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Abstract

The central theme of this thesis is the behavior of the value function of

general optimal stopping problems under a stochastic volatility model when

varying the volatility dynamics. We first use a combination of time-change

and coupling techniques to show regularity properties of the value function.

We consider a large class of terminal payoffs: when the first component of the

model is a stochastic differential equation without drift we allow for general

measurable functions, and when it has a drift we impose a mild condition which

includes possibly unbounded and discontinuous functions. We also consider

a running cost which can be any non-negative and bounded Borel function.

Moreover, we derive the solution of a zero-sum game of stopping and control,

which arises when considering some parameter uncertainty in the volatility

dynamics. In both finite and infinite horizon, we exhibit the existence of a

saddle point using stochastic control and martingale arguments as well as the

probabilistic representation of solutions to free-boundary problems.

Overall, our approach in mainly theoretical, however we impose only veri-

fiable conditions. We then discuss some examples arising in American option

pricing where our results are applicable. In particular, we are able to compare

American option prices under different volatility models in a variety of settings

and we establish that the optimal exercise boundary for the associated option

is a monotone function of the volatility.
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Chapter 1

Introduction

The central theme of this thesis is the behavior of the value function of opti-

mal stopping problems in a general stochastic volatility model when varying

the volatility dynamics. Our techniques are mainly based on time-change,

coupling, and control of stochastic processes.

To illustrate the mathematical objects we are interested in, consider the

following situation. Suppose that we observe a random process X = (Xt)t≥0

which evolves in continuous-time and that we wish to (optimally) stop the

observation when the value g(Xt) is maximal over a predetermined period of

time, for some payoff function g(x). Since X is random, each observation cor-

responds to a possible scenario, then we maximize in average over all random

times (stopping rules). The value function is precisely the maximal expected

payoff over all stopping rules.

In this thesis, the dynamics of X are initially determined by the stochastic

differential equation

Xt = X0 +

∫ t

0

a(Xs)Ys dBs, (1.1)

where a : R 7→ R is a Borel function satisfying certain conditions, B = (Bt)t≥0

is a standard Brownian motion, and Y = (Yt)t≥0 is another stochastic pro-

cess to be referred to as the stochastic volatility of X (the dynamics of Y

are specified below in the Overview). We shall study this object with a so-

called discount (or killing) rate, meaning that X vanishes at an independent,

exponentially distributed time.
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Given an initial condition (X0, Y0) = (x, y), the value function v(x, y) we

are initially interested in is given by

v(x, y) = sup
0≤τ≤T

Ex,y [e−ατg(Xτ )], (1.2)

where τ denotes a (finite) stopping time of (X, Y ), T is the time horizon (which

may be infinite), Ex,y denotes the expectation conditional on (X0, Y0) = (x, y),

α > 0 is the discount rate, and the payoff (or gain) function g : R → R is

measurable.

To ensure the well-posedness of this problem, we assume throughout this

thesis that

Ex,y

[
sup

0≤t≤T
e−αt|g(Xt)|

]
<∞ (1.3)

for each initial condition (x, y), which is a common assumption in the context

of optimal stopping problems.

For completeness, we discuss in Appendix A sufficient conditions on g and

on the dynamics of (X, Y ) in order for (1.3) to be satisfied.

Later on we will see that the functional properties of v(x, y) in (1.2) are

preserved in the more general case where there is cost of observation:

v(x, y) = sup
0≤τ≤T

Ex,y [e−ατg(Xτ )−
∫ τ

0

e−αsc(Xs)ds], (1.4)

where c is a non-negative and bounded Lebesgue integrable function.

The main focus of the thesis is on the behavior of v(x, y) when varying the

dynamics of Y .

Overview and literature review.

Chapter 2. Time-change of stochastic volatility: in this chapter we mainly

study monotone properties of v(x, y) as a function of the initial volatility value

y, when Y is either a Markov chain or a diffusion process. In the second case

we also study continuity of v(x, ·).

In Section 2.1 we account for the main results on time-changes that will

be used throughout the thesis, and the proofs are provided at the end of the

chapter.
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In Section 2.2 we look at the case when Y is an irreducible continuous-

time Markov chain (MC), with finite state space and is independent of the

Brownian motion B driving equation (1.1).

In Section 2.3 we assume that Y solves a stochastic differential equation of

the form

Yt = Y0 +

∫ t

0

η(Ys) dB
Y
s +

∫ t

0

θ(Ys) ds (1.5)

where BY = (BY
t )t≥0 is a standard Brownian motion such that 〈B,BY 〉t = δt,

for some real number δ ∈ [−1, 1], and η, θ : R→ R are continuous functions.

In Section 2.4 we deal with an extension of the results obtained to the case

with cost of observations in (1.4).

Specifically, the method of proof of the monotonicity of v(x, ·) in (1.2) is as

follows. First, by a suitable time-change device, we transform the “coupled”

system (X, Y ) (where the X component depends upon Y ) into a “decoupled”

one in the sense that each component is autonomous. Second, we reformulate

the original value function in terms of (X, Y ) into one in terms of the decou-

pled system by using the fact that the strong Markov property is preserved

after time-change. The key feature of the new formulation is that the whole

dependence on the volatility is placed on the discount factor only, which is a

continuous and strictly increasing additive functional. Finally, the construc-

tion is made in such a way that there is no “overtaking” by the paths of the

time-changed volatility processes.

The time-change technique proves to be very powerful and many authors

take advantage of a time-change device in a variety of settings, for instance:

• Hobson [24] and Henderson [21] time-change volatility processes to com-

pare European option prices.

• Cissé et al. [8] time-change a one-dimensional regular diffusion X to

“modify” a reward function with a continuous additive functional as the

discount factor into one with linear discounting (see Lemma 3.1 in [8]).

We apply a similar technique in Lemma 4.4 below.

• Kyprianou et al. [34] time-change an α-stable process X to “erase” the

negative components of X (see Proposition 3.2 in [34]).
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• In [2], we time-change the stochastic volatility system (X, Y ) to “trans-

fer” the whole dependence of X on the volatility to the discount factor

only (see Lemma 2.10 below).

