian
motion for modeling, and the so-called Risk Neutral measure (also called martingale
measure) for pricing. Let us then give some historical background on the American
put problem.

The pricing of American options has enjoyed a fast development the last decades.
The flexibility of the contract to early exercise suggest the formulation of the op-
tion’s price as an optimal stopping problem. McKean [22] showed in 1969 that this
optimal stopping problem could be transformed into a free-boundary problem. De-
spite McKean’s formula provides an explicit representation of the option’s price in
terms of the unknown optimal stopping boundary function, it is quite difficult to
implement analytical or numerical examination. Thereafter, important properties
of the optimal stopping boundary were studied by van Moerbeke [38] in 1976.

Earlier in 1973, Black and Scholes [3] obtained the price of a European option
using a free-arbitrage assumption, which means that the market does not allow
opportunities to make money without risk. The same year, Merton [23] proved that
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the American call option on non-dividend paying stocks is the same as the European
call option price. Also, he pointed out that such a methodology does not apply to
American put options, but that McKean’s results could be adapted to this end.

The use of financial arguments using replicating portfolios emerged as an efficient
technique for the pricing of options, by means of the so-called equivalent martingale
measure of the market. The pioneering works in this line are due to Cox, Ross, and
Rubinstein [5] in 1979; Harrison and Kreps [12] in 1979; and Harrison and Pliska
[13] in 1981. The application of these arguments to the pricing of the American put
option is due to Bensoussan [1] and Karatzas [17].

Later in 1991, Jacka studied the free-boundary problem formulation arising from
the optimal stopping problem. He showed that the optimal strategy is given by a
boundary function that satisfies an integral equation called the free-boundary equa-
tion. However, the uniqueness of the solution to this integral equation in the class
of continuous increasing functions was proved until 2005 by Peskir [29].

Now we present how the thesis is organized.
In Chapter 1 we state the background and several results used in this work.
In Chapter 2 we discuss the Arbitrage-Free Pricing Theory to price contingent

claims (such as the payoff of the European option), and it is determined the exis-
tence and uniqueness of the martingale measure. The existence of this measure is
intimately related to the abscense of arbitrage, while the uniqueness is related to the
completeness of the market (due to Harrison and Pliska [13]) in the sense that every
contingent claim can be replicated. In this context, the fair price of a contingent
claim is the expected value of the discounted claim under the unique martingale
measure. After that, we apply this results to the Binomial model for the price pro-
cess, which is the simplest option pricing approach. At the end of Chapter 2, we
arrived to the Black and Scholes pricing formula for the European option and give
the price of the American option as the solution to an optimal stopping problem.

In Chapter 3, the theory of optimal stopping problems for time homogeneous
strong Markov processes is established. Here it is showed that there exists a solu-
tion to the optimal stopping problem under certain conditions. Also, it is given a
characterization of the value function as the smallest superharmonic function which
dominates the gain function.

In Chapter 4 we transfer the optimal stopping problem, representing the price
of the American put, to a free-boundary problem. This step is mainly due to the
Markovian structure of the price process by means of the infinitesimal generator. It
is proved that the optimal strategy to exercise the option is determined by a function
of the time known as the optimal stopping boundary. The idea is that the holder
will optimally exercise the option the first time that the price process falls below a
barrier, that is to say, the optimal stopping boundary.

In summary, thanks to the free-boundary formulation, it is derived the optimal
stopping rule by the first passage time of the geometric Brownian motion to a barrier
determined by the free-boundary equation (an integral equation). And the fair price
is given by the present value of the expected value of the profit made at the first
passage time. This is exposed in Chapter 5.



Chapter 1

Preliminaries

1.1 Markov processes and stopping times

Definition 1.1. (Filtrations)

(i) Let (Ω,F , P ) be a probability space and T an index set. A filtration {Ft}t∈T is
an increasing family of sub-σ-algebras of F , that is, Fs ⊂ Ft ⊂ F for all s ≤ t.
Thus, (Ω,F , {Ft}t∈T , P ) is called a filtered probability space.

(ii) A stochastic process X = {Xt}t∈T defined on (Ω,F , P ) is said to be adapted to
the filtration {Ft}t∈T if Xt is Ft-measurable, for each t ∈ T . In this case, we
say that X is defined on the filtered probability space (Ω,F , {Ft}t∈T , P ).

Definition 1.2. (Stopping times)

(i) Let (Ω,F , {Ft}t∈T , P ) be a filtered probability space. A random variable τ :
Ω → T is a stopping time if the event [τ ≤ t] is Ft-measurable for each t ∈ T .

(ii) Let τ be a stopping time. An event A ∈ F is said to be prior to τ if

A ∩ [τ ≤ t] ∈ Ft, ∀ t ∈ T .

Denote by Fτ the family of all the prior events, that is,

Fτ := {A ∈ F∞ : A ∩ [τ ≤ t] ∈ Ft, ∀ t ∈ T }. (1.1)

where F∞ = σ(Ft : t ≥ 0). It can be readily verified that Fτ is a σ-algebra.

In the sequel the following notation is used. Given a topological space E the
Borel σ-algebra is denoted by B(E).

Definition 1.3. (Markov process)

(i) A stochastic process X = {Xt}t≥0 defined on a filtered probability space (Ω,F ,
{Ft}t≥0, P ) and taking values on a measurable space (E,B(E)) is a Markov
process if it satisfies the so-called Markov property, that is, for each s ≤ t and
B ∈ B(E) it follows that

P (Xt ∈ B | Fs) = P (Xt ∈ B | Xs). (1.2)

The measure
π(B) := P (X0 ∈ B),

is called the initial distribution measure.
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(ii) Let X = {Xt}t≥0 be a Markov process. We say that X is a strong Markov
process if it satisfies the strong Markov property , that is, for each a.s. finite
stopping time τ and B ∈ B(E) we have

P (Xt+τ ∈ B | Fτ ) = P (Xt+τ ∈ B | Xτ ). (1.3)

The probabilistic structure of a Markov process X can also be determined by a
non-negative function called transition probability.

Definition 1.4. (Transition probability function)
A function P : B(E)×R+×E×R+ → [0, 1] is a transition probability (t.p.) function
if for all s ≤ t ≤ r it satisfies the following properties:

(i) P (·, t, x, s) is a probability measure on B(E) for each x ∈ E.

(ii) P (B, t, ·, s) is B(E)-measurable for each B ∈ B(E).

(iii) P satisfies the Chapman-Kolmogorov equation, that is, for all x ∈ E and B ∈
B(E) we have

P (B, r, x, s) =

∫

E
P (B, r, y, t)P (dy, t, x, s) (1.4)

for all B ∈ B(E), x ∈ E, and non-negative numbers s ≤ t ≤ r.

A t.p. function P is the t.p. of a Markov process X if for each B ∈ B(E) and
s ≤ t we have that

P (Xt ∈ B | Xs) = P (B, t, Xs, s). (1.5)

The Markov process X is said to be time-homogeneous if its t.p. is such that for
all s, t ≥ 0 and B ∈ B(E),

P (B, t, x, 0) = P (B, s + t, x, s). (1.6)

In such case, we will write P (B, t, x) := P (B, t, x, 0).

Definition 1.5. (Markov family)
Let (Ω,F) and (E,B(E)) be measurable spaces, and {Ft}t≥0 a filtration. A Markov
family is a family of probability spaces

(Ω,F , {Ft}t≥0, {Px : x ∈ E}) (1.7)

and an E-valued process X = {Xt}t≥0 defined on (Ω,F) and adapted to {Ft}t≥0,
satisfying the following conditions

(i) (t, x) 7→ Pt,x(A) is B(R+) × B(E)-measurable for each A ∈ F .

(ii) Pt,x(Xt = x) = 1 for each x ∈ E and t ≥ 0.

(iii) For each x ∈ E, s ≥ t, u ≥ 0, and B ∈ B(E), the next property holds:

Pt,x(Xs+u ∈ B | Xs) = Ps,Xs
(Xu ∈ B), Pt,x − a.s. (1.8)
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The shift operator

Assume that (Ω,F) is the canonical space , that is,

Ω = ER+ , F = B(ER+).

Then, identify each ω ∈ Ω with a sample path t 7→ Xt(ω) of the E-valued process
X. In this sense, we have that Xt(ω) = ω(t). Let Ft := σ(Xs, s ≤ t). For each
t ≥ 0, define the shift operator θt : Ω → Ω by

θt(ω)(s) := ω(t + s), ∀ s ≥ 0, ω ∈ Ω. (1.9)

Also, given a finite stopping time τ , define the operator

θτ (ω) := θt(ω), if τ(ω) = t. (1.10)

For all s, t ≥ 0 and finite stopping times σ and τ , the following equalities can be
verified:

Xs ◦ θt = Xs+t (1.11)

Xs ◦ θτ = Xs+τ (1.12)

Xσ ◦ θt = Xσ◦θt+t (1.13)

Xσ ◦ θτ = Xσ◦θτ+τ . (1.14)

For instance, we will verify (1.13). Let ω ∈ Ω, then

(Xσ ◦ θt)(ω) = Xσ(θt(ω))

= Xσ(θt(ω))(θt(ω))

= Xσ◦θt+t(ω).

Also, if A ∈ F then it is easy to check that

[Xs+t ∈ A] = θ−1
t [Xs ∈ A]. (1.15)

Using the shift operator, the Markov property (1.8) and the strong Markov property
(1.3) can be written as

Pt,x(Xu ◦ θs ∈ B | Xs) = Ps,Xs
(Xu ∈ B), Pt,x − a.s.

Pt,x(Xu ◦ θτ ∈ B | Xτ ) = Pτ,Xτ
(Xu ∈ B), Pt,x − a.s.

for all s ≥ t ≥ 0, x ∈ E, B ∈ B(E), and finite stopping times τ .

1.2 Stochastic Differential Equations

Let {Bt}t≥0 be a Brownian motion in R defined on a filtered probability space
(Ω,F , {Ft}t≥0, P ). The Itô integral will be denoted by

∫ T

S
g(t, ω)dBt, (1.16)

where 0 ≤ S < T , defined for functions in the class V(S, T ) introduced next. A
function g(t, ω) : [0,∞) × Ω → R belongs to the class V(S, T ) if



6 Preliminaries

(i) g(t, ω) is B(R+) ×F-measurable.

(ii) g(t, ω) is adapted to {Ft}t≥0.

(iii) P (
∫ T
S g2(t, ω) < ∞) = 1.

Denote by L2(S, T ) the subclass of V(S, T ) such that

(iii)’ g ∈ L2(dt × dP ), that is, E
(

∫ T
S g(t, ω)2dt

)

< ∞.

Proposition 1.1. Let g(t, ω) ∈ L2(0, T ) for all T . Then the Itô integral

Mt(ω) =

∫ t

0
g(s, ω)dBs, (1.17)

is a martingale with respect to {Ft}t≥0.

See ∅ksendal [27, Corollary 3.2.6] for a proof.

Definition 1.6. An Itô process is a stochastic process X = {Xt}0≤t≤T of the form

Xt = X0 +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dBs, (1.18)

where u(t, ω) and v(t, ω) are adapted, measurable processes such that v ∈ V(0, T )
and u satisfies the condition

P

(
∫ T

0
|u(s, ω)|ds < ∞

)

= 1.

Theorem 1.2. (Martingale Representation) Let X = {Xt}t≥0 be a martingale
with respect to P and suppose that Xt ∈ L2(dP ) for all t ≥ 0. Then, there exists a
unique stochastic process g(s, ω) such that g ∈ V(0, t) and

Xt(ω) = E(X0) +

∫ t

0
g(s, ω) dBs, a.s. (1.19)

for all t ≥ 0.

See ∅ksendal [27, p. 53] for a proof.

Theorem 1.3. (Itô’s formula) Let X be an Itô process satisfying (1.18) and
g(t, x) ∈ C1,2([0,∞) × R). Then

Yt = g(t, Xt) (1.20)

is an Itô process, and setting u = u(t, Xt), v = v(t, Xt), g = g(t, Xt) we have

dYt = [gt + u gx +
v2

2
gxx]dt + v gx dBt. (1.21)

See ∅ksendal [27] p. 44 for a proof.
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Diffusions

We are interested in processes satisfying the stochastic differential equation (SDE)

dXt = µ(t, Xt)dt + σ(t, Xt)dBt, (1.22)

with initial condition X0 = Z, where Z is a random variable.
The conditions (C1)-(C2) below guarantee the existence and uniqueness of solu-

tions to SDE’s, they are called the Itô conditions :

(C1) |µ(t, x)| + |σ(t, x)| ≤ K(1 + |x|),

(C2) |µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x − y|,

where x, y ∈ R and K is a positive constant. Note that condition (C2) implies that
µ and σ are Lipshitz continuous.

Theorem 1.4. (Existence and uniqueness of solution) Consider the stochastic
differential equation

dXt = µ(t, Xt)dt + σ(t, Xt)dBt, X0 = Z. (1.23)

where Z ∈ L2(dP ) and Z is independent of Brownian motion Bt for all t ≥ 0. If
µ(t, x) and σ(t, x) satisfy the Itô conditions, then there exists a unique t-continuous
solution X = {Xt(0, Z)}0≤t≤T to (1.23), adapted to the filtration FZ

t = σ(Z, Bs :
s ≤ t) and bounded in L2(dP ).

See ∅ksendal [27, p. 68] for a proof.

A solution to the SDE (1.23) is called an Itô diffusion and the functions µ(t, x)
and σ(t, x) are called the drift and diffusion coefficients, respectively.

Proposition 1.5. Let X = {Xt(0, Z)}0≤t≤T be an Itô diffusion. Also, suppose that
σ(t, x) is continuous and that

E

(
∫ T

0
σ2(t, Xt) dt

)

< ∞. (1.24)

Then, the process X is a martingale if and only if the drift is zero, that is, µ(t, x) = 0.

Proof. If X is a martingale then Theorem 1.2 implies that dXt = µ(t, Xt)dt +
σ(t, Xt)dBt can also be written as

dXt = σ̂(t, Xt)dBt,

so that 0 = µ(t, Xt)dt + (σ(t, Xt) − σ̂(t, Xt))dBt. Define

Ms :=

∫ s

0
µ(t, Xt)dt = −

∫ s

0
(σ(t, Xt) − σ̂(t, Xt))dBt.

Since
∫ s
0 µ(t, Xt)dt is of bounded variation and

∫ s
0 (σ(t, Xt) − σ̂(t, Xt))dBt is a mar-

tingale, it follows that M = {Ms}s≥0 is constant in time 1. That is, Ms = M0 and
thus σ − σ̂ ≡ 0 implying µ ≡ 0.

1See a proof of this in [24, Result 9.b.1 page 74]
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On the other hand, if µ(t, x) = 0 then

dXt = σ(t, Xt) dBt

is an Itô integral, and so is a martingale by Proposition 1.1.

Proposition 1.6. (Markov property) Let X = {Xt(0, y)}t≥0 be an Itô diffusion.
Then X is a Markov process with t.p. given by

P (B, t, x, s) = P (Xt(s, x) ∈ B), (1.25)

where {Xt(s, x)}t≥s, is the unique solution to the SDE (1.22) with initial condition
Xs = x.

See Friedman [10] or ∅ksendal [27, p. 115] for a proof.

From Proposition 1.6 the diffusion process X = {Xt}t≥0 solving (1.22) defines
the Markov family (see Definition 1.5)

(Ω,F , {Ft}t≥0, {Ps,x : 0 ≤ s ≤ T, x ∈ R}), (1.26)

where Ps,x is the distribution law of the unique solution X = {Xt(s, x)}t≥s to the
SDE starting at Xs = x. In particular Ps,x(Xt ∈ B) = P (Xt(s, x) ∈ B). Thus (1.5)
and (1.25) yield

Ps,Xs
(Xt ∈ B) = P (B, t, Xs, s) = P (Xt ∈ B | Xs), (1.27)

for all s ≥ t and B ∈ B(R).

Remark 1.1. If the functions µ and σ are time-independent, the solution {Xt(s, x)}t≥s

is a time-homogeneous Markov process (see [27, p. 114]). Note also that for t ≥ s,

Ps,x(Xt ∈ B) = P (B, t, x, s) = P (B, t − s, x, 0) = P0,x(Xt−s ∈ B).

If this is the case, the Markov family is

(Ω,F , {Ft}t≥0, {Px, x ∈ R}), (1.28)

where Px is the distribution law of the unique solution X = {Xt(0, x)}t≥0 to the
SDE starting at X0 = x.

Proposition 1.7. (Strong Markov property) Let X = {Xt(s, x)}t≥s be a homo-
geneous Itô diffusion and τ a Px-finite stopping time. Then X is a strong Markov
process, that is, the following condition is satisfied

Ps,x(Xt+τ ∈ B | Fτ ) = Ps,x(Xt+τ ∈ B | Xτ ) = Pτ,Xτ
(Xt ∈ B), (1.29)

for all t ≥ s and B ∈ B(R).

See Friedman [10] or ∅ksendal [27, p. 117] for a proof.
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Definition 1.7. The infinitesimal generator A of a Markov process X is defined by

Af(t, x) := lim
s↓0

Et,xf(s + t, Xs+t) − f(t, x)

s
, (1.30)

where Et,x is the expectation with respect to Pt,x. Denote by DA the set of functions
f : R+ × R → R for which the limit (1.30) exists for all s ≥ 0 and x ∈ E.

Denote by C1,2
0 the class of functions f ∈ C1,2(R+ ×R) with compact support. It

turns out that C1,2
0 ⊂ DA.

Proposition 1.8. Let X = {Xt}t≥0 be an Itô diffusion solving

dXt = µ(t, Xt) dt + σ(t, Xt) dBt, (1.31)

where µ and σ are continuous. If f ∈ C1,2
0 then

Af = µ
∂f

∂x
+

σ2

2

∂2f

∂2x
+

∂f

∂t
. (1.32)

See ∅ksendal [27, pp. 123 and 220] for a proof.

It is convenient to define the differential operator LX associated to the Itô di-
fussion X by

LX := µ
∂

∂x
+

1

2
σ2 ∂2

∂2x
. (1.33)

Then, equation (1.32) becomes

Af = LXf +
∂f

∂t
. (1.34)

Proposition 1.9. (Dynkin’s formula) Let X = {Xt(s, x)}t≥s be an Itô diffusion
and f ∈ C1,2

0 . Suppose that τ is a stopping time with τ ≥ s such that Es,x τ < ∞.
Then

Es,xf(τ, Xτ ) = f(s, x) + Es,x

∫ τ

s
Af(r, Xr)dr, (1.35)

where A is the infinitesimal generator of X.

See Klebaner [21, Section 6.1] or ∅ksendal [27, p. 124] for a proof.

Theorem 1.10. (Girsanov) Let X = {Xt}t≥0 be an Itô process of the form

dXt = u(t, ω) dt + dBt, 0 ≤ t ≤ T, X0 = 0 (1.36)

and define the process

Mt := exp

(

−
∫ t

0
u(s, ω) dBs −

1

2

∫ t

0
u2(s, ω) ds

)

. (1.37)

If the Novikov’s condition is satisfied, namely,

E

(

exp

{

1

2

∫ T

0
u2(s, ω) ds

})

< ∞, (1.38)

then
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(a) Mt is a martingale;

(b) X is a Brownian motion with respect to the measure

Q(A) = E(IAMT ), A ∈ FT . (1.39)

See ∅ksendal [27, p. 162] for a proof.