Chapter 3. Control of stochastic volatility: in this chapter we derive the so-

lution of a zero-sum game of stopping and control. The solution is presented

in Section 3.3.2, under verifiable conditions. Examples where these conditions

are satisfied are provided in the next chapter.

In Section 3.1 we establish the notation and state the problem. We allow

for some parameter uncertainty in the dynamics of Y . This uncertainty is

incorporated through the Q-matrix (MC case) or the drift of the volatility

(diffusion case).

In Section 3.2 we derive smoothness for the value function of generic op-

timal stopping problems. The reason is because the proofs of our verification

theorems in the subsequent section rely on analytical methods for which suffi-

cient regularity of a candidate value function is required. The strong Markov

property as well as the probabilistic representation of solutions to Dirichlet-

type problems are the main tools. We remark that, despite the prominence of

regime-switching models in recent years, there are no general results concern-

ing the regularity properties of the value function v(x, y) in (1.4) within this

context, so these have been addressed here and in Section 4.2 as well.

In Section 3.3 we state and show the main results of this chapter, Theorems

3.16 and 3.17. These assert that the value of the game of stopping and control

identifies with the value function of certain optimal stopping problem associ-

ated to an extremal scenario. Such a candidate value function is assumed to

be continuous in some sense (depending on the setting) and monotone in y.

In particular, we exhibit a saddle point when the space of control values is

compact.

Some works involving the solution of a zero-sum game of stopping and

control are the following:

• Karatzas and Sudderth [32] assume that the gain function is continuous,

and that the state process is a linear diffusion in [0, 1] with drift and

diffusion coefficients affected by some control parameters.
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• Weerasinghe [45] studies a game with running payoff, where the state

process is a one-dimensional diffusion and the control corresponds to its

diffusion coefficient (which may be degenerate).

• Karatzas and Zamfirescu [33] examine a differential game from a mar-

tingale approach and allowing terminal and running payoff. The state

process solves a controlled functional/differential equation (coefficients

may depend on the whole path) and the control only affects the drift.

Chapter 4. Applications to option pricing: our approach in the previous Chap-

ters is theoretical, and we try to keep as much generality as possible, yet to

impose verifiable conditions. This Chapter deals with the examples, the ver-

ification of such conditions, and deduce that the optimal stopping boundary

of the stopping problems we work with is monotone in y.

In the context of mathematical finance, X stands for the stock price pro-

cess. The model for X when its stochastic volatility Y is a (function of a)

MC is referred to as regime-switching (or Markov modulated). The literature

on optimal stopping with regime-switching models is mostly concentrated on

specific examples. See for instance, Buffington and Elliot [7], Guo and Zhang

[19], Jobert and Rogers [30], and Yao et al [47]. In the other formulation for Y ,

Heston [22], and Hull and White [25] (amongst many others) assume that Y

solves an autonomous stochastic differential equation (SDE). See also a survey

by Frey [14].

The monotonicity property of option prices has been studied by several

authors in the diffusion case:

• Romano and Touzi [41, Theorem 3.1] deal with European options and

the stochastic volatility model of Hull & White [25]. They work under

the assumption that the volatility function is bounded by two constants

and that the payoff g satisfies a logarithmic growth condition.

• Ekström [10, Theorem 4.2] compares prices of American options in the

case that Y ≡ 1 and the gain function satisfies the condition g(a x) ≤
a g(x) for a ≥ 1 and x ≥ 0.
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• Hobson [24, Theorem 6.4] applies time-change and coupling for compar-

ing prices of European options in a general stochastic volatility model,

and under the assumption that g is convex.

We adapt and combine the techniques of Ekström and Hobson to the case of

American-type options in both, finite and infinite horizon. We place minimal

constraints on the running and terminal payoff functions: when X is driftless

(as in (1.1)) g is only assumed to be measurable (see Chapter 2). In the case

that X has a linear drift (as in (1.6)), we impose a mild condition on g which

includes non-increasing, possibly unbounded and discontinuous functions (see

Section 4.1).

Whether it be a Markov chain or a diffusion process modeling Y , it is

difficult to make precise the parameters driving its dynamics because of the

uncertain nature of the volatility of stock prices. In the first case, the transition

rates model the occurrence of sudden economic movements (switches) but, in

practice, these rates are not fully observable (see Hartman and Heaton [20]

and references therein). In the other case, the drift of volatility typically

characterizes the choice of the pricing measure, but there is no definite criterion

telling us which measure should be used (see Hobson [23], [24]).

There is some work on model uncertainty that takes account of uncertainty

in the volatility model. For instance, Avellaneda et al. [3] and Frey [15] assume

that the volatility is a predictable process which is only known to be bounded

between two constant values. We allow for some parameter uncertainty in

Chapter 3, incorporated through the Q-matrix or the drift of the volatility,

and study a zero-sum game which can be interpreted as the stopper trying

to maximize his payoff while nature plays against him and tries to minimize

this payoff. The resulting value of the game, when it exits, is the worst-case

scenario for the stopper in the presence of parameter uncertainty.

In Section 4.1 we adapt the results of Chapter 2 to the case where X has

linear drift, because we deal with the dynamics for the stock price process:

Xt = X0 +

∫ t

0

Xs Ys dBs +

∫ t

0

r Xt dt, (1.6)

where r > 0 stands for the instantaneous interest rate.
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In Section 4.2 we deal with the first example which is the regime-switching

model used by Guo and Zhang [19] and Jobert and Rogers [30], where the drift

of X is stochastic and depends on the volatility, and g(x) = max{0, K − x},
for some positive constant K. An important consequence of our results is that

the optimal thresholds characterizing the optimal stopping rule of this problem

are monotone. This was suggested in the numerical examples provided in [19]

and [30], without proof.

Next, under a more general model for X and only assuming that g is non-

negative and continuous, we also show that the function v(·, y) is continuous

for each y, in the regime-switching setting.

In Section 4.3 we examine two examples in the diffusion setting, based on

Bessel processes. We consider the Hull & White [25] and Heston [22] models.

Apart from verifying that these models satisfy all of our conditions in the

previous chapters, we also establish that the optimal stopping boundary for

American put options is monotone in the volatility. The last part of the section

is dedicated to a brief review of Bessel processes and some path-comparison

properties that are used.

7



Chapter 2

Time-change of stochastic

volatility

2.1 Preliminaries

Consider a two-dimensional strong Markov process (X, Y ) = (Xt, Yt)t≥0 given

on a family of probability spaces (Ω,F , Px,y, (x, y) ∈ R × S), and adapted to

a filtration (Ft)t≥0 of sub-σ-algebras of F satisfying the usual conditions.

This chapter deals with the value function

v(x, y) = sup
0≤τ≤T

Ex,y [e−ατg(Xτ )], (x, y) ∈ R× S, (2.1)

where α > 0 is the discount rate, T ∈ [0,∞] is the time horizon, the gain

function g : R → R is measurable, and the supremum is over finite stopping

times of (X, Y ). The precise dynamics of the pair (X, Y ) are specified in

Sections 2.2.1 and 2.3.1 below.

The main focus is on the monotonocity of the function v(x, ·).

The time-change method is extensively used in this chapter, so we review

the main results that are going to be used in the sequel. The proofs are

provided in Section 2.5.

Definition 2.1 A time-change A is a family {At; t ≥ 0} of stopping times

such that t 7→ At is increasing and right-continuous.
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Proposition 2.2 Consider a right-continuous, non-decreasing, adapted pro-

cess Γ and set At = inf{s ≥ 0 : Γs > t}. Then A is a time-change. Moreover,

Γs = inf{t ≥ 0 : At > s} and Γs is an (FAt)t≥0-stopping time for each s ≥ 0.

Corollary 2.3 In the context of Proposition 2.2,

(i) If Γ is strictly increasing then At is continuous.

(ii) If Γ is continuous and limt→∞ Γt =∞ a.s. then At is strictly increasing,

finite and limt→∞At =∞ a.s.

(iii) If Γ is strictly increasing, continuous, limt→∞ Γt = ∞ a.s. and Γt is

finite for all t ≥ 0 a.s. then

ΓAs = AΓs = s, for all 0 ≤ s <∞ a.s.

and

s < Γt if and only if As < t for all 0 ≤ s, t <∞ a.s.

The following lemma is a consequence of the symmetric roles of A and

Γ. Denote by M and T the families of finite stopping times relative to the

filtrations (Ft)t≥0 and (FAt)t≥0, respectively.

Lemma 2.4 Let Γ be strictly increasing, continuous, limt→∞ Γt = ∞ and Γt

is finite for all t ≥ 0 a.s. If ρ ∈M then Γρ ∈ T and if τ ∈ T then Aτ ∈M.

This lemma is used in the proof of Lemma 2.10. A similar statement can

be found in [42, VIII.65.8].

The last part of this section looks at a very particular time-change. The

result is used in an argument in Section 2.2.3. Let us fix the notation:

Suppose that W is a Brownian motion, adapted to (Ft)t≥0 and let Z be an

(Ft)t≥0-adapted process satisfying that∫ t

0

f(Zs)
2ds <∞, a.s. for all t ≥ 0,
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where f is a Borel measurable function. Then the stochastic integral Mt, with

Mt =

∫ t

0

f(Zs)dWs,

is well-defined and is an (Ft)t≥0-continuous local martingale. Further assume

that limt→∞〈M〉t =∞ and define A = (At)t≥0 by At := inf{s ≥ 0 : 〈M〉s > t},
which is a time-change (see [39, Theorem V.1.6]).

Proposition 2.5 Suppose that f(·)2 > 0. If W is independent of Z then

B· = MA· is independent of ZA·.

2.2 The regime-switching case

2.2.1 Introduction

Let S = {yi : i = 1, 2, . . . ,m} be a subset of (0,∞). We assume that the

strong Markov process (X, Y ) satisfies the following. For every (x, y) ∈ R×S,

there is a Brownian motion B on (Ω,F , Px,y), adapted to (Ft)t≥0, independent

of Y , and such that

Xt = x+

∫ t

0

a(Xs)Ys dBs, t ≥ 0, Px,y − a.s. (2.2)

where the process Y is a continuous-time, irreducible Markov chain on the

finite state space S with Q-matrix (q[yi, yj]).

We assume that the stochastic differential equation dX ′ = a(X ′)Y ′dB′,

with B′ and Y ′ related as in (2.2), admits a weakly unique solution.

We will show that, under Condition C1 below (see page 13), for fixed x ∈ R
and y, y′ ∈ S:

if y ≤ y′ then v(x, y) ≤ v(x, y′). (2.3)

The proof of this result is mainly based on a combination of time-change and

coupling arguments.

The statement in (2.3) supports the intuition that the larger the volatility of

a diffusion the sooner this diffusion reaches the points where the gain function

10



g is large. Since the positive discount factor α kills the gain as time elapses,

one expects that v(x, y′) is larger than v(x, y) for y′ > y.

The following theorem is the main result of Section 2.2, which asserts (2.3)

when the gain function g is non-negative.

Throughout this thesis we say that a continuous-time Markov chain Y is

skip-free if its Q-matrix is tridiagonal (e.g. when Y is a birth-death Markov

chain).

Theorem 2.6 Let Condition C1 on page 13 be satisfied. Assume that the

gain function g is non-negative, and that Y is skip-free. Then, for each x ∈ R,

v(x, ·) is non-decreasing on S.

The proof is presented in Section 2.2.4, where we also discuss the case when

g is possibly negative.

2.2.2 Heuristics: the time-changed dynamics

Fix (x, y) ∈ R× S and write

Xt = x+

∫ t

0

a(Xs) dMs, t ≥ 0, Px,y − a.s.,

where the stochastic integral Ms =
∫ s

0
Yu dBu is well-defined because the paths

of Y are piecewise constant and so
∫ s

0
Y 2
u du < ∞, Px,y - a.s., for all s ≥ 0 (see

[39, IV.2.7]).

The quadratic variation 〈M〉· =
∫ ·

0
Y 2
s ds is a continuous, (Ft)t≥0-adapted

process and satisfies Px,y ( limt↑∞〈M〉t =∞) = 1 since min{y1, y2, . . . , ym} > 0.