Chapter 2

Arbitrage-free price of contingent claims

A security is a financial instrument such as a stock, a bond, or other asset. A
derivative security is a contract whose value depends on the value of other security
known as the underlying. A common type of derivative is the European option.
Under this contract, the owner agrees to sell (put option) or buy (call option) certain
asset at a specified future date (maduration) and at a specified price (strike price).
If the owner is allowed to exercise the option before maduration, the contract is an
American option.

Given the possibility of making a non-zero profit without risk by simultaneously
sell and buy contracts, it sounds reasonable that such contracts must be worth a
positive value to offset the inherent risk of the asset, which is fair for both parties.
Otherwise, there is arbitrage in the market, that is, any party may trade and make
a profit without risk.

In this chapter we develope the so-called Arbitrage-Free Pricing Theory and show
that the absence of arbitrage is equivalent to the existence of a measure, called risk-
neutral or martingale measure, which makes the discounted value of the underlying
to be a martingale. This important result is applied later to the pricing of the
European and American options under the discrete and continuous security models.
In the continuous time setting, the problem is solved for the European option and
its price is refered as the Black-Sholes pricing formula. For the American option,
due to the flexibility of exercise it at any time until maduration, the determination
of its price raises as the solution to an optimal stopping problem.

2.1 Discrete time

2.1.1 Arbitrage-Free Pricing Theory

Set T = {0, 1, . . . , T} with T < ∞ and consider a financial market with n + 1
securities

St = (βt, S
1
t , . . . , Sn

t ), t ∈ T , (2.1)

where Si
t is the value of the risky security i at time t, and the riskless security value

βt corresponds to the cost at time t for lending one unit of money at the initial time
t = 0 at a constant interest rate r > 0, so that

βt = ert. (2.2)

Assume that the market {St}t∈T is defined on (Ω,F , {Ft}t∈T , P ), and {Ft}t∈T is
the natural filtration for St.
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A portfolio process is a random vector

θt = (θ0
t , θ

1
t , . . . , θ

n
t ), t = 1, 2, . . . , T, (2.3)

where θi
t is the number of units of security i to be bought (if positive) or sold (if

negative) from time t−1 to t. Since the choice of θt depends only on the information
of the prices up to time t − 1, then the process {θt}t∈T is predictable, that is, θt is
Ft−1-measurable.

The initial portfolio value is given by

V0 = θ0
1β0 +

n
∑

i=1

θi
1S

i
0, (2.4)

while the portfolio value at time t before any transaction are made at this same time
is

Vt = θ0
t βt +

n
∑

i=1

θi
tS

i
t , t = 1, 2, . . . , T. (2.5)

Since the process {θt}t∈T is adapted to {Ft}t∈T , so is {Vt}t∈T .

Definition 2.1. A portfolio process {θt}t∈T is self-financing if

Vt = θ0
t+1βt +

n
∑

i=1

θi
t+1S

i
t , t = 1, . . . , T − 1. (2.6)

Using equations (2.5) and (2.6), the change in the portfolio value ∆Vt := Vt+1−Vt

is given by

∆Vt = θ0
t+1∆βt +

n
∑

i=1

θi
t+1∆Si

t , t = 1, . . . , T − 1, (2.7)

where ∆Si
t := Si

t+1 − Si
t and ∆βt := βt+1 − βt. Thus, the self-financing feature

ensures that any change of the portfolio value at any time is only due to the changes
of the security prices. Moreover, note that

Vt = V0 +
t−1
∑

u=0

∆Vu, t = 1, 2, . . . , T,

which provides another representation for the portfolio value (2.5), namely,

Vt = V0 +
t−1
∑

u=0

θ0
u+1∆βu +

t−1
∑

u=0

n
∑

i=1

θi
u+1∆Si

u, t = 1, . . . , T. (2.8)

Consider two portfolios P1 and P2 with value processes {V 1
t }t∈T and {V 2

t }t∈T ,
respectively, and assume that

V 1
T = V 2

T , (2.9)

Then,
V 1

t = V 2
t , t ∈ T , (2.10)
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must hold in order to rule out a riskless profit. If this two portfolios did not have
the same value at any time 0 ≤ t < T , say V 1

t < V 2
t , then, at this time, sell the

portfolio P2 with value V 2
t and buy the portfolio P1 with value V 1

t . This immediately
produces a riskless profit V 2

t − V 1
t > 0 over the period time from t to T since the

portfolios have the same value at time T so that any obligation of P2 is covered with
P1.

Thus, if V 1
0 is known and V 2

0 is unknown, the above discussion yields to the
intuitive conclusion that the initial price of P2 is given by V 2

0 = V 1
0 . Then, V 2

0 is
the free-arbitrage price of P2.

An arbitrage opportunity is the existence of a portfolio which makes a riskless
profit. Formaly, we have the next definition.

Definition 2.2. There is an arbitrage opportunity in the market {St}t∈T if there
exists a self-financing portfolio {θt}t∈T such that

• V0 = 0,

• VT ≥ 0 a.s., and

• E(VT ) > 0.

The absence of arbitrage opportunities in the market is a fundamental concept
for determining the fair price of a derivative.

Definition 2.3. A contingent claim X is a FT -measurable function, representing
the payoff of a derivative at time T .

In the case of the European call and put option, the contingent claim is the
payoff function X = {ST −K}+ and X = {K −ST }, respectively, where ST is value
of the underlying at time T .

The problem is to determine the price of a contingent claim X at the current
time t = 0. To do this, suppose that we can find a self-financing portfolio {θt}t∈T

such that its value at time T attains X, that is

VT = X.

It is called a replicating portfolio and we say that {θt}t∈T replicates the contingent
claim X, or that X is attainable by {θt}.

Suppose that {θt}t∈T replicates the claim X. The portfolio value at time t is the
amount of wealth needed at that time in order to hedge (offset) the accompanying
risk when selling the claim X. This is why {θt}t∈T is also called hedging portfolio .
At the time T , the writer will pay the obligation X which coincide with the value
of the portfolio VT . Thus, V0 should be the fair price for the contingent claim X to
avoid arbitrage opportunities. The next theorem states in a nutshell what we have
just discussed.

Theorem 2.1. (Arbitrage-Free Pricing) Let X be a contingent claim and sup-
pose that there exists a replicating portfolio {θt}t∈T that attains X, whose initial
value is V0. If there are no arbitrage opportunities in the market, then V0 is the fair
price for X.
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The Fundamental Asset Pricing Theorem

According to Theorem 2.1, in order to find the price of a contingent claim X, it
is required to find a replicating portfolio and then calculate its initial value V0. In
general, it is difficult to construct a replicating portfolio; even worse, this portfolio
not need to exist. The markets free of this ambiguity have a particular name.

Definition 2.4. The market {St}t∈T is complete if every contingent claim X is
attainable

Suppose that there exists a self-financing portfolio {θ(t)}t∈T that replicates the
contingent claim X. There is an alternative method for calculating the initial port-
folio value V0 (fair price of X) using martingale methods without an explicit de-
termination of the portfolio process. To explain how this can be done consider the
representation for the portfolio value in (2.8) at time T :

X = V0 +
T−1
∑

u=0

θ0
u+1∆βu +

T−1
∑

u=0

n
∑

i=1

θi
u+1∆Si

u (2.11)

and introduce the variables I0 :=
∑T−1

u=0 θ0
u+1∆βu and

Ii :=
T−1
∑

u=0

θi
u+1∆Si

u, i = 1, 2, . . . , n. (2.12)

Thus, equation (2.11) reads

X = V0 +
n
∑

i=0

Ii. (2.13)

Now define the discounted price process of the security i = 1, 2, . . . , n is defined by

Di
t := Si

t/βt, t ∈ T . (2.14)

Next, take Ṽt = Vt/βt so that from (2.5) we see that

Ṽt =
n
∑

i=1

θi
tD

i
t. (2.15)

Apply the same reasoning used in (2.11)-(2.13) to obtain

X

βT
= V0 +

n
∑

i=1

Ĩi, (2.16)

where Ĩi is given as

Ĩi =
T−1
∑

u=0

θi
u+1∆Di

u, i = 1, 2, . . . , n, (2.17)

and ∆Di
u = Di

u+1 − Di
u.
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Suppose that a new probability measure Q can be found so that the price process
{Di

t}t∈T is a martingale for all i = 1, 2, . . . , n, that is,

EQ(∆Di
t | Ft) = EQ(Di

t+1 − Di
t | Ft) = 0, ∀ t = 0, 1, . . . , T − 1.

Thus, by taking expectation in (2.17) get

EQ(Ĩi) = = EQ

(

T−1
∑

u=0

θi
u+1∆Di

u | F0

)

=
T−1
∑

u=0

EQ[ EQ(θi
u+1∆Di

u | Fu) | F0]

=
T−1
∑

u=0

EQ[ θi
u+1 EQ(∆Di

u | Fu) | F0]

= 0.

Finally, putting all togheter in (2.16), after taking expectation EQ, obtain

V0 = EQ(X/βT ) = e−rT EQ(X). (2.18)

The measure Q is called martingale measure or risk-neutral measure for the market
{St}t∈T .

Remark 2.1. The martingale measure vanishes all the terms of the sum on the right-
hand side of (2.16) after taking the expectation EQ. This does not happen for any
other measure for the first sumand

I0 =

T−1
∑

u=0

θ0
u+1∆βu,

in (2.13), since the deterministic process {βt}t∈T is not a martingale under any
measure.

It seems natural to ask the martingale measure Q to be equivalent to the original
measure P . Thus, we have the next definition.

Definition 2.5. Let St = (βt, S
1
t , . . . , Sn

t ) be a financial market defined on (Ω,F , P )
and {Ft}t∈T is the natural filtration. A probability measure Q is said to be a
martingale measure or risk-neutral measure if the following conditions are satisfied:

i) Q ∼ P , that is, P (A) = 0 if and only if Q(A) = 0; and

ii) {Di
t}t∈T is a martingale with respect to Q, for all i = 1, 2, . . . , n.

The pricing formula (2.18) is very appealing, since all what is needed to do is
to calculate the conditional expectation of a known random variable. However, to
obtain the formula (2.18) we made an important assumption, namely, the existence
of a martingale measure Q for the discounted price process {Dt}t∈T .

A number of authors have proved the existence of a martingale measure in dif-
ferent ways; see Dalang, Morton and Willinger [6], Schachermayer [35], Rogers [33,
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Theorem 1], Pliska [32, p. 243], and Musiela [25, Theorem 2.6.1] for a proof. This
result is called the First Fundamental Theorem of Asset Pricing, and we state it
below.

Theorem 2.2. (First Fundamental Theorem of Asset Pricing)
Suppose that the number of trading periods is T < ∞. The following statements

are equivalent:

(i) The market is arbitrage-free, that is, there does not exist any arbitrage opportu-
nity.

(ii) There exists a martingale measure for the market.

In any of these cases the fair price of a replicable contingent claim X is

V0 = e−rT EQ(X), (2.19)

where V0 is the initial value of any replicating portfolio.

A natural question arises: under which conditions the martingale measure, if it
exists, is unique? Of course, there could be more than one. For instance, if the
discounted price process {Di(t)} is constant, then any measure Q makes such a
process a martingale. The feature of a market to have several martingale measures
is closely related to incomplete markets. The next theorem characterise complete
markets as those with a unique martingale measure. A proof of this result can be
found in Musiela [25, Theorem 2.6.2].

Theorem 2.3. (Second Fundamental Theorem of Asset Pricing)
Suppose that the number of trading periods is T < ∞. An arbitrage-free market

is complete if and only if there is only one martingale measure.

Completeness is the property that gives to the market a unique way of pricing
contingent claims.

We have seen that the portfolio value process {Vt} gives the fair price of the
contingent claim X at any time under the assumption of a free-arbitrage market. In
general, we can figure out the price of X at any time t < T with the same reasoning.
To see this, consider the representation (2.8), so that

X = Vt +
T−1
∑

u=t

θ0
u+1∆βu +

T−1
∑

u=t

n
∑

i=1

θi
u+1∆Si

u. (2.20)

Then, the analogue of (2.16) is

X

βT
=

Vt

βt
+

n
∑

i=1

Ĩi, (2.21)

where

Ĩi =
T−1
∑

u=t

θi
u+1∆Di

u. (2.22)
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If Q is a martingale measure, after taking conditional expectation with respect to
Ft under Q, we found that

Vt

βt
= EQ(X/βT | Ft). (2.23)

We conclude this section with the next result.

Proposition 2.4. Consider an arbitrage-free market {St}t∈T and suppose that a
continget claim X is attainable. Then, the fair price of X at an arbitrary time
t ∈ T is given by

Vt = e−r(T−t)EQ(X | Ft), (2.24)

for each martingale measure Q.

The European option

A European option is an agreement between two parties to purchase or sell a certain
security (or asset) by a fixed price K called the strike price, in a future time T called
the maturity. A European call gives the holder the right to purchase the asset, while
a European put gives the owner the right to sell the asset.

Example 2.6. The payoff of European call option is X = {ST − K}+. Thus, the
price of the call option is

CEur = e−rT EQ({ST − K}+).

Similarly, the price of the put option is

PEur = e−rT EQ({K − ST }+).

2.1.2 American option pricing

The material developed in this part is close to the approach of Elliott and Kopp [9].
The European options can only be exercised at maturity time T . In this subsec-

tion we introduce the American option, which can be exercised at any time before
maturity. Specifically, an American option is an agreement between two parties to
purchase or sell certain asset at a given strike price K, on or before maturity T .
An American call gives its holder the right to buy the asset, while an American put
gives the right to sell it.

If the American option is exercised at time t, the claim is the payoff Xt =
{St − K}+ for a call and Xt = {K − St}+ for a put. Let A(t) be the expected gain
if the option is exercised at the time t. First,

A(T ) = XT .

Now argue backwards in time. At time T − 1, the holder has two options: either
exercise the put to obtain XT−1, or wait until the next period to obtain XT . The
latter option is equivalent to a European claim running from T − 1 to T . Since the
holder wants to earn the biggest profit, we conclude that

A(T − 1) = max{XT−1, e−r EQ(A(T ) | FT−1) }, (2.25)
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where Q is the martingale measure of the market. Next, argue inductively to obtain

A(t) = max{Xt, e−r EQ(A(t + 1) | Ft) }, ∀ 0 ≤ t ≤ T − 1. (2.26)

Thus, going backwards until time t = 0 the holder obtains the maximum profit A(0).

A closed form for the American option price

We want to stop at the time that Xt, the payoff of the American option, becomes
maximum on the entire period from 0 to T . The random variable Xt depends on
the state of the price St. Thus, Xt is maximised at different times.

It is natural to think in the fair price A of the American option as the discounted
payoff when the holder follows an optimal stopping rule. That is,

A = sup
0≤τ≤T

e−r τ EQ(Xτ ), (2.27)

where the supremum is taken over all stopping times τ taking values in {0, 1, 2, . . . , T}.
The article of Merton [23] discusses why this quantity must be the fair price of an
American option, in the absence of arbitrage.

In what follows, we shall prove that our value for A(0) in (2.26), which was
found by iteration, actually coincides with A above. To do this, recall the recursive
formula

A(t) = max{Xt, e−r EQ(A(t + 1) | Ft) }, ∀ 0 ≤ t ≤ T − 1.

If we discount both the payoff and the price processes, we obtain

Yt := e−rt Xt, Ã(t) = e−rt A(t); (2.28)

then, formula (2.26) becomes

Ã(t) = max{Yt, EQ(Ã(t + 1) | Ft) }, ∀ 0 ≤ t ≤ T − 1. (2.29)

Notice that Ã(0) = A(0). We may identify the process {Ã(t)} with the one described
in equations (B.2)-(B.3) with respect to the discounted payoff {Yt}T

t=0 (see Appendix
B). Therefore, Theorem B.5 implies that the stopping time

τ∗ = inf{k ≤ T : Ã(k) = Yk}, (2.30)

is optimal, that is,
EQ(Yτ∗) = sup

τ≤T
EQ(Yτ ). (2.31)

Moreover, the second part of Theorem B.5 implies

Ã(0) = EQ(Yτ∗).

Since Ã(0) = A(0), we finally obtain

A(0) = sup
τ≤T

EQ(e−r τXτ ). (2.32)

We have proved the next theorem.
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Theorem 2.5. (American option price in discrete time) Assume that there
exists a martingale measure Q and consider the process {Ã(t)}T

t=0 defined by (2.29)
with respect to the discounted payoff {Yt}T

t=0 with Yt = e−rt Xt. Then, the value of
the American option

A = sup
τ≤T

e−r τEQ(Xτ ),

is equal to A = Ã(0) and the optimal exercise time is

τ∗ = inf{k ≤ T : Ã(k) = Yk}.

No-early exercise for American call

Proposition 2.6. The value of the American call option on a non-dividend paying
asset is the same as the value of the European call option.

Proof. We will show that for the American call option it is optimal to wait until
maturity T .

Set Xt = {St − K}+, for each t = 0, 1, . . . , T . Recall the time t price of the
European call option

Vt = e−r(T−t)EQ(XT | Ft).

The mapping x 7→ {x − K}+ is convex, then Jensen’s inequality for conditional
expectations implies

{EQ(ST | Ft) − K}+ ≤ EQ({ST − K}+ | Ft),

and after multiplication by e−r(T−t) and using that e−rtSt is a martingale under Q,
we obtain

{St − e−r(T−t)K}+ ≤ ertEQ(e−rT {ST − K}+ | Ft).

Since e−r(T−t) ≤ 1, the last inequality becomes

e−rt{St − K}+ ≤ EQ(e−rT {ST − K}+ | Ft).

Thus, we conclude that the process

Yt := e−rt{St − K}+ = e−rt Xt,

is a submartingale.
Let τ be a stopping time of {Ys}T

s=0 taking values in {t, . . . , T}. Then, the
Optional Sampling Theorem implies

Yτ ≤ EQ(YT | Fτ ),

which in turn yields, after taking conditional expectation, to

EQ(e−r(τ−t)Xτ | Ft) ≤ e−r(T−t)EQ(XT | Ft), for all t = 0, 1, . . . , T . (2.33)

The right-hand side is the value of the European call option at time t, while the left-
hand side is the expected payoff of the American call when following the stopping
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rule τ . Thus, we conclude that the value of the European call cannot be less than
the value of the American call, whichever stopping rule τ we select. Therefore, if one
is the holder of an American call, it is optimal to wait until maturity T to exercise
the option and thus the price of the American put is the same as the European
counterpart.

Remark 2.2. If the asset does not pay dividend, the American call should be worth
it more than the European call.

Remark 2.3. We used the fact that the payoff function for the call is convex, which
is not the case for the payoff of the put. Actually, the put case is rather difficult,
and the main objective of the present work is to determine the optimal stopping
rule.

2.2 The binomial model

Consider a market consisting of a riskless security with time t price βt = ert, and a
single risky security whose time t price St is determined by the so-called binomial
model, which we derive in detail later.

In this section we will explicitly calculate the pricing formula for a given con-
tingent claim X, by means of Proposition 2.4. To do this, we will figure out the
martingale measure Q. First, we tackle the problem in a one-period framework and
then pass to the T -period case.

Binomial model for price processes

Probably, the simplest model for the price of a single security evolving in discrete
time is the binomial model. It offers a good approximation for the price behaviour
and, despite its simplicity, we will see later that this model turns to be the basis for
the most common and useful models in continuous time.