Hence, the inverse of 〈M〉t given by

〈M〉−1
t = inf{s ≥ 0 : 〈M〉s > t},

exists for each t ≥ 0, and 〈M〉 defines a time-change.

Consider the following processes:

Gt := X ◦ 〈M〉−1
t , Zt := Y ◦ 〈M〉−1

t , t ≥ 0.

11



Using Proposition V.1.4 in [39] we can write, for each t ≥ 0,

X ◦ 〈M〉−1
t = x+

∫ 〈M〉−1
t

0

a(Xs) dMs = x+

∫ t

0

a(X ◦ 〈M〉−1
s ) d(M ◦ 〈M〉−1

s ).

This yields

Gt = x+

∫ t

0

a(Gs) dWs t ≥ 0, Px,y − a.s., (2.4)

where W = M ◦ 〈M〉−1 is an (F〈M〉−1
t

)t≥0-Brownian motion by the Dambis-

Dubins-Schwarz Theorem (see [39, V.1.6]).

Let us now consider Z. What is the generator of this time-changed process?

We claim that

Z is a Markov chain with Q-matrix (y−2
i q[yi, yj]). (2.5)

Indeed, if we let L denote the infinitesimal generator of Y , then for each

bounded and measurable function f and each y ∈ S (x ∈ R fixed),

LZ f(y) = lim
t↓0

1

t
Ex,y[ f(Y ◦ 〈M〉−1

t )− f(y)]

= lim
t↓0

Ex,y

[
f(Y ◦ 〈M〉−1

t )− f(y)

〈M〉−1
t

〈M〉−1
t

t

]
= lim

t↓0
Ex,y

[
1

〈M〉−1
t

(∫ 〈M〉−1
t

0

Lf(Ys)ds

)
〈M〉−1

t

t

]

where the last equality is a consequence of the martingale problem for the

continuous-time Markov chain Y .

Given that d〈M〉t = Y 2
t dt,

〈M〉−1
t =

∫ 〈M〉−1
t

0

1

Y 2
s

d 〈M〉s =

∫ t

0

1

(Y ◦ 〈M〉−1
s )2

ds =

∫ t

0

ds

Z2
s

, t ≥ 0.

Then, a simple application of L’Hôpital’s rule gives, Px,y-a.s.,

1

〈M〉−1
t

∫ 〈M〉−1
t

0

Lf(Ys)ds
t→0−→ Lf(y), and

〈M〉−1
t

t

t→0−→ 1

y2

12



Finally, by the bounded convergence theorem and the above limits, it is

plain that LZ f(y) = y−2 Lf(y), confirming the statement in (2.5).

2.2.3 Reformulation of the value function

An important part of our approach is to reformulate v(x, y) in (2.1) so that

we work on only one probability space, and this is where the coupling method

comes into play.

The almost sure equality in (2.4) shows that the constructed processes

G = X ◦ 〈M〉−1 and W = M ◦ 〈M〉−1 form a weak solution to the equation

dG = a(G) dW . However, this solution may not be unique. The following

condition on the coefficient a is imposed.

C1: We assume that a is a measurable function such that the stochastic

differential equation dG = a(G) dW driven by a Brownian motion W ,

has a weakly unique strong Markov solution with state space R.

There are well-known sufficient conditions for C1 to hold, for instance, it

suffices that a2(x) > 0, for all x ∈ R, and a−2(·) is locally integrable (see

Theorem 5.15 in [31], p.341). This includes any non-zero continuous function.

An example of a discontinuous function satisfying C1 is a(·) = sign(·) where

sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0 (see p.73 in [36]).

More generally, Engelbert and Schmidt [12] give necessary and sufficient

conditions for C1 to be verified: consider the sets

I(a) =

{
x ∈ R :

∫ ε

−ε

dy

a2(x+ y)
=∞, ∀ε > 0

}
, N(a) = {x ∈ R : a(x) = 0}.

The claim in C1 holds if and only if I(a) = N(a) (we refer to Theorem 5.7 in

[31] for a proof).

Lemma 2.7 For given (x, y, y′) ∈ R × S × S, there is a complete probability

space (Ω̃, F̃ , P̃ ) equipped with a filtration F̃t, t ≥ 0, which is big enough to

carry four basic processes G,W,Z, Z ′ such that:

(i) (G,W ) is a (weak) solution of dG = a(G)dW starting from x.
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(ii) Z (resp. Z ′) is a MC with Q-matrix (y−2
i q[yi, yj]) and starting from y

(resp. y′).

(iii) (G,W ) is independent of (Z,Z ′).

(iv) (G,Z, Z ′) is a strong Markov process with respect to (F̃t)t≥0.

Proof. The law of the strong Markov process G in C1 is entirely determined

by its semigroup of transition kernels of G. Multiply these transition kernels

and the transition kernels of a continuous-time Markov chain on S × S both

marginals of which are determined by the Q-matrix (y−2
i q[yi, yj]). This results

in a semigroup of transition kernels of a strong Markov process (G,Z, Z ′) with

G being independent of (Z,Z ′).

With the aid of Kolmogorov’s Existence Theorem, we choose a complete

probability space (Ω̃, F̃ , P̃ ) such that (G,Z, Z ′) starts from fixed (x, y, y′) in

R×S×S (see [1, Th. 3.1.7] for instance). Let (F̃t)t≥0 denote the augmentation

of the natural filtration of the triplet (G,Z, Z ′).

By the well-posedness of the martingale problem associated with the strong

Markov process G, with Lf(x) = 1
2
a2(x)∂

2f
∂x2 denoting its infinitesimal genera-

tor acting on functions f ∈ C2(R), we have that

f(Gt)− f(G0)−
∫ t

0

Lf(Gs)ds is an (F̃t)t≥0- local martingale.

In particular, setting f(x) = x, we obtain that Gt− x is a continuous (F̃t)t≥0-

local martingale with quadratic variation
∫ ·

0
a(Gs)

2ds. Thus, by a well-known

result going back to Doob (see [26, Th. II 7.1’] for example), there is a Brownian

motion W on (Ω̃, F̃ , P̃ ) (or on a canonical enlargement of it1) such that

Gt − x =

∫ t

0

a(Gs)dWs, t ≥ 0, P̃ − a.s. (2.6)

The construction of W (as given in the proof of Th. II 7.1’ in [26]) shows

that the pair (G,W ) is also independent of (Z,Z ′).