Let Z1, Z2, . . . , ZT be independent Bernoulli random variables, that is,

P (Zi = 1) = 1 − P (Zi = 0) = p, ∀ i = 1, 2, . . . , T. (2.34)

Then, the partial sum

Wn =
n
∑

i=1

Zi, (2.35)

follows the binomial distribution given by

P (Wn = k) = Cn
k pk(1 − p)n−k. (2.36)

The process {Wn}T
n=1 is called a p-random walk.

Suppose that the initial price is S0 = S > 0, and at the next times, the price
either goes up by a factor u with probability p or goes down by a factor d with
probability 1 − p, with d < u.

It is clear that the price of the security at time t takes the form

St = S uk dt−k, (2.37)
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Figure 2.1: Binomial tree model

for any 0 ≤ k ≤ t, see the Figure 2.1. Moreover, it is easily seen that

P (St = S uk dt−k) = P (Wt = k) = Ct
k pk (1 − p)t−k, (2.38)

and thus, we can write down the process St as

St = S uWt dt−Wt , t = 1, 2, . . . , T. (2.39)

This is called the binomial model .

The martingale measure

Suppose that t = 1 so that β0 = 1, β1 = er, and say that S0 = S. According to
Definition 2.5, we look for a probability measure Q with

Q(S1 = S u) = q = 1 − Q(S0 = S d), (2.40)

satisfying the condition
EQ(S1/β1) = S0. (2.41)

Equation (2.41) can be rewritten as

e−rEQ(S1) = S. (2.42)

In other words, we look for q > 0 so that

e−r(S u q + S d (1 − q)) = S (2.43)

Solving the last equation for q we get

q =
er − d

u − d
. (2.44)

Note 2.4. Since Q is a probability measure, the parameters d, u, and r have some
restrictions. To begin d < u in order to the denominator in (2.44) make sense.
Moreover, both u > er and d < er must hold, otherwise q ≥ 1 or q ≤ 0, respectively.

We conclude that Q is the unique martingale measure in the market if and only
if

d < er < u. (2.45)
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One-period case

We find the fair price for the claim X in two different ways. The first method
consists in the construction of a replicating portfolio and then to calculate its initial
value. This method works because we already showed that there exists a martingale
measure, namely (2.44) above. Then, Theorem 2.2 implies that the initial value of
the replicating portfolio is the fair price of X.

Note that the payoff of X has two possible values, say Xu or Xd, depending on
the value of the risky security if it goes up or down. Recall that the value of the
portfolio at t = 1 is

V1 = θ0
1β1 + θ1

1S1. (2.46)

Thus, from (2.46), we obtain the system:

θ0
1e

r + θ1
1 Su = Xu, (2.47)

θ0
1e

r + θ1
1 Sd = Xd, (2.48)

which always has a solution under the assumption in (2.45). In fact, it is readily
seen that

θ0
1 =

u Xd − d Xu

er(u − d)
, θ1

1 =
Xu − Xd

S(u − d)
. (2.49)

Therefore, the initial value (recall (2.4)) is given by

V0 = θ0
1 + θ1

1S. (2.50)

For the second method, we can directly calculate the price of X by means of the
martingale measure q in (2.44) using the formula

V0 = e−rEQ(X) = e−r[Xu q + Xd(1 − q)]. (2.51)

It can be easily verified that equations (2.50) and (2.51) coincide.

T-period case

It turns out that the martingale measure Q′ which makes e−rtSt to be a martingale
coincides with Q in (2.40), that is, the quantity q in (2.44) does not depend on the
number of periods. To this end, fix t and note that the binomial model (2.39) implies
that

St+1 = uZt+1 d1−Zt+1St, (2.52)

where Zt+1 is a Bernoulli variable so that

Q′(Zt+1 = 1) = 1 − Q′(Zt+1 = 0) = q′. (2.53)

In particular,
EQ′(uZt+1 d1−Zt+1) = u q′ + d(1 − q′). (2.54)

We require that

EQ′

(

St+1

er(t+1)
| Ft

)

=
St

ert
, (2.55)
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and we will see that q′ = q. Combining (2.55) with the Ft measurability of St,
together with the fact that Zt+1 is independent of Ft, we obtain

0 = EQ′(e−r(t+1) St+1 − e−rtSt | Ft) (2.56)

= EQ′(e−r uZt+1 d1−Zt+1 St − St | Ft) (2.57)

= EQ′(e−r uZt+1 d1−Zt+1 − 1 | Ft) (2.58)

= e−r EQ′(uZt+1 d1−Zt+1) − 1. (2.59)

By means of (2.54) we finally obtain the martingale measure

q′ =
1 − d e−r

e−r(u − d)
=

er − d

u − d
= q, (2.60)

as claimed.

Valuation algorithm

To find the fair price of the contingent claim X, we use a procedure that relies on
the formula (2.24) which can be rewritten as follows: V (T ) = X and

Vt = e−rEQ(Vt+1 | Ft), ∀ 0 ≤ t ≤ T − 1, (2.61)

where Vt is the value of a replicating portfolio.
For each t, with 0 ≤ t ≤ T , denote by V (t, k) the value of the replicating portfolio

at time t when the price of the security has gone up k times, with 0 ≤ k ≤ T .
We can calculate the initial portfolio value V0 by backwards induction using the
martingale measure q and formula (2.51) for a single-period. Let Xk be the value of
the contingent claim if the price of the risky security goes up k times and

V (T, k) = Xk, ∀ 0 ≤ k ≤ T. (2.62)

Using formula (2.51) and the martingale measure (2.60), the value of the contingent
claim at time T − 1 is

V (T − 1, k) = e−r[q V (T, k + 1) + (1 − q)V (T, k)]. (2.63)

Proceeding inductively for each t with 0 ≤ t ≤ T − 1, we have

V (t, k) = e−r[q V (t, k + 1) + (1 − q)V (t, k)], (2.64)

until we get to the value V0, which must be the price of the claim X. See Figure 2.2

2.2.1 Binomial pricing formula for the European option

The approach of this subsection rely on the work of Cox, Ross, and Rubinstein [5].
In what follows we compute the fair price for the European option by direct

calculation of the expectation EQ(X), where X is the payoff function. This is done
under the assumption that the price of the underlying asset ST follows the binomial
model

ST = uWT dT−WT S,

where {Wt} is a q-random walk, and q is the martingale measure in (2.44).
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Figure 2.2: Value of contigent claim in time

Lemma 2.7. Let {Wn}T
n=1 be a q-random walk under Q, where Wn =

∑n
i=1 Zi and

Q(Zi = 1) = q for all 0 ≤ i ≤ T . Define

YT :=
T
∏

i=1

eα ZiE−1
Q (eα Zi), (2.65)

for some α ∈ R. Then,

Q′(A) = EQ(IA YT ), (2.66)

defines a probability measure. Moreover, {Wn}T
n=1 is a q′-random walk under Q′,

i.e. Q′(Zi = 1) = q′, where

q′ =
q eα

q eα + (1 − q)
. (2.67)

Proof. It is straightforward that Q′ is a probability measure. To prove the second
part, we calculate the distribution of the variables Zn under Q′. For each n, we have

a := EQ(eα Zn) = q eα + (1 − q). (2.68)

Fix n ≤ T . Then, using the independence of the variables Zn we get

Q′(Zn = 1) = EQ( I[Zn=1] YT ) (2.69)

= a−T EQ( I[Zn=1] e
α Zn

∏

i6=n

eα Zi) (2.70)

= a−T EQ( I[Zn=1]e
α Zn)

∏

i6=n

EQ(eα Zi) (2.71)

= a−1 EQ( I[Zn=1]e
α Zn) (2.72)

= a−1 q eα, (2.73)

as required.



2.2 The binomial model 25

Theorem 2.8. (Binomial pricing formula for European option)
Let X = {ST − K}+ be the payoff of the European call option, and let q be the

risk-neutral measure that makes {e−rt St} a martingale. Then, the binomial price of
the call option is

CEur = e−rT [S Bk(T, q′) − K Bk(T, q)], (2.74)

where k = min{m ∈ N : m ≥ log(K/SdT )/ log(u/d)}, and

q =
er − d

u − d
, q′ =

q u

er
,

and Bk(T, p) is defined by

Bk(T, p) :=
T
∑

i=k

CT
i pi(1 − p)T−i.

Proof. Consider the event A := [St ≥ K]. Thus, according to Theorem 2.2, the fair
price of the European call option is given by

CEur = e−rT EQ({ST − K}+) = e−rT [ EQ(ST IA) − KEQ(IA) ]. (2.75)

First we calculate EQ(IA). Note that

EQ(IA) = Q(ST ≥ K)

= Q(S uWT dT−WT ≥ K)

= Q(uWT d−WT ≥ K/S dT ).

Now take c := K/SdT and assume that m satisfies the condition

um d−m ≥ c. (2.76)

Then, we have that

m ≥ log(c)

log(u/d)
, (2.77)

and this is so because

log(um d−m) = log(um/dm)

= log(u/d)m

= m log(u/d).

Let k be the minimum of the m’s satisfying (2.77), that is,

k = min{m ∈ N : m ≥ log(K/SdT )/ log(u/d)}. (2.78)

Thus,

EQ(IA) =
T
∑

i=k

Q(WT = i) =
T
∑

i=k

CT
i qi(1 − q)T−i. (2.79)
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It remains to figure out EQ(ST IA). To this end, set α = log(u/d) in Lemma 2.7
so that q′ in (2.67) transforms into

q′ =
q(u/d)

q(u/d) + (1 − q)
=

q u

q u + (1 − q)d
=

q u

er
, (2.80)

where we use the fact that q is the martingale measure (2.60). Also, note that YT

becomes

YT =
1

aT

T
∏

i=1

(u

d

)Zi

=
1

aT

(u

d

)WT

=
1

aT
uWT d−WT , (2.81)

where a is given in (2.68). Thus

ST = S uWT dT−WT = S aT dT YT = S YT , (2.82)

since

a d = [ q(u/d) + (1 − q) ]d = q u + (1 − q)d = 1.

Hence, putting equations (2.80)-(2.82) together into EQ(ST IA), and using the change
of measure (2.66) in Lemma 2.7, we obtain

EQ(ST IA) = SEQ(IA YT ) (2.83)

= S Q′(A) (2.84)

= S EQ′(IA) (2.85)

The same ideas preceding (2.79) for calculating the expectation EQ(IA) can be
applied in this case for EQ′(IA), obtaining

EQ′(IA) =
T
∑

i=k

Q′(WT = i) =
T
∑

i=k

CT
i (q′)i(1 − q′)T−i, (2.86)

where k is given by (2.78).

Note 2.5. Along with the put-call parity relation (see [30] and [37, p. 155]), the
price PEur of a European put option is expressed in terms of the call price CEur in
(2.74). Specifically, the put-call parity says that

PEur = CEur − S − K e−rT . (2.87)

2.2.2 Binomial algorithm for the American option

Suppose that the risky asset price follows the binomial model St = S uWt dt−Wt .
Consider an American put, that is, set Xt = {K − St}+ for all t = 0, 1, . . . , T . In
analogy with the procedure (2.64), denote by A(t, k) the price of the American put
at time t, when the price has gone up k times. Also, say that the payoff at time t is
the price has gone up k times is

Xt(k) = {K − S uk dt−k}+. (2.88)
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Figure 2.3: Binomial model for American price

We start with

A(T, k) = XT (k), ∀ 0 ≤ k ≤ T. (2.89)

Now, for all 0 ≤ t ≤ T − 1, according to the formula (2.26)

A(t, k) = max{Xt(k), e−r[q A(t + 1, k + 1) + (1 − q)A(t + 1, k)] }, (2.90)

for each 0 ≤ k ≤ t. The value A(0, 0) (corresponding to A(0) in (2.26)) is the fair
price of the put.

Example 2.7. We give an explicit calculation. Set the initial price S = 4, the up
factor u = 2, the down factor d = 1/2, the instantaneus interes rate r = 1/4, the
strike price K = 5, and maturity T = 2. Then, we have the martingale measure and
discount factor

q =
e1/4 − 1/2

2 − 1/2
≈ 0.52, e−r ≈ 0.78

For ease of calculations, we suppose that q = 1/2 and e−r = 4/5. The payoff process
{Xt(k)} in (2.88) is

X2(0) ={K − S d2}+ = {5 − 1}+ = 4

X2(1) ={K − S ud}+ = {5 − 4}+ = 1

X2(2) ={K − S u2}+ = {5 − 16}+ = 0

X1(0) ={K − S d}+ = {5 − 2}+ = 3

X1(1) ={K − S u}+ = {5 − 8}+ = 0

X0(0) ={K − S}+ = {5 − 4}+ = 1.

Now we figure out (2.90), starting at the terminal time T = 2 and then backwards.
See Figure 2.3.
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A(2, 0) = X2(0) = 4

A(2, 1) = X2(1) = 1

A(2, 2) = X2(2) = 0.

A(1, 0) = max{X1(0), e−r[q A(2, 1) + (1 − q)A(2, 0)]}

= max{3,
4

5

[

1

2
· 1 +

1

2
· 4
]

}

= max{3, 2} = 3.

A(1, 1) = max{X1(1), e−r[q A(2, 2) + (1 − q)A(2, 1)]}

= max{0,
4

5

[

1

2
· 0 +

1

2
· 1
]

}

= max{0,
2

5
} =

2

5
.

A(0, 0) = max{X0(0), e−r[q A(1, 1) + (1 − q)A(1, 0)]}

= max{1,
4

5

[

1

2
· 2

5
+

1

2
· 3
]

}

= max{1,
34

25
} =

34

25
.

Therefore, the fair price for this American put is 25/36 ≈ 1.36.

2.3 Continuous time

2.3.1 Arbitrage-free pricing

In analogy with Subsection 2.1.1, we develope the concepts of self-financing port-
folio, arbitrage opportunity, and martingale measure, among others, and state the
Fundamental Theorem of Asset Pricing in this context.

Previously, we worked with the binomial model (2.39) for the price process of a
risky security evolving in discrete time. By means of the Central Limit Theorem, it
can be proved that the binomial model converges in law to the Geometric Brownian
Motion, whose differential form is

dSt = St[µdt + σ dBt].

We refer to Shreve [36, p. 91] or Kijima [19, Section 11.3] for a proof of this fact.
This is the model for the price processes adopted by Black and Scholes in their work
[3]. We will take this setting for pricing the European and American options in
continuous time.
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Consider a financial market with n + 1 securities

St = (βt, S
1
t , . . . , Sn

t ), t ∈ [0, T ], (2.91)

defined on a probability space (Ω,F , P ), and let {Ft}0≤t≤T be the natural filtration.
The price processes Si

t of the risky securities are Itô diffusions satisfying

dβt = r(t)βt dt, (2.92)

dSi
t = Si

t [µ(t) dt + σ(t) dBt], i = 1, 2, . . . , n, (2.93)

where µ(t) and σ(t) are continuous functions and Bt is a standard Brownian motion
under P . Note from (2.92) that βt is the deterministic function

βt = exp{
∫ t

0
r(s)ds}. (2.94)

Portfolio processes

We assume that we can trade the securities continuously by using a portfolio process

θt = (θ0
t , θ

1
t , . . . , θ

n
t ), t ∈ [0, T ]. (2.95)

Here, the portfolio {θt}0≤t≤T is adapted to {Ft}0≤t≤T .

The portfolio value Vt is defined similarly to (2.5) by

Vt = θ0
t βt +

n
∑

i=1

θi
t Si

t . (2.96)

Since Si
t and θi

t are Itô processes for each i = 0, 1, . . . , n, from Itô’s formula (see
Friedman [10, pp. 80-83]) we have

dVt = (θ0
t dβt + βtdθ0

t + dθ0
t dβt) +

n
∑

i=1

{θi
t dSi

t + Si
t dθi

t + dθi
t dSi

t}. (2.97)

If the portfolio θt does not depend on the security prices, then dθi
t dSi

t = 0. Moreover,
if

θ0
t βt +

n
∑

i=1

Si
t dθi

t = 0,

the changes in the portfolio value can only take place due to changes on the under-
lying security prices, not on the holding of the securities. In other words, there is no
inflow or outflow of money. This is the intuitive feature of a self-financing portfolio.

Definition 2.8. A portfolio process {θt}0≤t≤T is self-financing if

dVt = θ0
t dβt +

n
∑

i=1

θi
t dSi

t . (2.98)
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The equation (2.98) becomes

Vt = V0 +

∫ t

0
θ0
udβt +

n
∑

i=1

∫ t

0
θi
u dSi

u. (2.99)

The definition of arbitrage opportunity and contingent claim given in Definition
2.2 and 2.3 have the natural continuous-time analogue. Also, the Arbitrage-Free
Pricing Theorem 2.1 is valid in this context.

The Fundamental Asset Pricing Theorem

Let X be a contingent claim and suppose that it is attainable by a replicating
portfolio {θt}. Then, from equation (2.99) we have

X = V0

∫ T

0
θ0
udβt +

n
∑

i=1

∫ T

0
θi
u dSi

u, (2.100)

which is the analogue of equation (2.13). In the abscense of arbitrage opportunities,
Theorem 2.1 implies that the value V0 is the fair price of the claim X. In the follow-
ing we express V0 as the discounted expected value of X under certain probability
measure, using martingale methods.

From (2.96), it is easily seen that

d(Vt/βt) =
n
∑

i=1

θi
t dDi

t, (2.101)

where
Di

t = Si
t/βt, i = 1, . . . , n. (2.102)

Note that the sum starts with i = 1, since dD0
t = 0 for all t. Writing equation

(2.101) in its integral form

Vt

βt
= V0 +

n
∑

i=1

∫ t

0
θi(u) dDi

u, (2.103)

for all t ∈ [0, T ]. In particular, we have

VT

βT
=

Vt

βt
+

n
∑

i=1

∫ T

t
θi(u) dDi

u. (2.104)

If we assume that there exists a probability measure Q, equivalent to the original
probability P , so that the process {Di

t} is a martingale for each i = 1, 2, . . . , n under
Q, then

EQ

(
∫ T

t
θi
u dDi

u | Ft

)

= 0, ∀t ∈ [0, T ]. (2.105)

The measure Q is called a martingale measure . The Definition 2.5 of a martingale
measure remains the same in the continuous-time setting.
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Hence, by taking conditional expectation in (2.104) and setting X = VT , we
would get

Vt =
βt

βT
EQ(X | Ft). (2.106)

In particular, for t = 0 we have S0
0 = 1 and so

V0 =
EQ(X)

βT
. (2.107)

When the interest rate is constant (like in the Black-Scholes setting), say r(t) = r,
then S0(t) = ert and (2.107) takes the form

V0 = e−rT EQ(X),

which is the analogue of (2.18) in Section 2.1.1.
The Arbitrage-Free Pricing Theorem 2.1 states that if there are no arbitrage

opportunities then the fair price of the contingent claim X is the initial value of a
replicating portfolio, namely, V0. But, how can we be sure that the market does not
admit such arbitrage? The next result, due to the works of Harrison and Kreps [12]
and Harrison and Pliska [13], answers this question.

Theorem 2.9. (First Fundamental Theorem of Asset Pricing)

Consider the market (2.91)-(2.93). If there exists a martingale measure (see
Definition 2.5), then the market does not have arbitrage opportunities.

Proof. Let Q be a martingale measure for the market St. We want to show that
there is no arbitrage opportunities (recall Definition 2.2). To see this, let X be a
contingent claim and Vt the portfolio value of a replicating portfolio θt, and suppose
that V0 = 0 and P (VT ≥ 0) = 1, where P is the original measure.

Given that the discounted process Di
t = Si

t/βt is a martingale for each i =
1, 2, . . . , n under Q, then the discounted portfolio value

Vt

βt
=

n
∑

i=1

θi
t Di

t,

is also a martingale under Q. Thus, EQ(VT /βT ) = V0, so that

EQ(VT /βT ) = 0. (2.108)

Since P ∼ Q and P (VT ≥ 0) = 1, then Q(VT ≥ 0) = 1. This last fact together with
(2.108), imply Q(VT > 0) = 0. Again, by the equivalence of the measures we also
have P (VT > 0) = 0, concluding

E(VT ) = 0, (2.109)

implying that θt does not allow an arbitrage opportunity. Therefore, there does not
exist a replicating portfolio with V0 = 0 and finishing with a positive probability of
having made money.
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Existence and uniqueness of the martingale measure

For our purposes and to simplify the exposition, we consider a market with a single
risky security St.

Define g(t, x) := x/βt, so that Dt = g(t, St) is the discounted price process. Then
gt = −r(t) g, gx = βt, and gxx = 0. By Itô’s formula,

dDt = [gt + u gx +
v2

2
gxx]dt + v gx dBt,

where u(t, St) = µ(t)St and v(t, St) = σ(t)St, we get

dDt = [−r(t) g + µ(t)
St

βt
] dt + σ(t)

St

βt
dBt

= [−r(t)Dt + µ(t)Dt]dt + σ(t)Dt dBt.

Thus, the dynamic of the discounted price process has the form

dDt = Dt[ {µ(t) − r(t)} dt + σ(t) dBt ] (2.110)

We want to find a measure that makes Dt a martingale. Proposition 1.5 ensures
that a necessary and sufficient condition for this is

µ(t) − r(t) = 0. (2.111)

In other words, the discounted process Dt is a martingale if and only if the mean
rate of return µ(t) of the stock is equal to the mean rate of return r(t) of the risk-free
security. This is why the martingale measure Q is also called risk-neutral measure.

If µ(t) = r(t) under the measure P , then we are done. In the case in which
µ(t) 6= r(t) under P , we can make a change of variable as follows: rewrite (2.110) as

dDt = σ(t)Dtd

{

µ(t) − r(t)

σ(t)
t + Bt

}

= σ(t)DtdB̃t. (2.112)

The process
B̃t = µ̃(t) t + Bt, (2.113)

is a Brownian motion with drift µ̃(t), where

µ̃(t) =
µ(t) − r(t)

σ(t)
. (2.114)

The function µ̃ is known as the market price of risk .
The process

Mt = exp

{

−
∫ t

0
µ̃(s) dBs −

1

2

∫ t

0
µ̃2(s) ds

}

, (2.115)

is a martingale since the Novikov’s condition (1.38) holds, that is, µ̃ satisfies

E

[

exp{1

2

∫ T

0
µ̃(s)ds}

]

< ∞. (2.116)
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Girsanov’s Theorem 1.10 implies that B̃ = {B̃t}0≤t≤T is a standard Brownian motion
under the probability measure

Q(A) := EP (IA MT ), A ∈ FT . (2.117)

Since Dt is a continuous process and it has the form

dDt = σ(t)Dt dB̃t, (2.118)

then Dt is an Itô integral under Q, and therefore a martingale.

We have just proved the existence of the martingale measure.

Proposition 2.10. Consider the market (2.91)-(2.93). Then, there exists a mar-
tingale measure, namely, the measure Q in (2.117).

Remark 2.6. Recall that dSt = St[µ(t)dt + σ(t)dBt] under P . Using (2.113), we
notice that the dynamic of the security price process, under Q, is

dSt = St[r(t) dt + σ(t) dB̃t]. (2.119)

That is, the mean rate of return of the stock equals r(t). Then, pricing with this
measure is made in a risk-neutral world.

Concerning to the uniqueness of the martingale measure, we have the next result.

Theorem 2.11. (Second Fundamental Theorem of Asset Pricing)

Suppose that we can trade continuously in the time interval [0, T ]. Also, suppose
that the market has a martingale measure. Then, the market is complete if and only
if the martingale measure is unique.

See Shreve [36, Theorem 5.4.9] for a sketch of proof and Dalang et al. [6] for a more
general treatment.

It can be proved that the martingale measure Q (see (2.117)) in the market
model (2.91)-(2.93) is unique. We refer to [2, Theorem 2.6.2 page 249] for a proof.

2.3.2 The Black-Scholes pricing formula for the European option

In the celebrated work of Black and Scholes [3], they considered a European call
option with strike price K, constant interest rate r > 0, and maturity T , so that the
payoff is given by

X = {ST − K}+,

and the market model (βt, St) has the particular form

dβt = r βt dt, (2.120)

dSt = St[µdt + σ dBt]. (2.121)

where the constant parameters µ and σ are the drift and the volatility, respectively.

Using no-arbitrage arguments and solving a PDE, Black and Scholes arrived to
the following important result.
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Theorem 2.12. (The Black-Scholes pricing formula) The price of the Euro-
pean call option at time t is

C(t) = StΦ(d1(t)) − K e−r(T−t)Φ(d2(t)), (2.122)

where

d1(t) =
ln(St/K) + (r + 1

2σ2)(T − t)

σ
√

T − t
, (2.123)

d2(t) =
ln(St/K) + (r − 1

2σ2)(T − t)

σ
√

T − t
(2.124)

and Φ(x) is the Gaussian integral given by

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy.

Equation (2.122) is the so-called Black-Scholes formula .

Proof. Note that
d2(t) = d1(t) − σ

√
T − t. (2.125)

According to the Arbitrage-Free Pricing Theorem, the fair price of the European
call option is

C(t) = e−r(T−t)EQ({ST − K}+ | Ft), (2.126)

for all t ∈ [0, T ], where the martingale measure Q is given by

Q(A) = EP (IAMT ), A ∈ FT , (2.127)

with

MT = exp

{

−
(

µ − r

σ

)

BT − 1

2

(

µ − r

σ

)2

T

}

. (2.128)

Notice that the martingale measure Q exists because the Novikov’s condition holds,
that is, property (2.116) with µ̃ = (µ − r)/σ is satisfyied.

We shall verify in detail that (2.126) coincides with (2.122) for each t, using
martingale methods instead of solving a PDE.

The property that defines Q is that B̃t = t(µ−r)/σ+Bt is a Q-Brownian motion
(see page 33). Then, we write ST in terms of B̃t as follows:

ST = S0 exp{T (µ − σ2/2) + σBT }
= S0 exp{T (µ − σ2/2) + σ(B̃T + (r − µ)T/σ)}
= S0 exp{rT − σ2T/2 + σB̃T }
= St exp{r(T − t) − σ2(T − t)/2 + σ(B̃T − B̃t)}.

Thus, formula (2.126) becomes

C(t) = e−r(T−t)EQ[ (St exp{r(T − t) + Y } − K)+ | Ft], (2.129)
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where Y := −σ2(T − t)/2 + σ(B̃T − B̃t) is a normal variable with

µY :=EQ(Y ) = −σ2(T − t)/2, (2.130)

σY :=V arQ(Y ) = σ2(T − t), (2.131)

and so its density is given by

d(x) =
1√

2πσY
exp

{

−(x − µY )2

2σY

}

. (2.132)

Since B̃T − B̃t is independent of Ft we have

C(t) = e−r(T−t)EQ(g(Y )), (2.133)

where g(y) := (St exp{r(T − t) + y} − K)+ is non-zero when

y ≥ log(K/St) − r(T − t) := a(t). (2.134)

Therefore, EQ(g(Y )) can be written explicitly as

EQ(g(Y )) =

∫ ∞

−∞
g(y)d(y)dy

=

∫ ∞

a(t)
(St exp{r(T − t) + y} − K) exp

{

−(y − µY )2

2σY

}

dy√
2πσY

.

From here, we rewrite Vt in (2.129) as the sum of two integrals:

Vt = St

∫ ∞

a(t)
exp

{

y − (y − µY )2

2σY

}

dy√
2πσY

(2.135)

− e−r(T−t)K

∫ ∞

a(t)
exp

{

−(y − µY )2

2σY

}

dy√
2πσY

. (2.136)

We want to transform the expression above into the form (2.122) and we do this in
two steps.

Step 1: Consider the integral in (2.136). First, from (2.130)-(2.131), note that

(y − µY )2

2σY
=

(y + σ2

2 (T − t))2

2σ2(T − t)
.

Now, take the change of variable

z :=
y + σ2

2 (T − t)

σ
√

T − t
, (2.137)

so that
(y − µY )2

2σY
7→ z2

2
, and dz =

dy

σ
√

T − t
. (2.138)

Thus,
∫ ∞

a(t)
exp

{

−(y − µY )2

2σY

}

dy√
2πσY

=

∫ ∞

b(t)
exp

{

−z2

2

}

dz√
2π

, (2.139)
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where

b(t) =
a(t) + σ2

2 (T − t)

σ
√

T − t
. (2.140)

The integral on the right-hand side of (2.139) is 1−Φ(b(t)), which in turn equals to
Φ(−b(t)). Moreover,

−b(t) =
−a(t) − σ2

2 (T − t)

σ
√

T − t

=
− log(K/St) + r(T − t) − σ2

2 (T − t)

σ
√

T − t

=
log(St/K) + (r − σ2

2 )(T − t)

σ
√

T − t

= d2(t).

(2.141)

Hence, the integral on (2.139) becomes Φ(d2(t)), as required.
Step 2: In order to transform the integral on (2.135) into Φ(d1(t)), we make two

changes of variable. The first change of variable is the given in (2.137), so that we
get

∫ ∞

a(t)
exp

{

y − (y − µY )2

2σY

}

dy√
2πσY

=

∫ ∞

b(t)
exp

{(

z σ
√

T − t − σ2

2
(T − t)

)

+
z2

2

}

dz√
2π

.

(2.142)

Since
(

z σ
√

T − t − σ2

2
(T − t)

)

+
z2

2
=

1

2
(2 z σ

√
T − t − σ2(T − t) + z2)

=
1

2
(z − σ

√
T − t)2,

we further take the change of variable

w := z − σ
√

T − t, (2.143)

so that
∫ ∞

a(t)
exp

{

y − (y − µY )2

2σY

}

dy√
2πσY

=

∫ ∞

c(t)
exp

{

w2

2

}

dw√
2π

, (2.144)

where, using (2.125) and (2.142), we get

c(t) = b(t) − σ
√

T − t

= −d2(t) − σ
√

T − t

= −d1(t).

(2.145)

Thus, the integral in (2.144) becomes 1 − Φ(c(t)) which in turn equals Φ(−c(t)) =
Φ(d1(t)), as required.
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Note 2.7. We obtained the Black-Scholes formula (2.122) using martingale methods.
It can also be obtained as the weak limit of the binomial pricing formula (2.74) by
means of the Central Limit Theorem. To see a proof of this we refer to Kijima [19,
p. 181].

2.3.3 American option price as an optimal stopping problem

Consider the market model

dβt = r βt dt (2.146)

dSt = St[µdt + σ dBt], (2.147)

where S = {St}0≤t≤T is defined on (Ω,F , {Ft}0≤t≤T , P ). Let X = {Xt}0≤t≤T be
the payoff of the American option and define

Ut := ess supt≤τ≤T EQ(e−r(τ−t)Xτ | Ft), (2.148)

where Q is the martingale measure. See Appendix B for further treatment of the
essential supremum.

The process U = {Ut}0≤t≤T is known as the Snell’s envelope of the discounted
payoff

Yt := e−rtXt. (2.149)

The Snell’s envelope U can be replicated by a specific self-financing portfolio (see
a proof in Myneni [26, Lemma 3.1] or Karatzas [17, Theorem 5.4]). Moreover, it is
proved that if A0 is the initial value of the American option, then

A0 = U0 (2.150)

is necessary for no-arbitrage opportunities ([26, Theorem 3.1]). We state this im-
portant result.

Theorem 2.13. The fair price of the American option with maturity T and strike
price K is given by the optimal stopping problem

A0 = sup
0≤τ≤T

EQ(Yτ ), (2.151)

where the supremum is taken over all the stopping times from 0 to T . Moreover, the
stopping time

τ∗ := inf{0 ≤ t ≤ T : Ut = Yt}, (2.152)

is optimal in (2.151).

For a proof of the first part, see Myneni [26]. For a proof of the latter, see Peskir
and Shiryaev [31, Theorem 2.2, (2.1.11)].

Remark 2.8. In some sense (see Appendix B)

Ut = sup
t≤τ≤T

EQ(e−r(τ−t)Xτ | Ft). (2.153)

Note that UT = XT . From the discussion in Subsection 2.1.1 we must have At = Ut

for each t ∈ [0, T ].
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Remark 2.9. If the American option is call-type, that is, the payoff Xt is of the form
Xt = {St − K}+, then the optimal stopping time to exercise the call is at maturity
T . This can be proved as in the discrete-time case, see Subsection 2.1.2. Therefore,
the fair price of the American call option

A0 = sup
0≤τ≤T

EQ[e−rτ{St − K}+]

coincides with the Black-Scholes pricing formula (2.122).

We will give an approach to the value of the American put option in Chapter 4
by solving a free-boundary problem. Before that, we give the necessary background
about the type of solution that we expect for optimal stopping problems in the next
chapter.

For deeper insights into the results in this section, we refer to Karatzas [17].



Chapter 3

Optimal stopping problems

Suppose that X = {Xt}t≥0 is a time-homogeneous strong Markov process defined
on (Ω,F , {Ft}t≥0, P ) with values on (R,B(R)).

Consider the family of measures {Px, x ∈ R} where Px is the distribution law
of the process X starting at X0 = x, that is, Px(X0 = x) = 1. The transition
probability is given by

P (Xt ∈ B | X0 = x) = Px(Xt ∈ B). (3.1)

The family
(Ω,F , {Ft}t≥0, {Px, x ∈ R}), (3.2)

together with the process X form a Markov family (see Definition 1.5).
Without loss of generality, we take Ω = R

[0,∞), that is, as the class of all functions
ω : [0,∞) → R endowed with the σ-algebra F generated by the finite-dimensional
cylinders

{ω ∈ R
[0,∞) : ω(t1) ∈ F1, . . . , ω(tn) ∈ Fn; n ∈ N}, Fi ⊂ R,

Thus, the Markov process X is the projection process given by

Xt(ω) = ω(t)

for all t ≥ 0 and ω ∈ Ω, and the shift operator θt is well-defined (see (1.9)).
In this chapter we solve the optimal stopping problem of the form

V (x) = sup
0≤τ≤T

ExG(Xτ ), (3.3)

where G : R → R is a measurable function, the horizon T could be infinite, and the
supremum is taken over all stopping times satisfying

Px(τ < ∞) = 1. (3.4)

Solving the problem (3.3) means to find two things: an optimal stoping time τ∗ and
the value of V .

Note that, in order for equation (3.3) to make sense, it must to be assumed that
G satisfies the condition

Ex

(

sup
0≤t≤T

|G(Xt)|
)

< ∞, (3.5)
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for all x ∈ R, with G(XT ) := 0 if T = ∞.

We give sufficient conditions on the value and gain functions V and G, respec-
tively, to show the existence of an optimal stopping time. As part of this scheme, we
characterise V as the smallest superharmonic function dominating G. After that,
we pass to the discounted problem with finite horizon

V (t, x) = sup
0≤τ≤T−t

Et,xe−rτG(t + τ, Xt+τ ). (3.6)

The existence of an optimal stopping time in (3.6) is a consequence of the solution
in the former problem (3.3). Moreover, based on the results of the infinite horizon
case, we find that V is the smallest r-superharmonic function dominanting G.

3.1 Assumptions and the problem

Along this chapter we will work under the following

Assumptions

(A1) The filtration {Ft}t≥0 satisfies the usual conditions: it is right-conti-
nuous, that is,

Ft+ :=
⋂

s>t

Fs = Ft, (3.7)

and F0 contains all P -null sets from F .

(A2) The sample paths of X are right-continuous, that is, if X0 = x then

t ↓ s ⇒ Xt → Xs, Px − a.s. (3.8)

(A3) The sample paths of X are left-continuous over stopping times, that is, if
X0 = x then

τn ↑ τ ⇒ Xτn
→ Xτ , Px − a.s. (3.9)

The problem

Definition 3.1. Let F : R → R be a measurable function and r > 0. It is said that
F is r-superharmonic if

Exe−rσF (Xσ) ≤ F (x), (3.10)

for all x ∈ R and all stopping times σ with Px(σ < ∞) = 1. If (3.10) holds with
r = 0, then we say that F is superharmonic.

Notice that if F is superharmonic, then {F (Xt)}t≥0 is a supermartingale. Simi-
larly, if F is r-superharmonic, then {e−rtF (Xt)}t≥0 is a supermartingale.

Recall that a function F : R → R is lower semicontinuous (lsc) if for every real
sequence {xn} with limn→∞ xn = x0 we have

lim inf
n→∞

F (xn) ≥ F (x0). (3.11)
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Similarly, F is said to be upper semicontinuous (usc) if for every real sequence {xn}
with limn→∞ xn = x0 we have

lim sup
n→∞

F (xn) ≤ F (x0). (3.12)

Consider the problem (3.3) and assume that the gain function G is usc and the
value function V is lsc. Introduce the continuation set

C := {x ∈ R : V (x) > G(x)} (3.13)

and the stopping set
D := {x ∈ R : V (x) = G(x)}. (3.14)

Also, define the first entry time τD of the process X into D by

τD := inf{t ≥ 0 : Xt ∈ D}, (3.15)

which is a stopping time in the light of Assumption (A1).
We will prove that

(i) V is the smallest superharmonic function dominating G.

(ii) The stopping time τD defined by (3.15) is optimal in (3.3) provided that
Px(τD < ∞) = 1 for all x ∈ R.

Then, solving the optimal stopping problem (3.3) is equivalent to the problem of
finding the smallest superharmonic function V̂ dominating G. In that case V̂ = V
and τD is optimal if Px(τD < ∞) = 1 for all x ∈ R.

3.2 Superharmonic characterisation of the value func-

tion

The following proposition will be needed. See [31, p. 39] for a proof.

Proposition 3.1. Let F : R → R be a superharmonic function. If F is lsc then
{F (Xt)}t≥0 is a right-continuous Px-a.s. supermartingale for every x ∈ R.

Lemma 3.2. Let F : R → R be an r-superharmonic with r ≥ 0, and τD the first
entry time to a measurable set D. Assume that Px(τD < ∞) = 1 for all x ∈ R.
Then the mapping

x 7→ Ex(e−rτDF (XτD
)) (3.16)

is also an r-superharmonic function.

Proof. The strong Markov property of the process X = {Xt}t≥0 and properties of
the shift operator imply

Ex(e−rσ EXσ
e−rτDF (XτD

)) = Ex[e−rσ Ex(e−rτD◦θσF (XτD
◦ θσ) | Fσ) ]

= Ex[Ex(e−rσ e−rτD◦θσF (XτD◦θσ+σ) | Fσ) ]

= Exe−r(τD◦θσ+σ)F (XτD◦θσ+σ).