1Our convention is to use (Ω̃, F̃ , P̃ ) for the enlarged space, too.
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Remark 2.8 The Brownian motion W in (2.6) might only be a Brownian mo-

tion with respect to a filtration (G̃t)t≥0 larger than (F̃t)t≥0. Then the stochastic

integral in (2.6) can only be understood with respect to the larger filtration.

However, in the sequel, it is only relevant to consider the filtration (F̃t)t≥0

because we are solely interested in the strong Markov property of (G,Z, Z ′).

The latter is used in the proof of Theorem 2.6 to deduce that, for a specific

coupling of the chain (Z,Z ′), the marginals (G,Z) and (G,Z ′) are also strong

Markov with respect to (F̃t)t≥0.

In the remainder of this section we revert to the original system in (2.2)

but now on the probability space (Ω̃, F̃ , P̃ ). The procedure resembles (in fact,

inverts) the one of the previous section.

Let G,W,Z, Z ′ be given on (Ω̃, F̃ , P̃ ) as described in Lemma 2.7 and define

Γ = (Γt)t≥0 by

Γt =

∫ t

0

Z−2
s ds, t ≥ 0. (2.7)

This process is continuous and strictly increasing since Z only takes non-zero

values. Moreover, it has the property that

Γt <∞, t ≥ 0, a.s., and lim
t↑∞

Γt =∞ a.s., (2.8)

Thus A, the inverse of Γ, given by

At = inf{s ≥ 0 : Γs > t}, t ≥ 0, (2.9)

is also a continuous and strictly increasing process satisfying

At <∞, t ≥ 0, a.s., and lim
t↑∞

At =∞ a.s. (2.10)

As a consequence, the two technical properties

P1: ΓAt = AΓt = t for all t ≥ 0 a.s.

P2: s < Γt if and only if As < t for all 0 ≤ s, t <∞ a.s.

must hold (see Corollary 2.3 above).
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We can rewrite (2.6) to get

Gt = x+

∫ t

0

a(Gs)ZsdM̃s, t ≥ 0, a.s.

where the stochastic integral M̃s =
∫ s

0
dWu

Zu
exists by (2.8), for each s ≥ 0.

The inverse of 〈M̃〉, A, defines a time-change. Consider the processes

X̃t := G ◦ At, Ỹt := Z ◦ At, B̃t := M̃ ◦ At, t ≥ 0.

Arguing as before to obtain (2.4)-(2.5),

X̃t = x+

∫ t

0

a(X̃s)Ỹs dB̃s, t ≥ 0, a.s., (2.11)

where B̃ is a Brownian motion2 by the Dambis-Dubins-Schwarz Theorem [39,

V.1.6], and also

Ỹ is a Markov chain with Q-matrix (q[yi, yj]). (2.12)

Moreover, B̃ and Ỹ are independent since W and Z are independent (see

Proposition 2.5 with f(z) = 1/z).

The constructed processes ((X̃, Ỹ ), B̃) give a weak solution to (2.2) starting

from (x, y).

Remark 2.9 We can repeat the same constructions introduced for (X̃, Ỹ )

using Z, but now with Z ′. We identify these objects with an apostrophe. The

resulting pair ((X̃ ′, Ỹ ′), B̃), gives a weak solution to (2.2) starting from (x, y′).

Notice that the process G is the same in the definition of both X̃ and X̃ ′. This

fact is key in the rest of the arguments below.

In the remainder of this section we give an alternative expression for the

value function in (2.1). We do this for (X̃, Ỹ ) only, because similar arguments

will follow for (X̃ ′, Ỹ ′).

The following lemma considers {Γt; t ≥ 0} and {At; t ≥ 0} as families of

2B̃ is actually an (G̃At)t≥0 Brownian motion, see Remark 2.8.
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stopping times and is a consequence of their symmetric roles. Consider the

families M and T :

M = { finite stopping times with respect to (F̃t)t≥0}

and

T = { finite stopping times with respect to (F̃At)t≥0}.

Lemma 2.10 For any T ∈ [0,∞],

sup
τ∈TT

Ẽ [e−ατg(X̃τ )] = sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)], (2.13)

where MT = {ρ ∈M : 0 ≤ ρ ≤ AT a.s.} and TT = {τ ∈ T : 0 ≤ τ ≤ T a.s.}.

Proof. Fix τ ∈ TT and observe that Ẽ [e−ατg(X̃τ )] = Ẽ [e−αΓAτ g(GAτ )] by

Property P1. Also Aτ is in M by Lemma 2.4 and by the increasing property

of At as a function of t, we have that 0 ≤ Aτ ≤ AT a.s. Hence Aτ ∈MT and

Ẽ [e−ατg(X̃τ )] ≤ sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)], ∀ τ ∈ TT .

Similarly, given ρ ∈ MT , the equality Ẽ [e−αΓρg(Gρ)] = Ẽ [e−αΓρg(X̃Γρ)]

and the fact that Γρ ∈ TT lead to

Ẽ [e−αΓρg(Gρ)] ≤ sup
τ∈TT

Ẽ [e−ατg(X̃τ )], ∀ ρ ∈MT .

The proof is complete.

Since the equation Xt = x +
∫ t

0
a(Xs)Ys dBs admits a weakly unique solu-

tion, we have that

(X̃, Ỹ ) = (G ◦ A,Z ◦ A)︸ ︷︷ ︸
under P̃

law
= (X, Y ).︸ ︷︷ ︸

under Px,y

As a consequence, we obtain that

v(x, y) = sup
0≤τ̃≤T

Ẽ [e−ατ̃g(X̃τ̃ )], (2.14)
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where the stopping times τ̃ are with respect to the filtration generated by

(X̃, Ỹ ).

Proposition 2.11 Assume that (G,Z) is a strong Markov process with respect

to (F̃t)t≥0. Then, for any T ∈ [0,∞],

v(x, y) = sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)]. (2.15)

Proof. Since (G,Z) is a strong Markov process with respect to (F̃t)t≥0, the

time-changed process (X̃, Ỹ ) must possess the strong Markov property with

respect to (F̃At)t≥0 (see Theorem 65.9 in [42]).