(3.17)
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Note that

τD ◦ θσ + σ = inf{t ≥ σ : Xt ∈ D} ≥ τD.

Since e−rtF (Xt) is a supermartingale, we conclude that

Exe−r(τD◦θσ+σ)F (XτD◦θσ+σ) ≤ Exe−rτDF (XτD
), (3.18)

as required.

Lemma 3.3. For each x ∈ R and each stopping time σ, the family

S = {Ex(G(Xτ ◦ θσ) | Fσ) : τ is a stopping time} (3.19)

is upwards directed (see Definition A.1 in the Appendix).

Proof. Fix x ∈ R and a stopping time σ. We have to show that given stopping times
τ1, τ2, there exists a stopping time τ such that

Ex(G(Xτ ◦ θσ) | Fσ) ≥ Ex(G(Xτ1 ◦ θσ) | Fσ) ∨ Ex(G(Xτ2 ◦ θσ) | Fσ). (3.20)

Recall that Xτ ◦ θσ = Xτ◦θσ+σ. Define βi := τi ◦ θσ +σ for i = 1, 2, and consider the
event

B = [Ex(G(Xβ1
) | Fσ) ≥ Ex(G(Xβ2

) | Fσ) ], (3.21)

Note that B ∈ Fσ since the expectations conditioned to Fσ are Fσ-measurable.
Define

β := β1IB + β2IBc , (3.22)

so that β is a stopping time. To see this, note that β ≤ t implies σ ≤ t, so that we
have [β ≤ t] = [β ≤ t] ∩ [σ ≤ t] and then for each t ≥ 0 we have that

[β ≤ t] = { [β1 ≤ t] ∩ B ∩ [σ ≤ t] }
⋃

{ [β2 ≤ t] ∩ Bc ∩ [σ ≤ t] } ∈ Ft. (3.23)

Moreover, β is of the form β = τ ◦ θσ + σ, for some stopping time τ . Indeed,

β = (τ1 ◦ θσ + σ)IB + (τ2 ◦ θσ + σ)IBc

= [ (τ1 ◦ θσ)IB + (τ2 ◦ θσ)IBc ] + σ

= [τ1Iθσ(B) + τ2Iθσ(Bc)] ◦ θσ + σ.

(3.24)

It only remains to prove that τ := τ1Iθσ(B) + τ2Iθσ(Bc) is a stopping time. Notice
that

θσ(B) = [EX0
G(Xτ1) ≥ EX0

G(Xτ2) ] ∈ F0, (3.25)

where the latter can be seen by writting B = [EXσ
G(Xτ1) ≥ EXσ

G(Xτ2)] by the
strong Markov property of X. Thus,

[τ ≤ t] = { [τ1 ≤ t] ∩ [θσ(B)] }
⋃

{ [τ2 ≤ t] ∩ [θσ(Bc)] } ∈ Ft, (3.26)

for all t ≥ 0, implying that τ is a stopping time.
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Therefore,

Ex(G(Xβ) | Fσ) = Ex(G(Xβ1
)IB | Fσ) + Ex(G(Xβ2

)IBc | Fσ)

= Ex(G(Xβ1
) | Fσ)IB + Ex(G(Xβ2

) | Fσ)IBc

= Ex(G(Xβ1
) | Fσ) ∨ Ex(G(Xβ2

) | Fσ),

(3.27)

as we require. We used the fact that G(Xβ) = G(Xβ1
)IB + G(Xβ2

)IBc .

Theorem 3.4. Consider the optimal stopping problem with infinite horizon T = ∞,
that is,

V (x) = sup
τ≥0

ExG(Xτ ), (3.28)

Assume that V is lsc, and G is usc and bounded. Then V is the smallest superhar-
monic function dominating G, and τD in (3.15) is optimal in (3.28) provided that
Px(τD < ∞) = 1 for all x ∈ R.

Proof. To see that V dominates G, it is enough to take τ ≡ 0 in (3.28). We split up
the rest of the proof into two parts. First, we prove that V is superharmonic, that
is, we verify that

ExV (Xσ) ≤ V (x), (3.29)

for all stopping times σ, and all x ∈ R and that V is the minimal in the class of
superharmonic functions dominating G. Second, we show that τD is optimal.

First part. Since V is lsc, it can be written as the supremum of a sequence of con-
tinuous functions, implying that V is a measurable function. Then the composition
V (Xσ) is also measurable.

Fix x ∈ R and assume that X0 = x. For each stopping time σ we have

V (Xσ) = sup
τ≥0

EXσ
G(Xτ ). (3.30)

By the strong Markov property of X,

EXσ
G(Xτ ) = Ex(G(Xτ ◦ θσ) | Fσ). (3.31)

The supremum of the right hand side in (3.31) may be not well defined. However,
by Proposition A.1, we can write

V (Xσ) = ess supτ≥0Ex(G(Xτ ◦ θσ) | Fσ). (3.32)

By Lemma 3.3, the family

S = {Ex(G(Xτ ◦ θσ) | Fσ) : τ is a stopping time} (3.33)

is upwards directed, then by Proposition A.2, there exists a sequence of stopping
times {τn : n ≥ 1} such that

V (Xσ) = lim
n→∞

Ex(G(Xτn
◦ θσ) | Fσ), (3.34)
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where {Ex(G(Xτn
◦θσ) | Fσ) : n ≥ 1} is increasing Px-a.s. Finally, by the Monotone

Convergence Theorem and the definition of V we have

ExV (Xσ) = lim
n→∞

ExG(Xτn◦θσ+σ) ≤ V (x), (3.35)

proving that V is superharmonic. We used that Xτn
◦ θσ = Xτn◦θσ+σ.

If Ṽ is another superharmonic function dominating G, we have

ExG(Xτ ) ≤ ExṼ (Xτ ) ≤ Ṽ (x), (3.36)

and taking supremum over all stopping times τ we get V (x) ≤ Ṽ (x), proving the
minimality property of V .

Second part. Fix x ∈ R and suppose that Px(τD < ∞) = 1. We want to prove
that τD is optimal in (3.28), that is,

V (x) = ExG(XτD
), (3.37)

where τD is the first entry time to the stopping set D = {x ∈ R : V (x) = G(x)}.
By definition of V , it is clear that V (x) ≥ ExG(XτD

). In what follows we prove the
reverse inequality.

Fix ǫ > 0 and define the sets

Cǫ :={x ∈ R : V (x) > G(x) + ǫ}, (3.38)

Dǫ :={x ∈ R : V (x) ≤ G(x) + ǫ}. (3.39)

Note that Cǫ ↑ C and Dǫ ↓ D, as ǫ ↓ 0. Also, define the stopping times

τDǫ
:= inf{t ≥ 0 : Xt ∈ Dǫ}. (3.40)

We will show two facts in order to prove V (x) ≤ ExG(XτD
). First, we show that

V (x) = ExV (XτDǫ
), ∀x ∈ R. (3.41)

Second, we will check that
τDǫ

↑ τD as ǫ ↓ 0. (3.42)

Thus, if (3.41) and (3.42) hold, we will have

V (x) ≤ ExG(XτDǫ
) + ǫ (3.43)

≤ lim sup
ǫ↓0

ExG(XτDǫ
) (3.44)

≤ Ex lim sup
ǫ↓0

G(XτDǫ
) (3.45)

≤ ExG

(

lim sup
ǫ↓0

XτDǫ

)

(3.46)

= ExG(XτD
), (3.47)

as we require to prove. Equation (3.43) holds by definition of Dǫ; in (3.45) we used
Fatou’s Lemma (recall that G is bounded); in (3.46) we used that G is usc; and
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finally, (3.47) follows from the facts that τDǫ
↑ τD as ǫ ↓ 0 and that the process X is

left-continuous over stopping times (see condition (d) in Section 3.1) were necessary.

Now, to prove (3.41) set

c := sup
x∈R

{G(x) − ExV (XτDǫ
)} < ∞. (3.48)

We can see that c is finite since V (XτDǫ
) ≤ G(XτDǫ

) + ǫ and G is bounded. Then

G(x) ≤ ExV (XτDǫ
) + c, ∀x ∈ R. (3.49)

Given that Dǫ ⊃ D, then τDǫ
≤ τD and so Px(τDǫ

< ∞) = 1. From here, Lemma
3.2 implies that x 7→ ExV (XτDǫ

) is superharmonic, so also is the mapping x 7→
ExV (XτDǫ

) + c. Since V is the smallest superharmonic function dominating G, we
must have

V (x) ≤ ExV (XτDǫ
) + c, ∀x ∈ R. (3.50)

By definition of supremum, given δ > 0 with δ ≤ ǫ, we can choose y ∈ R such that

G(y) − EyV (XτDǫ
) ≥ c − δ. (3.51)

Thus, from (3.50) and (3.51),

V (y) ≤ G(y) + δ ≤ G(y) + ǫ, (3.52)

which implies that y ∈ Dǫ, and then starting the process at y, it enters to Dǫ

immediately, that is τDǫ
= 0. Therefore EyV (XτDǫ

) = EyV (X0) = V (y), so that
(3.51) becomes

0 ≥ G(y) − V (y) ≥ c − δ. (3.53)

Given that δ is arbitrarily small, we conclude that c ≤ 0. Hence, from (3.49),

G(x) ≤ ExV (XτDǫ
). (3.54)

Since ExV (XτDǫ
) is superharmonic and V is the smallest one which dominates G,

we can see that
V (x) ≤ ExV (XτDǫ

), (3.55)

The inverse inequality in (3.55) follows by the superharmonic definition of V .

Now, let’s proceed to prove (3.42). To do this, first note that over the set Dǫ,
we have

V (XτDǫ
) ≤ G(XτDǫ

) + ǫ. (3.56)

Since Dǫ ↓ D, then there exists a stopping time τ0 ≤ τD such that τDǫ
↑ τ0. From

the left-continuity of X over stopping times and letting ǫ ↓ 0, we have

V (XτDǫ
) → V (Xτ0), G(XτDǫ

) → G(Xτ0) Px − a.s. (3.57)

for all x ∈ R. Since V is lsc, G is usc, and (3.56) holds, it follows that

V (Xτ0) ≤ lim inf
ǫ↓0

V (XτDǫ
) ≤ lim sup

ǫ↓0
G(XτDǫ

) ≤ G(Xτ0), (3.58)

which implies V (Xτ0) = G(Xτ0). Thus, by the definition of D, the process X is in
D at the time τ0. This shows that τD ≤ τ0 and therefore τD = τ0.
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Remark 3.1. If Px(τD < ∞) < 1 for some x ∈ R, then there is no optimal stopping
time in (3.28). To see this, suppose that there is an optimal stopping time, say
τ∗. Then V (Xτ∗) = G(Xτ∗) Px-a.s., otherwise Px(V (Xτ∗) > G(Xτ∗)) < 1 implies
V (x) ≥ ExV (Xτ∗) > ExG(Xτ∗), but in such case τ∗ is not optimal. Since τD is the
first entry time to the set D, from the identity V (Xτ∗) = G(Xτ∗) we must have

τD ≤ τ∗, Px − a.s.

The latter implies Px(τ∗ < ∞) < 1 for some x ∈ R, which contradicts (3.4).

3.3 The discounted case with finite horizon

Passing to the discounted case

We are interested in solving the optimal stopping problem

V (x) = sup
τ≥0

Ex(e−rτG(Xτ )). (3.59)

Based on the results obtained in the last section, we will show that V is the
smallest r-superharmonic function which dominates G, and the stopping time

τD := inf{t ≥ 0 : Xt ∈ D}, (3.60)

with D = {x ∈ R : V (x) = G(x)} is optimal in (3.59).

We state the analogue results of the last section for the discounted case and
indicate only the less natural changes that we should make in their proofs.

The following lemma is the analogue of Lemma 3.3.

Lemma 3.5. For each x ∈ R and stopping time σ, the family

S = {Ex(e−rτ◦θσG(Xτ ◦ θσ) | Fσ) : τ is a stopping time} (3.61)

is upwards directed (see Definition A.1).

Proof. Fix x ∈ R and a stopping time σ. We have to show that given stopping times
τ1, τ2, there exists a stopping time τ such that

Ex(e−r(τ◦θσ)G(Xτ ◦ θσ) | Fσ)

≥ Ex(e−r(τ1◦θσ)G(Xτ1 ◦ θσ) | Fσ) ∨ Ex(e−r(τ2◦θσ)G(Xτ2 ◦ θσ) | Fσ).
(3.62)

Recall that Xτ ◦ θσ = Xτ◦θσ+σ. Instead of (3.21), consider the event

B = [ e−r(τ1◦θσ)Ex(G(Xβ1
) | Fσ) ≥ Ex(e−r(τ2◦θσ)G(Xβ2

) | Fσ) ], (3.63)

where βi = τi ◦ θσ + σ for i = 1, 2. Next, it can be shown that β := β1IB + β2IBc is
a stopping time and that it takes the particular form

β = [τ1Iθσ(B) + τ2Iθσ(Bc)] ◦ θσ + σ, (3.64)
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where θσ(B) = [EX0
e−rτ1G(Xτ1) ≥ EX0

e−rτ2G(Xτ2)] ∈ F0 and

τ := [τ1Iθσ(B) + τ2Iθσ(Bc)] (3.65)

is a stopping time. The arguments in this part are similar to the ones used from
(3.22) to (3.26).

Since
G(Xτ ◦ θσ) = G(Xτ◦θσ+σ) = G(Xβ)

= G(Xβ1
IB + Xβ2

IBc)

= G(Xβ1
)IB + G(Xβ2

)IBc ,

(3.66)

then multiplying by e−r(τ◦θσ), we can verify that

e−r(τ◦θσ)G(Xτ ◦ θσ)

= e−r(τ1◦θσ)G(Xβ1
)IB + e−r(τ2◦θσ)G(Xβ2

)IBc

(3.67)

Therefore, using that B ∈ Fσ,

Ex[e−r(τ◦θσ)G(Xτ ◦ θσ) | Fσ]

= Ex[e−r(τ1◦θσ)G(Xβ1
) | Fσ]IB + Ex[e−r(τ2◦θσ)G(Xβ2

) | Fσ]IBc

= Ex(e−r(τ1◦θσ)G(Xτ1 ◦ θσ) | Fσ) ∨ Ex(e−r(τ2◦θσ)G(Xτ2 ◦ θσ) | Fσ).

The following result was established by Dynkin [7].

Theorem 3.6. Consider the optimal stopping problem with infinite horizon T = ∞,
that is,

V (x) = sup
τ≥0

Exe−rτG(Xτ ) (3.68)

where r > 0. Assume that V is lsc, and G is usc and bounded. Then V is the
smallest r-superharmonic function dominating G, and τD in (3.60) is optimal in
(3.68) provided that Px(τD < ∞) = 1 for all x ∈ R.

Proof. First part. We shall prove that V is r-superharmonic, that is, we verify that

Exe−rσV (Xσ) ≤ V (x), (3.69)

for all stopping times σ, and all x ∈ R.
In equations (3.30)-(3.34) we make the natural changes, like using Lemma 3.5

instead of Lemma 3.3 in equation (3.33). From there, we can write

V (Xσ) = lim
n→∞

Ex(e−rτn◦θσG(Xτn
◦ θσ) | Fσ), (3.70)

where {Ex(e−rτn◦θσG(Xτn
◦ θσ) | Fσ) : n ≥ 1} is increasing Px-a.s. Thus, by the

MCT and the notation Xτn
◦ θσ = Xτn◦θσ+σ,

Exe−rσV (Xσ) = lim
n→∞

Exe−rσEx(e−rτn◦θσG(Xτn◦θσ+σ) | Fσ) (3.71)

= lim
n→∞

Exe−r(τn◦θσ+σ)G(Xτn◦θσ+σ) ≤ V (x). (3.72)
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Then, V is r-superharmonic. If Ṽ is another r-superharmonic function dominating
G, then we have

Exe−rτG(Xτ ) ≤ Exe−rτ Ṽ (Xτ ) ≤ Ṽ (x), (3.73)

and taking supremum over all stopping times τ we get V (x) ≤ Ṽ (x).

Second part. Now, we want to prove that

V (x) = Ex(e−rτDG(XτD
)). (3.74)

The definition of the sets Cǫ and Dǫ, and the stopping time τDǫ
are (3.38), (3.39),

and (3.42) respectively.

It is clear that V (x) ≥ Ex(e−rτDG(XτD
)) by definition of V . It remains to show

the reverse inequality.

First, the following can be verified:

V (x) = Ex(e−rτDǫ V (XτDǫ
)), ∀x ∈ R. (3.75)

To show (3.75), we set

c = sup
x∈R

{G(x) − Ex(e−rτDǫ V (XτDǫ
))}, (3.76)

so that the rest of the arguments are verifyied according to the corresponding part
from (3.48) to (3.55) in Theorem 3.4 with the natural changes. Note that here, we
use Lemma 3.2 in place of Lemma 3.2.

Similarly, the fact that

τDǫ
↑ τD as ǫ ↓ 0, (3.77)

is proved in exactly the same way as in equations (3.56)-(3.58).

Therefore, from (3.75) and (3.77) and the definition of τDǫ
, we obtain

V (x) = Ex(e−rτDǫ V (XτDǫ
)) (3.78)

≤ Ex(e−rτDǫ G(XτDǫ
)) + ǫ Exe−rτDǫ (3.79)

≤ lim sup
ǫ↓0

Ex(e−rτDǫ G(XτDǫ
)) + lim sup

ǫ↓0
ǫ Exe−rτDǫ (3.80)

≤ Ex lim sup
ǫ↓0

e−rτDǫ G(XτDǫ
) (3.81)

= Ex(e−rτDG(XτD
)), (3.82)

as required. In (3.81) we used Fatou’s lemma (G is bounded) and Px(τDǫ
< ∞) = 1.

The discounted with finite horizon case

Suppose the horizon is finite, that is, T < ∞. Replace the Markov process Xt by
the Markov process (t, Xt) with state space [0, T ] × R. Thus, the problem (3.59)
becomes

V (t, x) = sup
0≤τ≤T−t

Et,xe−rτG(t + τ, Xt+τ ), (3.83)
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where (t, x) is the initial state, that is, Xt = x under Pt,x. The stopping time defined
in (3.15) becomes

τD := inf{0 ≤ s ≤ T − t : (t + s, Xt+s) ∈ D}, (3.84)

where D is given by

D = {(t, x) ∈ [0, T ] × R : V (t, x) = G(t, x)}. (3.85)

Set Xt = x and define the process Y = {Yu}u≥0 as

Yu := (t + u, Xt+u), t ≤ u ≤ T. (3.86)

Then Y is a strong Markov process with Y0 = (t, x) = y. Thus, the problem (3.83)
reads

V (y) = sup
0≤τ≤T−t

Ey(e
−rτG(Yτ )). (3.87)

Hence, the following theorem can be proved in exactly the same way as Theorem
3.6 with a few changes. For example, instead of taking supremum over all stopping
times τ ≥ 0, we take supremum over all stopping times 0 ≤ τ ≤ T − t, where t is
fixed.

Theorem 3.7. Consider the optimal stopping problem (3.83). Assume that V is
lsc, and G is usc and bounded. Then V is the smallest r-superharmonic function
dominating G and τD given by (3.84) is optimal in (3.83).