The stopping times used in (2.14) are with respect to the filtration gener-

ated by (X̃, Ỹ ) which might be smaller than (F̃At)t≥0. However, given that

(X̃, Ỹ ) is also strong Markov with respect to (F̃At)t≥0, the corresponding

suprema are the same (see Proposition B.2). In other words,

v(x, y) = sup
0≤τ≤T

Ẽ [e−ατg(X̃τ )]

where the finite stopping times τ are with respect to the filtration (F̃At)t≥0.

The conclusion follows directly from Lemma 2.10.

Of course, all the results above remain valid for v(x, y′), X̃ ′, Ỹ ′, T ′T ,M′
T ,

A′ and Γ′ if these objects are constructed by using Z ′ instead of Z. Then the

conclusion of Proposition 2.11 holds for v(x, y′) provided (G,Z ′) is a strong

Markov process with respect to (F̃t)t≥0.

2.2.4 Monotonicity in y

Proof of Theorem 2.6. Fix x ∈ R and y, y′ ∈ S such that y ≤ y′. We split the

proof into two parts.

(i) While in Lemma 2.7 the coupling of the two chains Z and Z ′ was not

specified any further, we now choose a particular coupling associated with a

Q-matrix Q which allows us to compare Z and Z ′ directly.
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Denoting the Q-matrix corresponding to the independence coupling by Q⊥,

we set

Q

[
yi yj

yk yl

]
=


Q⊥

[
yi yj

yk yl

]
: i 6= k

y−2
i q[yi, yj] : i = k, j = l

0 : i = k, j 6= l

for yi, yj, yk, yl ∈ S. That is, Z and Z ′ move independently until they hit

each other for the first time and then they move together. It follows from the

skip-free-assumption that Z cannot overtake Z ′ before they hit each other for

the first time. Hence

Z0 = y ≤ y′ = Z ′0 implies Zt ≤ Z ′t, t ≥ 0, a.s., (2.16)

which results in the inequality

Γt =

∫ t

0

Z−2
s ds ≥

∫ t

0

(Z ′s)
−2ds = Γ′t, t ≥ 0, a.s. (2.17)

As a consequence, we also have that the inverse (increasing) processes A =

Γ−1 and A′ = (Γ′)−1 must satisfy the relation At ≤ A′t, t ≥ 0, a.s.

(ii) Notice that the above comparison and the fact that g is non-negative allow

us to conclude that

Ẽ [e−αΓρg(Gρ)] ≤ Ẽ [e−αΓ′ρg(Gρ)] for every ρ ∈MT . (2.18)

Since AT ≤ A′T implies that MT ⊆M′
T , we obtain that

sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)] ≤ sup
ρ′∈M′T

Ẽ [e
−αΓ′

ρ′g(Gρ′)]

or equivalently, that v(x, y) ≤ v(x, y′) thanks to Proposition 2.11, provided

(G,Z) and (G,Z ′) are strong Markov processes with respect to (F̃t)t≥0, the

augmentation of the filtration generated by (G,Z, Z ′). Let’s check this prop-

erty for (G,Z) only, as the same argument follows for (G,Z ′).

Given a bounded and measurable function f : R2 → R and a stopping time
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τ with respect to F̃t, first note that

Ẽ[ f(Gτ+t, Zτ+t) | F̃τ ] = Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , Z
′
τ ],

by the strong Markov property of the triplet (G,Z, Z ′) (simply set f̄(x, z, z′) =

f(x, z)). Now, Z ′τ is either independent or equal to Zτ , depending on whether

τ is smaller or greater than the coupling time of the chains, respectively. For-

mally, if C = inf{t ≥ 0 : Zt ≥ Z ′t} is the coupling time, then

Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , Z
′
τ , {τ < C} ] = Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , {τ < C} ]

by the independence of Z ′τ and the pair Gτ , Zτ on {τ < C} (see for instance

Section 9.7 in [46]); and

Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , Z
′
τ , {τ ≥ C} ] = Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , {τ ≥ C} ]

because Zτ = Z ′τ on {τ ≥ C}. We conclude that

Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ , Z
′
τ ] = Ẽ[ f(Gτ+t, Zτ+t) | Gτ , Zτ ]

as required. The proof is now complete. �.

The inequalities in (2.16), (2.17) and (2.18) are fundamental. With these

inequalities in mind, we can obtain some variants of Theorem 2.6 to include

the case where g is possibly negative in the infinite horizon case.

Corollary 2.12 Let Condition C1 on page 13 be satisfied and the time hori-

zon T =∞. Assume that g is non-positive, and that Y is skip-free. Then, for

each x ∈ R, the function v(x, ·) is non-increasing on S.

Proof. Fix x ∈ R and y ≤ y′. If g is non-positive then, instead of (2.18), we

obtain

Ẽ [e−αΓρg(Gρ)] ≥ Ẽ [e−αΓ′ρg(Gρ)] for every ρ ∈MT (2.19)

with MT equals (up to versions) to M′
T since T = ∞. Hence the inequality

v(x, y) ≥ v(x, y′) can be deduced directly from Proposition 2.11.

Notice that, in the case when T <∞, there can be stopping times in M′
T
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which are not in MT and so we could not deduce the monotonicity of v from

the inequality in (2.19).

Let us now suppose that g takes both positive and negative values. In this

situation, the conclusion of Theorem 2.6 remains valid provided the optimum

v(x, y), for (x, y) fixed, can be achieved by stopping at non-negative values

of g only. Define Kg+x,y to be the collection of all finite stopping times τ with

respect to the filtration generated by (X, Y ) with (X0, Y0) = (x, y) and such

that g(Xτ ) ≥ 0.

Corollary 2.13 Let Condition C1 on page 13 be satisfied and the time hori-

zon T =∞. Assume that the gain function g is such that {x : g(x) ≥ 0} 6= ∅,
and that Y is skip-free. Further assume that, for (x, y) fixed,

v(x, y) = sup
τ∈Kg+

Ex,y [e−ατg(Xτ )], (2.20)

where Kg+ ≡ Kg+x,y. Then, v(x, y) ≤ v(x, y′) for all y′ ∈ S such that y ≤ y′.