A particular case

Jaillet, Lamberton, and Lapeyre [16] studied the optimal stopping problem (3.83)
assuming that G is a time-independent function, and X an Itô difussion solving

dXt = µ(Xt)dt + σ(Xt)dBt, (3.88)

where Bt is a standard Brownian motion with B0 = 0. Note that X is a time-
homogeneous strong Markov process, so that we can apply the results in the previous
section.

The following property of the value function V (t, x) (see [16, Proposition 2.2] for
a proof) will be used in the next chapter.

Proposition 3.8. (Continuity of V ) Assume that µ(x) and σ(x) are bounded
C1 functions from R into R with bounded derivatives. Also, assume that G is a
continuous function and that |G(x)| ≤ MeM |x| for some M > 0. Then, the value
function V (t, x) given by

V (t, x) = sup
0≤τ≤T−t

Exe−rτG(Xt+τ ), (3.89)

is continuous in [0, T ] × (0,∞).
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Chapter 4

American put option pricing

We know, from Theorem 2.13 and Remark 2.8, that the price of the American
put option with strike price K and finite horizon T , is given by the probabilistic
expression

A(t) = sup
t≤τ≤T

E[e−r(τ−t){K − Sτ}+ | Ft], (4.1)

where the stock price process S = {St}t≥0 obeys the SDE

dSt = rSt dt + σSt dBt, (4.2)

under the martingale measure (see Remark 2.6), and the constant parameters r >
0 and σ > 0 are the interest rate in the market and the volatility of the stock,
respectively.

It can be seen ([27, p. 64]) that the unique solution to (4.2) is the geometric
Brownian motion

St = S0 exp{(r − 1

2
σ2)t + σBt}, ∀ t ≥ 0. (4.3)

Since S = {St : t ≥ 0} is an Itô diffusion, Proposition 1.7 implies that S is a
strong Markov process. Also, note that S is time-homogeneous and its infinitesimal
generator (see Proposition 1.8 ) is

LS = r x
∂

∂x
+

σ2

2
x2 ∂2

∂2x
. (4.4)

Suppose that St = x and consider the optimal stopping problem

V (t, x) = sup
0≤τ≤T−t

Et,xe−rτ{K − St+τ}+, (4.5)

where Pt,x is the law of S starting at St = x. Then, the above problem and the one
in (4.1) are related as follows:

A(t) = V (t, St), ∀ t ∈ [0, T ]. (4.6)

Set G(x) = (K − x)+ which satisfies the condition |G(x)| ≤ MeM |x| for some
M > 0, and then Proposition 3.8 implies that the value function V (t, x) is continuous
on [0, T ]× (0,∞). Thus, the hypothesis of Theorem 3.7 are covered, so we conclude
that the stopping time

τD = inf{0 ≤ u ≤ T − t : (t + u, St+u) ∈ D}, (4.7)
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is optimal in the problem (4.5), where D is the stopping set

D = {(t, x) ∈ [0, T ] × (0,∞) : V (t, x) = G(x)}, (4.8)

and its complement, called the continuation set, takes the form

C = {(t, x) ∈ [0, T ) × (0,∞) : V (t, x) > G(x)}. (4.9)

The boundary ∂D separating C and D is the optimal stopping boundary. Then, if we
know this boundary, not only the pricing problem is solved (our primary problem),
but also we are able to give the optimal stopping strategy to exercise the option.

So far, the optimal stopping boundary is given in an implicit way in terms of
the unknown value function V . Thus, our aim in this Chapter is to describe (and
maybe compute) this boundary analytically to get more information about it.

In Section 4.1 we prove further properties of the value function V and the bounda-
ry. After that, we transfer the optimal stopping problem (4.5) to an analytical
one involving a non-linear system of partial differential equations with a boundary
condition which is initially unknown. Such a system corresponds to a free-boundary
problem and it is obtained by means of the Markovian structure of the price process.

In Section 4.2 we derive an integral equation of V known as the exercise premium
representation of V , as a simple (but powerful) consequence of the free-boundary
formulation.

In Section 4.3 we prove that the optimal stopping boundary is the unique solu-
tion, in the class of continuous increasing functions satisfying certain conditions, to
an integral equation derived from the early exercise premium representation.

4.1 Free-boundary problem formulation

Seeking a solution to a free-boundary problem means to solve a (system of) partial
differential equation in a domain whose boundary is a priori unknown (see Proposi-
tion 4.4).

The relashionship between optimal stopping and free-boundary problems comes
from the stochastic representation of solutions to certain partial differential equa-
tions. The first work applying such a relashionship to the pricing of the put option
is due McKean [22].

Most of the results exposed in this section are taken from the book of Peskir and
Shiryayev [31] and the article of Jacka [15].

Sometimes will be convenient to adopt the notation St+u(t, x) to represent St+u

with the process starting at St = x. In this case,

St+u = x exp{(r − 1

2
σ2)u + σBu}, (4.10)

where B = {Bu}u≥0 is a Brownian motion started at zero under Pt,x.
Then, the problem (4.5) can be expressed as

V (t, x) = sup
0≤τ≤T−t

E e−rτ{K − St+τ (t, x)}+. (4.11)

Strictly speaking, the expectation above is the conditional expectation under the
martingale measure with respect to St.
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Proposition 4.1. (i) The function V (t, x) > 0 for all 0 ≤ t < T and x > 0.

(ii) The mapping x 7→ V (t, x) is convex and decreasing for each t.

(iii) The mapping t 7→ V (t, x) is decreasing for each x.

Proof. (i) Fix 0 ≤ t < T . For all x < K, V (t, x) ≥ G(x) = (K − x)+ > 0. Then,
suppose that x ≥ K. Define

σ := inf{u ≥ 0 : St+u ≤ K/2} ∧ (T − t). (4.12)

Then, we have that

V (t, x) ≥ Et,xe−rσG(St+σ)

≥ Et,xe−rσ{{K − ST }+I[σ=T−t] + K/2I[σ<T−t]}
≥ K/2Et,xe−rσI[σ<T−t].

Since

[σ < T − t] = [St+u ≤ K/2, for any u < T − t]

and St+u ∼ Log-N( (r − σ2/2)u, σ2u) under Pt,x, then Pt,x[St+u ≤ K/2] > 0 for all
u < T − t which implies Pt,x[σ < T − t] > 0 and therefore

Et,xe−rσI[σ<T−t] > 0,

as required.

(ii) The decreasing property follows from the expression in (4.10), while the
convexity of V follows direclty from the convexity of G(x) = (K − x)+, as we will
see. Take λ ∈ (0, 1), and x, y ∈ (0,∞), then

λEt,xe−rτ{K − St+τ}+ + (1 − λ)Et,ye
−rτ{K − St+τ}+

= E e−rτ{λ{K − St+τ (t, x)}+ + (1 − λ){K − St+τ (t, y)}+}
≥ E e−rτ{K − St+τ (t, λx + (1 − λ)y) }+

= Et,λx+(1−λ)y e−rτ{K − St+τ}+

Thus,

λV (t, x) + (1 − λ)V (t, y)

≥ sup
0≤τ≤T−t

{λEt,xe−rτ{K − St+τ}+ + (1 − λ)Et,ye
−rτ{K − St+τ}+}

≥ sup
0≤τ≤T−t

Et,λx+(1−λ)y e−rτ{K − St+τ}+

= V (t, λx + (1 − λ)y).

(iii) We have to show that if s ≤ t then V (t, x) ≤ V (s, x). This can be seen by
noting that if τ is a stopping time taken into account in the problem V (t, x), so is
in the problem V (s, x). In other words, if τ ≤ T − t then τ ≤ T − s.
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Remark 4.1. It sounds reasonable that there is a non-zero cost for entering to an
American put contract giving you the right to make a profit, so Proposition 4.1 (i)
confirms our intuition it. Also, note that at time T

V (T, x) = G(x) = {K − x}+, (4.13)

which is zero for all x ≥ K. Intuitively if we are the holder of a put contract, we
would chose to exercise the same day if ST = x is such that x < K, otherwise we do
not exercise the option.

Our aim is to determine an analytical expression for the stopping rule τD. This
goal takes us to asking about the form of the boundary of the stopping set D, which
in turn coincides with the boundary of C. In what follows we shall show that there
exists a function t 7→ b(t) which describes the boundary separating C and D. This
function possesses nice properties and will help us to understand the form of the
solution to the optimal stopping problem.

Proposition 4.2. (i) There exists a function b : [0, T ] → R+, such that

C = {(t, x) ∈ [0, T ) × (0,∞) : x > b(t)}. (4.14)

(ii) The mapping t 7→ b(t) is increasing and bounded above by K, that is, 0 < b(t) ≤
K for all 0 ≤ t ≤ T with b(T ) = K.

Proof. (i) Fix 0 ≤ t < T . Consider the t-section of C,

Ct := {x ∈ (0,∞) : (t, x) ∈ C}. (4.15)

Note that Ct is bounded below by 0. Thus, we take b(t) to be the lowest bound of
Ct. Next, to see that C takes the form in (4.14), it is enough to prove that if x ∈ Ct,
then y ∈ Ct for any y > x.

Let τD be the optimal stopping time for the problem V (t, x). Then,

V (t, y) − V (t, x) = V (t, y) − E[e−rτD{K − St+τD
(t, x)}+]

≥ E[e−rτD{K − St+τD
(t, y)}+ − {K − St+τD

(t, x)}+]

≥ E[e−rτD(St+τD
(t, x) − St+τD

(t, y))]

+ E[e−rτD{K − St+τD
(t, y)}− − {K − St+τD

(t, x)}−],

since {a − b}+ + {a − b}− = a − b. Given that St+τD
(t, y) ≥ St+τD

(t, x) because
of the path form in (4.10), the second expectation on the right-hand side above is
nonnegative, so that we obtain

V (t, y) − V (t, x) ≥ E[e−rτD(St+τD
(t, x) − St+τD

(t, y))]

= E[e−rτD(x − y) exp{(r − 1

2
σ2) τD + σBτD

}]

= (x − y)E[exp{σBτD
− 1

2
σ2 τD}]

= (x − y).



4.1 Free-boundary problem formulation 55

The latter equality holds because exp{σBt − 1
2σ2 t} is a martingale starting at one.

Since (t, x) ∈ C, we see that V (t, x) > (K − x)+ and thus

V (t, y) ≥ (x − y) + V (t, x)

> (x − y) + {K − x}+

≥ (x − y) + (K − x)

= K − y.

(4.16)

Finally, by Proposition 4.1 (i) one see that V (t, y) > 0. Thus, V (t, y) > {K − y}+

and so (t, y) ∈ C, implying y ∈ Ct.

Note that necessarily we have the strict inequality x > b(t) for all (t, x) ∈ C.
This is because if x = b(t) happens, it would imply that C is closed, which is not.

(ii) Fix s, t ≥ 0 such that t + s < T and let ǫ > 0. Then (t + s, b(t + s) + ǫ) ∈ C,
so that

V (t + s, b(t + s) + ǫ) > G(b(t + s) + ǫ).

By Proposition 4.1 (iii), V (t, ·) ≥ V (t + s, ·) and thus

V (t, b(t + s) + ǫ) > G(b(t + s) + ǫ),

which implies that (t, b(t + s) + ǫ) ∈ C as well. Hence, one obtain

b(t + s) + ǫ > b(t),

and taking ǫ ↓ 0 we conclude that b is increasing.

To see that b is bounded above by K, recall that the pairs (t, b(t)), with 0 ≤ t < T ,
belong to the stopping set D. That is,

V (t, b(t)) = G(b(t)).

Since V (t, b(t)) > 0, we must have G(b(t)) > 0. But, the only points x ∈ (0,∞)
satisfying G(x) > 0 belong to the interval (0, K). Moreover, b(t) > 0 for all t since
D contains all the points (t, x) with 0 < x ≤ b(t). Therefore, we conclude that
0 < b(t) < K for all 0 ≤ t < T .

All the pairs (T, x) with x ∈ (0,∞) belong to the stopping set D. As we explained
in Remark 4.1, we will make a profit at T (starting/ending the contract at the same
time T ) only if x < K, so that we may guess that b(T ) = K. This will follow once we
show later that b is continuous so that in the meantime we take b(T ) := b(T−).

The last proposition implies that the stopping set takes the form

D = {(t, x) ∈ [0, T ] × (0,∞) : x ≤ b(t)} ∪ {(T, x) : x > b(T )}, (4.17)

and that the optimal stopping time in (4.7), which we denote by τb from now on,
is the first time that the process S falls below the boundary t 7→ b(t), that is, the
stopping time

τb = inf{0 ≤ u ≤ T − t : St+u ≤ b(t + u)} (4.18)
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is optimal in (4.5). For this reason the boundary t 7→ b(t) is called the optimal
stopping boundary. .

For ease of notation, define the set

S := {(t, x) ∈ [0, T ] × (0,∞) : x < b(t)}, (4.19)

so that D = S̄ ∪ {(T, x) : x > b(T )}.
In what follows we will prove that the smooth fit condition holds, which claims

that V (t, x) is continuously differentiable at the boundary b(t). In the next section,
we will see that holding this condition is crucial to derive an important representation
of the value function.

Proposition 4.3. (Smooth fit condition) The function V (t, x) satisfies the smooth
fit condition, that is,

Vx(t, x+) = Vx(t, x−), for x = b(t), 0 < t < T .

In particular,

Vx(t, x) = G′(x) = −1, for x = b(t). (4.20)

Proof. Fix (t, x) ∈ (0, T ) × (0,∞) such that x = b(t). Since b(t) < K, we have
V (t, y) = K − y for all 0 ≤ y ≤ b(t), so that Vx(t, y) = −1. Thus,

Vx(t, x−) = −1. (4.21)

Now, let ǫ > 0 be small enough so that x + ǫ < K. Given that G(x + ǫ)−G(x) = ǫ,
then we get

V (t, x + ǫ) − V (t, x)

ǫ
≥ −1

since V dominates G. By taking ǫ ↓ 0, the limit on the left-hand side exists because
V (t, x) is convex, so that we obtain

Vx(t, x+) ≥ −1. (4.22)

Now, we want to verify the reverse inequality Vx(t, x+) ≤ −1. Let ǫ > 0 be such
that x + ǫ < K and let τǫ be the optimal stopping time for the problem V (t, x + ǫ).
Then, recalling (4.10), we have

V (t, x + ǫ) − V (t, x)

≤ E[ e−rτǫ{K − St+τǫ
(t, x + ǫ)}+] − E[ e−rτǫ{K − St+τǫ

(t, x)}+]

≤ E[ e−rτǫ( {K − St+τǫ
(t, x + ǫ)}+ − {K − St+τǫ

(t, x)}+)I[St+τǫ (t,x+ǫ)<K]]

= E[ e−rτǫ(St+ǫ(t, x) − St+ǫ(t, x + ǫ))I[St+τǫ (t,x+ǫ)<K]]

= −ǫE[ e−rτǫ exp{σBτǫ
+ (r − 1

2
σ2)τǫ}I[St+τǫ (t,x+ǫ)<K]]

≤ −ǫE[ exp{σBτǫ
− 1

2
σ2τǫ}]

= −ǫ,
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K

V (t, x)

Kb(t)

G(x)

Figure 4.1: Smooth-fit

since exp{σBt − 1
2σ2t} is a martingale starting at one. Thus, after division by −ǫ

and taking ǫ ↓ 0, we obtain

Vx(t, x+) ≤ −1. (4.23)

Remark 4.2. The smooth fit condition does not hold at t = T , since b(T ) = K and
V (T, x) = {K − x}+, so that Vx(T, x−) = −1 while Vx(T, x+) = 0.

It is important to note that the smooth-fit condition, together with the decreasing
and convex properties of the function x 7→ V (t, x), imply

Vx(t, x) ∈ [−1, 0]. (4.24)

See Figure 4.1.

Proposition 4.4. The value function V is the unique solution φ ∈ C1,2 in C to the
free-boundary problem

Lφ(t, x) = 0, in C (4.25)

φ(t, x) = K − x, x = b(t), (4.26)

where L is the operator

L = rx
∂

∂x
+

σ2x2

2

∂2

∂2x
+

∂

∂t
− r. (4.27)

In particular, Vx, Vxx, Vt exist and are continuous in C.

Proof. The proof relies on Theorem 3.6 of Friedman 1 [10, p. 138], see also Karatzas
and Shreve [18, Theorem 7.7].

Take (t, x) ∈ C. Since C is open, we can choose an open rectangle R = (t1, t2)×
(x1, x2) such that (t, x) ∈ R ⊂ C. Denote by ∂R0 the set {t = t2} × (x1, x2). Thus,

1Set f(x, t) = 0 and g(x, t) = K − x in (3.5) and (3.7) of [10].
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by the result in Friedman we obtain that there exists a unique solution φ ∈ C1,2 to
the free-boundary problem

Lφ(t, x) = 0 in R, (4.28)

φ(t, x) = V (t, x) on ∂R0 (4.29)

Use the notation St+u = St+u(t, x). Consider the stopping time

τR := inf{0 ≤ u ≤ T − t : St+u /∈ R}, (4.30)

representing the first exit time from R. Now, we can apply Dynkin’s formula to the
process e−r uφ(t + u, St+u), to obtain

E[e−rτRφ(t + τR, St+τR
)] − φ(t, x)

=

∫ t+τR

t

(

LS +
∂

∂t

)

{e−r uφ(t + u, St+u)}du,
(4.31)

Given that (t + u, St+u) is in R for all u ≤ τR, then equation (4.28) tells us that
Lφ(t + u, St+u) = 0, which in turn implies that the integrand in the right-hand
side of (4.31) vanishes as well (after some calculations). Thus, using the boundary
condition (4.29), we have that

φ(t, x) = E[e−rτRφ(t + τR, St+τR
)] = E[e−rτRV (t + τR, St+τR

)]. (4.32)

Since the process Mu := e−r(u∧τD)V (t + u ∧ τD, St+u∧τD
) is a martingale2, and

τR ∧ τD = τR, then

E[e−rτRV (t + τR, St+τR
)] = E[e−rτDV (t + τD, St+τD

)] = V (t, x). (4.33)

Therefore, we conclude that
φ(t, x) = V (t, x), (4.34)

and LV (t, x) = 0 hold for arbitrary (t, x) ∈ C. That V satisfies equation (4.26) is
direct.

Remark 4.3. As a consequence of Proposition 4.4, we have that the value and bound-
ary functions, V and b respectively, satisfy

LSV + Vt = r V in C, (4.35)

V (t, x) = K − x for x = b(t), (4.36)

where LS is given by

LS = r x
∂

∂x
+

σ2

2
x2 ∂2

∂2x
. (4.37)

We also see that V ∈ C1,2 in S, since G(x) = K − x for x < b(t) so that G ∈ C2

and V = G on this region. Thus V ∈ C1,2 in C ∪ S. Moreover, using the fact that
V (t, x) = G(x) for x < b(t), we see that

LV (t, x) = −r K, for all x < b(t). (4.38)

2See Theorem 5.3 page 56 and equations (7.7)-(7.8) of [18]
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Note that (4.38) simplifies to

LSV + Vt − rV = −r K for all x < b(t). (4.39)

We are now able to prove a further atribute of the boundary function.

Proposition 4.5. The mapping t 7→ b(t) is continuous on [0, T ].