Proof. Let y′ ∈ S be such that y ≤ y′.

Following the proof and notation of Theorem 2.6, part (i) remains valid

(as it does not involve the payoff function g) so that Γt ≥ Γ′t for all t ≥ 0

a.s. Part (ii) of that proof is replaced by the next considerations. Define

M+ := {ρ ∈ M : g(Gρ) ≥ 0 a.s.} and T + := {τ ∈ T : g(X̃τ ) ≥ 0 a.s.}. To

complete the proof it is sufficient to see that

v(x, y) = sup
ρ∈M+

Ẽ [e−αΓρg(Gρ)] (2.21)

and that

sup
ρ∈M+

Ẽ [e−αΓρg(Gρ)] ≤ sup
ρ∈M

Ẽ [e−αΓ′ρg(Gρ)] = v(x, y′), (2.22)

where the equality on the right-hand side is due to Proposition 2.11.

To see (2.21) (cf. (2.15) above), first notice that the equality

sup
τ∈T +

Ẽ [e−ατg(X̃τ )] = sup
ρ∈M+

Ẽ [e−αΓρg(Gρ)]
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can be shown in exactly the same way that (2.13). Furthermore, under the

condition v(x, y) = supτ∈Kg+ Ex,y [e−ατg(Xτ )], we must have that

v(x, y) = sup
τ∈T +

Ẽ [e−ατg(X̃τ )]

because the law of (X̃, Ỹ ) is equal to the law of (X, Y ) under Px,y, and (X̃, Ỹ )

is strong Markov with respect to the filtration (F̃At)t≥0.

To see the inequality in (2.22), just observe that (cf. (2.18))

Ẽ [e−αΓρg(Gρ)] ≤ Ẽ [e−αΓ′ρg(Gρ)] for every ρ ∈M+

and that M+ ⊆M, which in turn implies (2.22).

Remark 2.14 It is intuitively clear that all of our results will not change if

the dynamics of X are instead

Xt = x+

∫ t

0

a(Xs)σ(Ys) dBs, t ≥ 0, Px,y − a.s. (2.23)

where σ(·) > 0 and provided σ preserves order, in the sense that, for any

y1 ≤ y2, σ(y1) ≤ σ(y2). Of course, if for any y1 ≤ y2, σ(y1) ≥ σ(y2), then the

statements of the results change in order: increasing becomes decreasing and

vice-versa.

Remark 2.15 The condition (2.20) is a technical one which allows us to get

(2.22). A sufficient condition for (2.20) to hold is that

Px,y
(

inf{t ≥ 0 : g(Xt) ≥ 0} <∞
)

= 1 (2.24)

and it follows from the strong Markov property of (X, Y ) (we are assuming

that the time horizon is infinite). Indeed, if the process X always hits the set

{x : g(x) ≥ 0} with probability one then it is quite natural that maximal gain

is obtained whilst avoiding stopping at negative values of g. It is clear that

v(x, y) ≥ supτ∈Kg+ Ex,y [e−ατg(Xτ )]. To show the reverse inequality, it suffices

to check that for each finite stopping time τ we can find τ ′ ∈ Kg+ such that

Ex,y [e−ατg(Xτ )] ≤ Ex,y [e−ατ
′
g(Xτ ′)]. (2.25)
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Fix a finite stopping time τ and consider the event B = {ω : g(Xτ(ω)(ω)) ≥ 0 }.
Also, define the stopping times

τB(ω) :=

τ(ω) : ω ∈ B,

+∞ : ω /∈ B,
and τH := inf{t ≥ τ : g(Xt) ≥ 0},

and set τ ′ = τB ∧ τH . By the strong Markov property and (2.24), τH < ∞
and g(Xτ ′) ≥ 0 Px,y-a.s. so that τ ′ ∈ Kg+. Moreover, by definition of τ ′,

it follows that e−ατg(Xτ ) ≤ e−ατ
′
g(Xτ ′) Px,y-a.s., which in turn implies the

desired inequality in (2.25) after taking expectation. In the case where T <∞,

it is very difficult to guarantee that X will hit a subset of the state space in

finite time.

Consider the following example. Suppose that a(x) = x in (2.2) so that

Xt = x exp

{∫ t

0

YsdBs −
1

2

∫ t

0

Y 2
s ds

}
, t ≥ 0,

and the payoff function g satisfies that the set {x : g(x) ≥ 0} is of the form

{x : x ≤ x∗} for some x∗ > 0 (for instance, g(x) = (K − x)+ with K > 0

and g(x) = e−2(x−2) − 1 for which x∗ = K and x∗ = 2, respectively). In this

situation, the condition (2.24) is satisfied. If x ≤ x∗ this is clear, so we only

have to verify the case where x > x∗. Let us fix (x, y) such that x > x∗ and y is

an arbitrary point in S. We know that the local martingale Mt =
∫ t

0
YsdBs is

a time-changed Brownian motion. More precisely, there is a Brownian motion

W such that Mt = WAt where At = 〈M〉t (see [39, V.1.6]). Then the laws of

Xt and x exp
{
WAt − 1

2
At
}

coincide. Given that At →∞ as t→∞, it follows

that Xt → 0 as t → ∞ almost surely. Therefore, if the initial value x > x∗,

Xt hits the set {x : x ≤ x∗} in finite time almost surely and (2.24) holds.

Now, the condition (2.24) is sufficient but not necessary as we next see.

Suppose that X is as in the previous paragraph taking values in the positive

half line, and g is given by g(x) = −1 if x < 1 and g(x) = 1 if x ≥ 1. Let

0 < x < 1 and observe that

x exp

{
WAt −

1

2
At

}
≥ 1 ⇔ WAt −

1

2
At ≥ log(1/x).
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Since At → ∞ as t → ∞ almost surely, we have that (see [6, p.251] for

instance)

Px,y

(
sup
t≥0

(
WAt −

At
2

)
≥ log(1/x)

)
= Px,y

(
sup
t≥0

(
Wt −

t

2

)
≥ log(1/x)

)
= x < 1.