Proof. (a) The boundary b is left-continuous:

Fix t ∈ (0, T ). Since Vt ≤ 0 and Vx ≤ 0 by the monotone properties of V (see
Proposition 4.1), and

LV = rx Vx +
σ2x2

2
Vxx + Vt − rV = 0 in C (4.40)

by Proposition 4.4, we must have that

σ2x2

2
Vxx − r V ≥ 0. (4.41)

Define Cn := C ∩ {[1/n, n] × [0, K]}. Since V > 0 and continuous in Cn,

inf
(t,x)∈Cn

σ2x2

2
Vxx(t, x) ≥ inf

(t,x)∈Cn

r V (t, x) ≥ ǫn > 0. (4.42)

for ǫn > 0 small enough.

Now, let N be small enough such that t ∈ (1/N, N ]. Then, for any s with
1/N ≤ s < t and x ∈ [b(t−) + η, K] with 0 < η < K − b(t−), we have that
(s, x) ∈ CN : it is clear that (s, x) ∈ [1/N, N ] × [0, K]; to see that (s, x) ∈ C, note
that x > b(t−) ≥ b(s), since b is increasing.

Given that V (t, ·), G(·) ∈ C2 in C and using the Fundamental Theorem of Cal-
culus (FTC), we have that

V (s, x) − V (s, b(s)) =

∫ x

b(s)
Vx(s, u)du, (4.43)

and

G(x) − G(b(s)) =

∫ x

b(s)
G′(u)du. (4.44)

Thus, using that V (s, b(s)) = G(b(s)) and summing the last two equalities we get

V (s, x) − G(x) =

∫ x

b(s)
{Vx(s, u) − G′(u)}du. (4.45)

Applying the FTC to the derivatives Vx and G′ and summing up the resulting
equations, we obtain

V (s, x) − G(x) =

∫ x

b(s)

∫ u

b(s)
{Vxx(s, v) − G′′(v)}dv du. (4.46)



60 American put option pricing

Now, note that G′′(x) = 0 in CN (since x ∈ [0, K]), thus from equation (4.42) we
see that

V (s, x) − G(x) =

∫ x

b(s)

∫ u

b(s)
Vxx(s, v) dv du

≥
∫ x

b(s)

∫ u

b(s)

2

σ2v2
ǫN dv du

=
2

σ2
ǫN

∫ x

b(s)

{

1

b(s)
− 1

u

}

du

>
a

σ2
ǫN .

(4.47)

where a :=
∫ x
b(s)

{

1
b(s) − 1

u

}

du > 0. Hence, take a sequence {sn} with sn ↑ t. It

follows from the continuity of V − G that

V (t, b(t−) + η)−G(b(t−) + η)

= lim
n→∞

{V (sn, b(t−) + η) − G(b(t−) + η)}

≥ a

σ2
ǫN > 0,

(4.48)

implying that (t, b(t−) + η) ∈ C so that

b(t−) + η ≥ b(t), (4.49)

for η > 0 arbitrarily small. Hence, we conclude that b(t−) ≥ b(t) and therefore
b(t−) = b(t).

Now, we will set t = T and suppose that b(T ) < K. We can proceed with the
arguments as before, until we arrive to (4.48) concluding

V (T, b(T−) + η) − G(b(T−) + η) > 0

so that (T, b(T−)+η) ∈ C, which is a contradiction since (T, x) ∈ D for all x. Thus,
given that b is bounded above by K we see that b(T ) = K.

(b) The boundary b is right-continuous:
Fix t ∈ [0, T ) and consider a sequence {sn} with sn ↓ t. Since (sn, b(sn)) ∈ D

and D is closed, we see that (t, b(t+)) ∈ D and thus (see equation (4.17))

b(t+) ≤ b(t).

Since b is increasing, we obtain the equality b(t+) = b(t).

The result holds from the conclusions in (a) and (b).

Until recent years, numerical simulations suggested that the boundary t 7→ b(t)
is convex. In 2004, Ekström [8] and Chen et al. [4] independently showed that this
is certainly true.

Finally, we arrive to the following facts. If St = x, then the price of the American
put option is given by

V (t, x) = Et,x e−rτb{K − St+τb
}+, (4.50)
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C

S

K

x

t τb T

Figure 4.2: Geometric Brownian motion St+u hitting the optimal stopping boundary
t 7→ b(t) at τb.

where the optimal strategy is

τb = inf{0 ≤ u ≤ T − t : St+u ≤ b(t + u)}, (4.51)

and the optimal stopping boundary t 7→ b(t) has the following properties: it is
increasing, continuous, convex, and 0 < b(t) ≤ K for all 0 < t ≤ T with b(T ) = K.

Thus, the optimal strategy to stop the option is to look at the time (in mean) at
which the geometric Brownian motion S = {St+u(t, x)}u≥0 hits the optimal stopping
boundary t 7→ b(t). See Figure 4.2.

Then, the problem of pricing the American put option reduces to find the op-
timal stopping boundary. In the following sections we present an integral equation
involving the boundary b(t).

The free-boundary problem

We are lead to the free-boundary problem for the unkown value function V and the
unknown boundary b : [0, T ] → R+:

LSV + Vt = r V in C, (4.52)

V (t, x) = K − x for x = b(t), (4.53)

V (t, x) > G(x) in C, (4.54)

V (t, x) = G(x) in S, (4.55)

Vx(t, x) = −1 for x = b(t), (4.56)

where the continuation set C and the set D = S̄ are given by

C = {(t, x) ∈ [0, T ) × (0,∞) : x > b(t)}, (4.57)

S = {(t, x) ∈ [0, T ] × (0,∞) : x < b(t)}. (4.58)
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The differential operator LS corresponds to the infinitesimal generator of S given
by

LS = r x
∂

∂x
+

σ2

2
x2 ∂2

∂2x
. (4.59)

Also, recall for further reference that

LS V + Vt − r V = −r K in S. (4.60)

We will use (4.60) to derive the so called early exercise premium representation of
the value function in the next section.

The smooth-fit condition (4.56) was first established by Samuelson [34] and then
proved by McKean [22], who solved a similar free-boundary problem for the Ameri-
can call option.

4.2 The early exercise premium representation

In this section we characterise the American put price as a nonlinear integral equa-
tion decomposed as the sum of the European put price and the early exercise pre-
mium, the latter involving the boundary b(t) implicitly. This decomposition, called
the early exercise premium representation of V , is widely known, probably because
it has a clear economic meaning. It was derived in Kim [20, Equation (12)], Jacka
[15, Equation (2.8)], and others.

The first appearance of the value function as an integral equation with the stop-
ping boundary b(t) implicit, is due to McKean [22], who also used the derivative b′.
The problem with the McKean’s equation is that it is hardly treatable in the context
of numerical valuation because the derivative b′ tends to infinity at maturity T .

The following important result derived by Peskir in [28, Theorem 3.1 and Remark
3.2] 3 will be crucial in the rest of the Section. It serves as a generalized Itô’s formula
when the differentiabily of the process presents difficulties on certain boundary,
which is our case. To be specific, recall that V ∈ C1,2 on C ∪ S. From here, we
cannot conclude directly that V ∈ C1,2 in the entire domain (needed to use Itô’s
formula in its standar form), because in principle, the partial derivatives Vt and Vxx

may diverge when we approach to the boundary b(t) from C.

Proposition 4.6. (Change-of-variable formula) Consider the Itô diffusion
X = (Xt)t≥0 solving

dXt = µ(t, Xt)dt + σ(t, Xt)dBt.

Let c : R+ → R be a continuous function of bounded variation and define the sets
H1 and H2 as follows:

H1 :={(t, x) ∈ R+ × R : x > c(t)}, (4.61)

H2 :={(t, x) ∈ R+ × R : x < c(t)}. (4.62)

3Conditions (3.27) and (3.28) in [28] are given, which we replace by the sufficient conditions
(3.35) and (3.36). In this thesis, (3.35) and (3.36) correspond to (4.65) and (4.66) respectively
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Suppose that F : R+ × R → R is a continuous function satisfying the following
conditions:

F ∈ C1,2 on H1 ∪ H2, (4.63)

LX F + Ft is locally bounded on H1 ∪ H2, (4.64)

t 7→ Fx(t, c(t)±) is continuous, (4.65)

x 7→ F (t, x) is convex or concave, (4.66)

where LX is the infinitesimal generator of X, and the signs ± are simultaneously
equal to either + or −. Condition (4.66) can be relaxed with the condition

Fxx = F1 + F2 on H1 ∪ H2 (4.67)

where F1 is nonnegative and F2 is continuous on H̄1 and H̄2. Then, the following
change-of-variable formula holds

F (t, Xt) = F (0, X0) +

∫ t

0
(LX F + Ft)(u, Xu) I[Xu 6=c(u)] du

+

∫ t

0
(σ Fx)(u, Xu) I[Xu 6=c(u)] dBu

+
1

2

∫ t

0
(Fx(u, Xu+) − Fx(u, Xu−)) I[Xu=c(u)]dℓc

u(X),

(4.68)

where ℓc
u(X) is the local time of X at the curve c given by

ℓc
u(X) = P − lim

ǫ↓0

1

2ǫ

∫ u

0
I[c(s)−ǫ<Xs<c(s)+ǫ]σ

2 X2
s ds. (4.69)

The proof of Proposition 4.6 is somewhat long and technical, so we refer to [28]
for details and generalizations.

Remark 4.4. The measure ℓc
u(X) takes into account the possible jumps of Fx(t, c(t))

at the boundary c(t). The last integral in (4.68) is a Lebesgue-Stieltjes integral with
respect to the continuous increasing function u 7→ ℓc

u(X).

Now, consider the Itô diffusion S = (St)t≥0 corresponding to the stock price
process satisfying

dSt = r Stdt + σ StdBt, (4.70)

so that

µ(t, St) = r St, and σ(t, St) = σ St. (4.71)

Also, consider the continuous function b : [0, T ] → R which is bounded monotone
(implying bounded variation), and the continuous function V (see Proposition 3.8).
Set X = S; c = b; and for t, x fixed with 0 ≤ t < T and x > 0, suppose that St = x,
and set

F (t + u, St+u) = e−r uV (t + u, St+u). (4.72)

In this case, H1 ≡ C and H2 ≡ S, where C and S are given in (4.57)-(4.58).
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Conditions (4.63), (4.65), and (4.66) hold by Proposition 4.4, Proposition 4.1 (ii),
and Proposition 4.3, respectively. To verify (4.64), we need to check that LS F + Ft

is bounded on K ∩ (C ∪ S) for each compact set K ⊂ [0, T ] × (0,∞). Note that

LS F + Ft = e−r u(LS V + Vt − rV ) =

{

0 on C

−rK e−r u on S.
(4.73)

Now is clear that LS F + Ft is locally bounded. Hence, we can apply the change-of-
variable formula to F in (4.72) and together with (4.73), obtain

e−r uV (t + u, St+u) = V (t, x) − rK

∫ u

0
e−r vI[St+v≤b(t+v)]dv

+

∫ u

0
σSt+ve

−r vVx(t + v, St+v)I[St+v 6=b(t+v)]dBv

+
1

2

∫ u

0
e−r v[Vx(t + v, St+v+) − Vx(t + v, St+v−)]I[St+v=b(t+v)]dℓb

v(S).

(4.74)

The last integral above is zero because of the smooth fit condition, that is, the
continuity of Fx on the boundary (see Proposition 4.3). Then, equation (4.74)
becomes

V (t, x) = e−r uV (t + u, St+u) + rK

∫ u

0
e−r vI[St+v≤b(t+v)]dv

−
∫ u

0
σSt+ve

−r vVx(t + v, St+v)I[St+v 6=b(t+v)]dBv

(4.75)

Take expectation with respect to Pt,x. Then, the last integral in (4.75) vanishes
since Vx ∈ [−1, 0]. Thus, after taking u = T − t and recalling that V (T, x) = G(x),
we obtain the following important result.

Theorem 4.7. (Early exercise premium representation) The value function
V of the American put option with strike price K, interest rate r, and horizon T ,
has the representation

V (t, x) = e−r(T−t)Et,x{K − ST }+

+ r KEt,x

[
∫ T−t

0
e−r v I[St+v≤b(t+v)]dv

]

,
(4.76)

for all 0 ≤ t < T , where b(t) is the optimal stopping boundary.

Note that the first term in (4.76) corresponds to the price of the European put
option, according to the Arbitrage-free pricing theory developed in Section 2.3. The
second term, which is non-negative, is known as the early exercise premium, and
it represents the cost for the advantage over the European option to stop before
maduration T .
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4.3 The free-boundary equation

Since V (t, x) = K−x for all x = b(t), from the early exercise premium representation
of V , the following integral equation for b(t) holds:

K − b(t) =e−r(T−t)Et,b(t){K − ST }+

+ r KEt,b(t)

[
∫ T−t

0
e−r v I[St+v≤b(t+u)]dv

]

.
(4.77)

This is called the free boundary equation. It is a nonlinear problem and there is no
a closed form solution.

We are prompted to ask about the uniqueness of the solution of the free bounda-
ry equation, not only for the natural theoretical scheme, but also because this is
important when approaching the solution with numerical methods. Thanks to the
recent work of Peskir in [29], it turns out that the optimal stopping boundary b(t)
is the unique solution of (4.77). We shall state and prove this result in the rest of
the Section.

It is remarkable that a necessary hypothesis to obtain the representation in
(4.76), and then (4.77), is that the smooth fit condition holds for V . Now, we ask
about the inverted reasoning, that is, if a function V̌ is defined as V in (4.76), with
b(t) replaced by c(t) and c(t) holding the same properties that b(t) (we formalise
this idea later), can we conclude that V̌ satisfies the smooth fit condition at c(t)?
The following lemma answers this question.

Lemma 4.8. Let c : [0, T ] → R be a continuous increasing function satisfying
0 < c(t) < K for all 0 ≤ t < T and suppose that c solves the free boundary equation
(4.77) with c(t) instead of b(t). Let us define the function V̌ as

V̌ (t, x) := e−r(T−t)Et,x{K − ST }+

+ r KEt,x

[
∫ T−t

0
e−r v I[St+v≤c(t+v)]dv

]

,
(4.78)

for all (t, x) ∈ [0, T ) × (0,∞). Then V̌x is continuous on [0, T ) × (0,∞).

Proof. Define the functions

V 1(t, x) : = Et,x{K − ST }+, (4.79)

V 2(t, x) : =

∫ T−t

0
e−rvPt,x(St+v ≤ c(t + v))dv, (4.80)

so that
V̌ (t, x) = e−r(T−t)V 1(t, x) + rKV 2(t, x). (4.81)

We give an analytical expression for V1 and V2. First, recall that

St+u = x exp{(r − σ2

2
)u + σBu} ∼ Log-N((r − σ2/2)u, σ2u), (4.82)

and thus

log
St+u

x
∼ N((r − σ2/2)u, σ2u). (4.83)



66 American put option pricing

From here we arrive to

Z :=
1

σ
√

u

{

log
St+u

x
− (r − σ2

2
)u

}

∼ N(0, 1) (4.84)

Thus

Pt,x(St+u ≤ c(t + u)) = Pt,x

(

log
St+u

x
≤ log

c(t + u)

x

)

= Pt,x

(

Z ≤ 1

σ
√

u

{

log
c(t + u)

x
− (r − σ2

2
)u

})

= Φ

(

1

σ
√

u

{

log
c(t + u)

x
− (r − σ2

2
)u

})

,

(4.85)

From (4.80) and (4.85) obtain

V 2(t, x) =

∫ T−t

0
e−rvΦ

(

1

σ
√

v

{

log
c(t + v)

x
− (r − σ2

2
)v

})

dv. (4.86)

With similar arguments it can be seen that

V 1(t, x) =

∫ K

0
Φ

(

1

σ
√

T − t

{

log
K − z

x
− (r − σ2

2
)(T − t)

})

dz. (4.87)

Now, after some calculations, the partial derivatives of V1 and V2 are

V 1

x
(t, x) = − 1

σx
√

T − t

∫

K

0

φ

(

1

σ
√

T − t

{

log
K − z

x
− (r − σ2

2
)(T − t)

})

(4.88)

V 2

x
(t, x) = − 1

σx

∫

T−t

0

e−rv

√
v

φ

(

1

σ
√

v

{

log
c(t + v)

x
− (r − σ2

2
)v

})

dv, (4.89)

where φ(x) = Φ′(x). Since φ(x) is continuous for all 0 ≤ t < T and x > 0, it follows
that V 1

x and V 2
x are continuous. Hence,

V̌x(t, x) = e−r(T−t)V 1
x (t, x) + rKV 2

x (t, x), (4.90)

is continuous on [0, T ) × (0,∞) as well.

As a consequence of the continuity of the functions in (4.88) and (4.89) in the
proof of the last lemma, the function V̌ (t, x) satisfies the smooth fit condition at
c(t), that is, x 7→ V̌ (t, x) is C1 at c(t).

Lemma 4.9. Consider the hypothesis of Lemma 4.8 and also take V̌ (T, x) = G(x)
for all x > 0. Then V̌ (t, x) = G(x) for all x ≤ c(t).

Proof. Consider the sets H1, H2 defined by

H1 :={(t, x) ∈ [0, T ) × (0,∞) : x > c(t)}, (4.91)

H2 :={(t, x) ∈ [0, T ) × (0,∞) : x < c(t)}. (4.92)
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The following facts are verified in the Appendix C:

V̌ is C1,2 on H1 and LSV̌ + V̌t − rV̌ = 0 on H1, (4.93)

V̌ is C1,2 on H2 and LSV̌ + V̌t − rV̌ = −rK on H2. (4.94)

Also, it can be seen (by direct calculation) that

V̌xx = W1 + W2, (4.95)

where W1 is nonnegative and W2 is continuous on H̄1 and H̄2.
Set

F (t + u, St+u) = e−ruV̌ (t + u, St+u). (4.96)

Then

LSF + Ft = e−ru(LSV̌ + V̌t − rV̌ ) =

{

0 on H1,

−rKe−ru on H2.
(4.97)

The conditions (4.63)-(4.65) are verified for F using (4.91)-(4.92) and Lemma 4.8.
Also, condition (4.66) holds for F using (4.95). Thus, we apply the change-of-variable
formula (4.68) to F to obtain

e−r uV̌ (t + u, St+u) = V̌ (t, x) − rK

∫ u

0
e−r vI[St+v≤c(t+v)]dv

+

∫ u

0
(σSt+v)e

−r vV̌x(t + v, St+v)I[St+v 6=c(t+v)]dBv

+
1

2

∫ u

0
e−r v[V̌x(t + v, St+v+) − V̌x(t + v, St+v−)]I[St+v=c(t+v)]dℓc

v(S).

(4.98)

Now, suppose that 0 < x ≤ c(t) and define the stopping time

σc := inf{0 ≤ u ≤ T − t : St+u ≥ c(t + u)}. (4.99)

Take u = σc and expectation Et,x in (4.98). Since V̌x is continuous in all the domain
and V̌x ∈ [−1, 0] (this can be verified as (4.23), the last two integrals vanish yielding

V̌ (t, x) = Et,xe−r σc V̌ (t + σc, St+σc
) + rKEt,x

[
∫ σc

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.100)

Also apply the change-of-variable formula to G:

e−r uG(St+u) = G(x) − rK

∫ u

0
e−r vI[St+v<K]dv

+

∫ u

0
(σSt+v)e

−r vG′(St+v)I[St+v 6=c(t+v)]dBv

+
1

2

∫ u

0
e−r v[G′(St+v+) − G′(St+v−)]I[St+v=c(t+v)]dℓc

v(S).

(4.101)

Since 0 < c(t) < K for all 0 ≤ t < T , we have that G′(c(t)) = −1. Then
∫ u
0 σSt+ve

−r vG′(St+v)I[St+v 6=c(t+v)]dBv = −
∫ u
0 σSt+ve

−r vI[St+v<K]dBv is a martin-
gale under Pt,x, and the last integral vanishes. Thus, by making u = σc and taking
expectation Et,x we find

G(x) = Et,xe−r σcG(St+σc
) + rKEt,x

∫ σc

0
e−r vI[St+v<K]dv. (4.102)
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On the other hand, c solves the free boundary equation (4.77) and so V̌ (t, c(t)) =
G(c(t)). This implies that

V̌ (t + σc, St+σc
) = G(St+σc

).

Thus, upon substituying (4.102) into (4.100), we have

V̌ (t, x) = Et,xe−r σcG(St+σc
) + rKEt,x

[
∫ σc

0
e−r vI[St+v≤c(t+v)]dv

]

,

= G(x) − rKEt,x

∫ σc

0
e−r vI[St+v<K]dv + rKEt,x

[
∫ σc

0
e−r vI[St+v≤c(t+v)]dv

]

= G(x),
(4.103)

for all 0 < x ≤ c(t).

Theorem 4.10. Consider the American put option price

V (t, x) = e−r(T−t)Et,x(K − ST )+ + r KEt,x

[
∫ T−t

0
e−r v I[St+v≤b(t+v)]dv

]

.

The stopping boundary function t 7→ b(t) is the unique continuous increasing solution
c : [0, T ] → R of the free boundary equation (4.77) satisfying 0 < c(t) < K for all
0 < t < T .

Proof. Let c : [0, T ] → R be a continuous increasing function satisfying 0 < c(t) < K
for all 0 < t < T and suppose that c solves the free boundary equation (4.77).
Consider the function V̌ defined in (4.78) and define the stopping time

τc := inf{0 ≤ u ≤ T − t : St+u ≤ c(t + u)}. (4.104)

The proof is organized in three steps. First, we show that V̌ (t, x) ≤ V (t, x) for all
(t, x) ∈ [0, T ) × (0,∞); second, it is proved that c(t) ≥ b(t); and third, we conclude
that c(t) = b(t).

First step: consider the formula (4.98) for V̌ . After taking u = τc and expectation
Et,x, the last two integrals vanish obtaining

V̌ (t, x) = Et,xe−r τc V̌ (t + τc, St+τc
) + rKEt,x

[
∫ τc

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.105)

On one hand, Lemma 4.9 implies that V̌ (t, x) = G(x) for all x ≤ c(t) and then
V̌ (t + τc, St+τc

) = G(St+τc
). On the other hand, by the definition of τc, the integral

in brackets is zero. Thus,

V̌ (t, x) = Et,xe−r τcG(St+τc
). (4.106)

Now, upon recalling that τb = inf{0 ≤ u ≤ T − t : St+u ≤ b(t+u)} is the optimal
stopping time for V (t, x),

V (t, x) = Et,xe−r τbG(St+τb
). (4.107)
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Hence,
V̌ (t, x) ≤ V (t, x), ∀ (t, x) ∈ [0, T ) × (0,∞). (4.108)

Second step: for 0 < x ≤ b(t) ∧ c(t) consider the stopping time

σb := inf{0 ≤ u ≤ T − t : St+u ≥ b(t + u)}. (4.109)

Recall equation (4.75) for V . Taking u = σb and expectation Et,x, leads to

Et,xe−r σbV (t + σb, St+σb
) = V (t, x) − rKEt,x

∫ σb

0
e−r vdv. (4.110)

Note that I[St+v≤b(t+v)] = 1 in [0, σb].

Now, consider again equation (4.98) for V̌ . After taking u = σb and expectation
Et,x we obtain

Et,xe−r σb V̌ (t + σb, St+σb
) = V̌ (t, x) − rKEt,x

[
∫ σb

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.111)

Given that x ≤ b(t) ∧ c(t), then V (t, x) = V̌ (t, x) = G(x). From (4.108) and
comparing (4.110) with (4.111) one has

Et,x

∫ σb

0
e−r vdv ≤ Et,x

[
∫ σb

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.112)

The left-hand side is positive because σb > 0. On the other hand, St+u ≤ b(t + u)
from 0 to σb, so in order for equation (4.112) to hold, it must happen that b(t) ≤ c(t)
by the continuity of the functions b and c.

Third step: finally we prove that c(t) = b(t). Assume that there is t ∈ (0, T )
such that c(t) > b(t) and take x ∈ (b(t), c(t)). Replace τb in (4.105) in lieu of τc to
obtain

V̌ (t, x) = Et,xe−r τb V̌ (t + τb, St+τb
) + rKEt,x

[
∫ τb

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.113)

Since V̌ (t, x) = G(x) for all x ≤ c(t) and b(t) < c(t), we have that V̌ (t+ τb, St+τb
) =

G(St+τb
). Hence,

V̌ (t, x) = Et,xe−r τbG(St+τb
) + rKEt,x

[
∫ τb

0
e−r vI[St+v≤c(t+v)]dv

]

. (4.114)

From here and using (4.106) and (4.107),

Et,x

[
∫ τb

0
e−r vI[St+v≤c(t+v)]dv

]

≤ 0. (4.115)

But σb > 0, so it follows by the continuity of the functions b and c that the expression
above is impossible, and then such a point x does not exist implying that c(t) =
b(t).
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Chapter 5

Conclusion

The main concern of our work is about pricing the American put and finding an
optimal stopping rule for the holder. Let us give a summary of the results.

After applying the martingale measure one study the problem using the following
model for the stock prices St,

dSt = rSt dt + σSt dBt, (5.1)

where r is the instanteneous interest rate, σ is the volatility of the stock, and Bt is
a standard Brownian motion under the martingale measure (see Chapter 2).

Suppose that the stock price starts at time t with the value St = x. In Chapter
4 we found that the fair price of the American put option is given by

V (t, x) = Et,x e−rτb{K − St+τb
}+, (5.2)

where
τb = inf{0 ≤ u ≤ T − t : St+u ≤ b(t + u)} (5.3)

is the first passage time of the geometric Brownian motion St to the stopping region
S. That is, τb is the first time that the price process falls below the the optimal
stopping boundary t 7→ b(t). See Figure 5.1.

Note that the American put price and the optimal strategy to exercise the option
are determined by the optimal stopping boundary. As a consequence, it is very
important to obtain an accurate curve describing t 7→ b(t). From Chapter 4, it turns
out that such function b(t) is the unique solution of the integral equation

K − b(t) = e−r(T−t)Et,b(t){K − ST }+

+ r KEt,b(t)

[
∫ T−t

0
e−r v I[St+v≤b(t+u)]dv

]

= e−r(T−t)

∫ K

0
Φ

(

1

σ
√

T − t

{

log
K − z

b(t)
− (r − σ2

2
)(T − t)

})

dz

+ r K

∫ T−t

0
e−rvΦ

(

1

σ
√

v

{

log
b(t + v)

b(t)
− (r − σ2

2
)v

})

dv,

(5.4)

where

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2dz. (5.5)

To obtain the last equality in (5.4) recall equations (4.86)-(4.87) and replace x by
b(t), and c(t + v) by b(t + v).
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C

S

K

x

t τb T

Figure 5.1: Geometric Brownian motion St+u hitting the optimal stopping boundary
t 7→ b(t) at τb. Note that C and S stand for continuation and stopping region,
respectively.

Although the exact analytical expresion for b(t) seems difficult to obtain, one
can approximate such barrier with numerical methods. This is feasible because b(t)
uniquely solves this integral equation, as proved in Theorem 4.10.

Thus, it is relevant to develope efficient numerical methods to approximate the
solution of (5.4). We refer to Goodman and Ostrov [11], Huang et al [14], and the
references therein for a review of different numerical methods.



Appendix A

The essential supremum

Let (Ω,F , P ) be a probability space and let S = {fα : α ∈ I} be a non-empty family
of random variables fα : Ω → R̄, where I is an arbitrary index set.

If I is countable, then the supremum

f = sup
α∈I

fα (A.1)

is measurable.
If I is uncountable, then f is not necessarily a measurable function. Yet, it can

be shown the existence of a measurable function f∗ : Ω → R̄ such that

(i) f∗ ≥ fα P -a.s. for each α ∈ I.

(ii) If g : Ω → R̄ is measurable and g ≥ fα P -a.s. for each α ∈ I, then g ≥ f∗

P -a.s.

The function f∗ is called the essential supremum and is denoted by

f∗ = ess supS. (A.2)

Proposition A.1. Existence of the essential supremum
Let S = {fα : α ∈ I} be a family of random variables defined on a probability

space (Ω,F , P ), where I is an arbitrary index set. Then there exists a countable set
J ⊂ I such that the measurable function

f∗ = sup
α∈J

fα (A.3)

is the essential supremum of S, i.e., f∗ satisfies the conditions (i)-(ii) above.

Proof. Consider the family

S̄ := {g : g = max
α∈J

fα, J ⊂ I finite}. (A.4)

Let h : R̄ → R be any continuous, strictly increasing function. Then h ◦ g is
measurable and bounded for each g ∈ S̄ and

β := sup
S̄

E(h ◦ g) (A.5)

exists and is finite. We can choose an increasing sequence {gn} in S̄ such that

β = sup
n

E(h ◦ gn). (A.6)
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Define

f∗ := sup
n

gn = lim
n→∞

gn. (A.7)

Since gn is the maximum of a finite sequence of functions, say gn = maxα∈Jn
fα with

Jn ⊂ I finite. Then J =
⋃

n Jn is countable, say

J = {αn : n ≥ 1}, (A.8)

so that

f∗ = sup
n

fαn
. (A.9)

In the following we will show that f∗ is the essential supremum.

To prove (i), note that the Monotone Convergence Theorem and equation (A.7)
imply

E[h ◦ (f∗ ∨ f)] = lim
n→∞

E[h ◦ (gn ∨ f)] ≤ β, (A.10)

for each f ∈ S. Thus the non-negative function

h ◦ (f∗ ∨ f) − h ◦ f∗ (A.11)

has non-positive expectation, implying that f∗ ∨ f = f∗ P -a.s. Therefore f∗ ≥ f
P -a.s. for each f ∈ S.

Regarding condition (ii), suppose that g : Ω → R̄ satisfies (i) as well. Then
g ≥ fαn

for each n since fαn
∈ S. This implies

g ≥ sup
n

fαn
= f∗, P − a.s. (A.12)

Sometimes is helpful to express the essential supremum as a limit of functions.
To do this, we need to assume a condition over the family S.

Definition A.1. The family {fα : α ∈ I} is upwards directed if for any α, β ∈ I
there exists γ ∈ I such that

fγ ≥ fα ∨ fβ , P − a.s. (A.13)

We will use the following proposition when proving important results of optimal
stopping problems in Chapter 3.

Proposition A.2. If the family S = {fα : α ∈ I} is upwards directed, then the
countable set J = {γn : n ≥ 1} can be chosen so that

f∗ = lim
n→∞

fγn
, P − a.s. (A.14)

with fγ1
≤ fγ2

≤ · · · Px-a.s.
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Proof. Let J0 be the initial countable set in (A.8), that is,

J0 = {αn : n ≥ 1},

and f∗ = supn fαn
. We construct the set J as follows. Set γ1 = α1. Since S is

upwards directed, there exists γ2 ∈ I such that

fγ2
≥ fγ1

∨ fα1
.

Then, inductively choose γn ∈ I such that fγn
≥ fγn−1

∨ fαn−1
. Thus,

fγ1
≤ fγ2

≤ · · · , P − a.s.

and given that fγn
≥ fαn

we have

lim
n→∞

fγn
= sup

n
fγn

≥ f∗.

Therefore
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Appendix B

Optimal stopping problems in discrete time

Set T = {0, 1, . . . , T} and let Y = {Yt}t∈T be an adapted, integrable process.
Consider the optimal stopping problem

V = sup
τ≤T

E(Yτ ). (B.1)

A solution to (B.1) consists in two things: finding the value of V , and a stopping
time τ∗ which is optimal in the sense that the supremum is attained. The process
U = {Ut}t∈T , defined below, plays a key role in the solution of the optimal stopping
problem (B.1). Define

UT = YT (B.2)

Ut = max{Yt, E(Ut+1 | Ft)}, t = 0, 1, . . . , T − 1. (B.3)

The process U is adapted since E(Ut+1 | Ft) is Ft-measurable.

The next result will be used in the following.

Proposition B.1. (Optional Stopping) Let τ be a stopping time taking values
on {0, 1, . . .} and let X = {Xn}n≥0 be a martingale (submartingale, supermartin-
gale). Then the stopped process {Xn∧τ}n≥0 is also a martingale (submartingale,
supermartingale).

See Klebaner [21, p. 85] for a proof.

Theorem B.2. The process U defined by (B.2)-(B.3) is the smallest supermartin-
gale which dominates Y , that is, Ut ≥ Yt for all t ∈ T , a.s.

Proof. The supermartingale property follows directly from the definition. Suppose
that W = {Wt}t∈T is another supermartingale that dominates Y . Since UT = YT ,
is clear that WT ≥ UT . This, combined with the fact that W is a supermartingale,
yields

WT−1 ≥ E(WT | FT−1) ≥ E(UT | FT−1), a.s.

Moreover, since WT−1 ≥ YT−1, it results that

WT−1 ≥ max{YT−1, E(UT | FT−1)} = UT−1, a.s.

Thus, the proof is completed by backwards induction.
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Define

τ∗ := inf{0 ≤ k ≤ T : Uk = Yk}. (B.4)

Then τ∗ is a stopping time. To see this, we have to show that [τ∗ = t] is Ft-
measurable for all t ∈ T . Indeed,

[τ∗ = 0] = [U0 = Y0] ∈ F0,

since U0 and Y0 are F0-measurable. In general, for t = 1, 2, . . . , T we have

[τ∗ = t] =

[

t−1
⋂

k=0

[Uk > Yk]

]

⋂

[Ut = Yt].

Each of the events in the intersection is Ft-measurable, so does the event [τ∗ = t].

Proposition B.1 ensures {Ut∧τ}t∈T is supermartingale for each stopping time
τ ≤ T . In particular, the stopped process {Ut∧τ∗}t∈T is a martingale.

Lemma B.3. Let τ be a stopping time taking values on T , and X = {Xt}t∈T an
arbitrary process. For each t = 1, 2, . . . , T ,

Xt∧τ = X0 +
t
∑

k=1

I[τ≥k]{Xk − Xk−1}. (B.5)

Proof. We observe the sum on the right-hand side under the following situations.

If τ ≥ t, then

t
∑

k=1

I[τ≥k]{Xk − Xk−1} =
t
∑

k=1

{Xk − Xk−1}

= Xt − X0

= Xt∧τ − X0.

If τ = m < t, then

t
∑

k=1

I[τ≥k]{Xk − Xk−1} =
m
∑

k=1

{Xk − Xk−1}

= Xm − X0 = Xτ − X0

= Xt∧τ − X0.

Theorem B.4. Let {Ut}t∈T be the process defined by (B.2)-(B.3) and consider τ∗

given by (B.4). Then, the stopped process

{Ut∧τ∗}t∈T (B.6)

is a martingale.
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Proof. We want to verify

E(U(t+1)∧τ∗ − Ut∧τ∗ | Ft) = 0, (B.7)

for each t = 0, 1, . . . , T − 1. According to equation (B.5), we have

U(t+1)∧τ∗ − Ut∧τ∗ = I[τ∗≥t+1]{Ut+1 − Ut}.

Since [τ∗ ≥ t + 1] ∈ Ft, by taking conditional expectation we obtain

E(U(t+1)∧τ∗ − Ut∧τ∗ | Ft) = I[τ∗≥t+1]E(Ut+1 − Ut | Ft). (B.8)

If τ∗ < t + 1, the right-hand side becomes zero and we are done. If τ∗ ≥ t + 1, then
by definition of τ∗ we must have Ut > Yt and so

Ut = E(Ut+1 | Ft).

This implies that the right-hand side in (B.8) becomes zero, as required.

Theorem B.5. Let U = {Ut}t∈T be the process defined by (B.2)-(B.3) and consider
τ∗ given by (B.4). Then, τ∗ is optimal for the problem (B.1). Moreover, we conclude
that

V = E(Yτ∗) = U0. (B.9)

Proof. Let 0 ≤ τ ≤ T be an arbitrary stopping time. Since U dominates Y by
Theorem B.2, and U is a supermartingale, then

E(Yτ ) ≤ E(Uτ ) ≤ E(Ut∧τ ).

Theorem B.1 implies that {Ut∧τ} is a supermartingale. Thus,

E(Ut∧τ ) ≤ E(U0∧τ ) = U0,

since F0 is the trivial σ-algebra and U0 is F0-measurable. Hence, we get

V = sup
τ≤T

E(Yτ ) ≤ U0. (B.10)

Now, by definition, Uτ∗ = Yτ∗ . Thus

E(Yτ∗) = E(Uτ∗) = E(UT∧τ∗) = U0∧τ∗ = U0.

where we used that the stopped process {Ut∧τ∗} is a martingale. Therefore, τ∗ is
optimal and

V = E(Yτ∗) = U0.



80 Optimal stopping problems in discrete time



Appendix C

The Cauchy problem

We want to verify the statements

V̌ is C1,2 on H1 and LSV̌ + V̌t − rV̌ = 0 on H1, (C.1)

V̌ is C1,2 on H2 and LSV̌ + V̌t − rV̌ = −rK on H2. (C.2)

stated in the proof of Lemma 4.9.

Consider the Cauchy problem

Lu +
∂u

∂t
= f(t, x) in [0, T ) × R, (C.3)

u(T, x) = φ(x) in R, (C.4)

where L is given by

Lu(t, x) := rx
∂u(t, x)

∂x
+

σ2x2

2

∂2u(t, x)

∂2x
+

∂u(t, x)

∂t
− r u(t, x), (C.5)

and the Itô diffusion dSt = µSt dt + σSt dBt. Then (C.5) takes the form

Lu(t, x) = LSu +
∂u

∂t
− ru. (C.6)

Under certain conditions (see [10, Theorem 5.3 page 148]), the unique solution
u ∈ C1,2 of the Cauchy problem (C.3)-(C.4) is given by

u(t, x) = Et,xe−r(T−t)φ(ST ) − Et,x

∫ T

t
e−r(v−t)f(v, Sv)dv. (C.7)

Now, we verify (C.1)-(C.2). To do this, set

f(t, x) = −rKI[x≤c(t)], (C.8)

φ(x) = G(x). (C.9)

Then, the unique solution to

LSu +
∂u

∂t
− ru = −rKI[x≤c(t)] in [0, T ) × R, (C.10)

u(T, x) = G(x) in R, (C.11)
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is given by

u(t, x) = Et,xe−r(T−t)G(ST ) + rKEt,x

∫ T−t

0
e−rvI[St+v≤c(t+v)]dv, (C.12)

which coincides with V̌ (t, x) (see (4.78)). Therefore u ≡ V̌ and from (C.10) one
concludes that: on the set H1 = {(t, x) ∈ [0, T ) × (0,∞) : x > c(t)},

LSV̌ + V̌t − rV̌ = 0, (C.13)

and on the set H2 = {(t, x) ∈ [0, T ) × (0,∞) : x < c(t)},

LSV̌ + V̌t − rV̌ = −rK. (C.14)
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