Setting τ1 := inf{t ≥ 0 : Xt ≥ 1} and using that Xt and x exp
{
WAt − 1

2
At
}

have the same law, we have that for 0 < x < 1,

Px,y( τ1 <∞ ) = Px,y

(
sup
t≥0

(
WAt −

At
2

)
≥ log(1/x)

)
= x < 1,

and so condition (2.24) fails. However, for such a pair (x, y) with 0 < x < 1

and y arbitrary, (2.20) holds. Indeed, given that for any (x′, y′)

v(x′, y′) ≥ Ex′,y′e
−ατ1g(Xτ1) = g(1)Ex′,y′I(τ1 <∞) = Px′,y′(τ1 <∞) > 0,

it is suboptimal to stop the observation of Xt when Xt ∈ (0, 1). In other

words, the maximal gain can only be obtained when we avoid to stop X at

the set of negative values of g.

2.3 The diffusion case

2.3.1 Introduction

Fix δ ∈ [−1, 1]. We assume that the strong Markov process (X, Y ) satis-

fies the following. For every (x, y) ∈ R × S (S ⊆ (0,∞)), there is a pair

(B,BY ) of Brownian motions on (Ω,F , Px,y), adapted to (Ft)t≥0, with covari-

ation 〈B,BY 〉t = δt, t ≥ 0, and such that

Xt = x+

∫ t

0

a(Xs)Ys dBs, Yt = y +

∫ t

0

η(Ys)dB
Y
s +

∫ t

0

θ(Ys)ds (2.26)

for all t ≥ 0, Px,y − a.s., where a, η, θ are continuous functions on S.

We assume that the system in (2.26), with (X, Y ) unknown, admits a

weakly unique non-exploding solution.
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It is appropriate to state a preliminary result, which is the analogue of

Theorem 2.6. Recall that v(x, y) is given in (2.1) above and the payoff function

g is a measurable function satisfying (1.3).

Theorem 2.16 Let Conditions C1’-C2’ on page 26 be satisfied. Assume that

the gain function g is non-negative. Then, for each x ∈ R, v(x, ·) is non-

decreasing on S.

The proof of this and a more general version of it, Theorem 2.22, are

presented in Section 2.3.4.

Since the volatility process Y has continuous paths, it is natural to ask

to what extent continuity of v(x, ·) holds. In Section 2.3.5 we further exploit

the time-change and coupling techniques to address this question. The next

theorem summarizes the results in that section, specifically part (i) (resp. (ii))

corresponds to Proposition 2.29 (resp. Proposition 2.30).

Theorem 2.17 Let Conditions C1’-C2’ on page 26 be satisfied. Then, for

each x ∈ R, the following assertions hold:

(i) If T =∞ and (2.49) is satisfied, then v(x, ·) is continuous.

(ii) If T <∞ and g is continuous, then v(x, ·) is continuous.

2.3.2 Heuristics: the time-changed dynamics

Fix (x, y) ∈ R× S.

Similarly as in Section 2.2.2, we consider the stochastic integral Ms =∫ s
0
Yu dBu which is well-defined because the paths of Y are continuous and so∫ s

0
Y 2
u du < ∞, Px,y - a.s., for all s ≥ 0.

Assume for now that the quadratic variation 〈M〉· satisfies the property

that Px,y ( limt↑∞〈M〉t = ∞) = 1. Then, the inverse of 〈M〉t exists for each

t ≥ 0.

Consider the time-change of the pair (X, Y ) by the inverse of 〈M〉:

Gt := X ◦ 〈M〉−1
t , ξt := Y ◦ 〈M〉−1

t , t ≥ 0.
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Using Proposition V.1.4 in [39], we can write

Gt = x+

∫ t

0

a(Gs) dWs, ξt = y +

∫ t

0

η(ξs)ξ
−1
s dW ξ

s +

∫ t

0

θ(ξs)ξ
−2
s ds,

for each t ≥ 0, where

Wt = M ◦ 〈M〉−1
t , and W ξ

t =

∫ 〈M〉−1
t

0

Ys dB
Y
s , t ≥ 0,

are (F〈M〉−1
t

)t≥0-Brownian motions by the Dambis-Dubins-Schwarz Theorem

(see [39, V.1.6]).

The covariation 〈W,W ξ〉t can be calculated as follows. First, by a property

of stochastic integrals (see [39, IV.2.7]) and using that 〈B,BY 〉t = δt, we have

that

〈
∫ ·

0

Ys dBs,

∫ ·
0

Ys dB
Y
s 〉t = δ

∫ t

0

Y 2
s d(〈B,BY 〉)s = δ〈M〉t.

Hence,

〈W,W ξ〉t = 〈
∫ ·

0

Ys dBs,

∫ ·
0

Ys dB
Y
s 〉 ◦ 〈M〉−1

t = δt.

2.3.3 Reformulation of the value function

In the previous section we showed that, for every (x, y) ∈ R× S, there exists

a weak solution to the system of stochastic differential equations

dGt = a(Gt)dW,

dξt = η(ξt)ξ
−1
t dW ξ

t + θ(ξt)ξ
−2
t dt,

(2.27)

taking values in R×S and driven by a pair of Brownian motions with covari-

ation 〈W,W ξ〉t = δt, t ≥ 0. However, this solution may not be unique. The

following condition is imposed.

C1’: We assume that the continuous functions a, η, θ are such that the system

in (2.27) has, for all initial conditions (G0, ξ0) ∈ R × S, a unique non-

exploding strong solution taking values in R× S.

The continuity of the functions a, η, θ ensures the existence of a weak so-

lution (possibly exploding). Sufficient conditions for C1’ to hold (see e.g.
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Theorem 3.1 in [26]) typically require that the coefficients of (2.27) satisfy

a Lipschitz condition (for pathwise uniqueness of the solution) and a linear

growth condition (for non-explosion of the solution). These conditions may be

weakened in some particular cases. For example, when a(x) = x (which will

be assumed in Chapter 4), we only need to make sure that there is a unique

non-exploding strong solution for the autonomous equation for ξ. Since ξ is

one-dimensional, there are sufficient conditions for the preceding to hold which

weaken the Lipschitz condition (see for instance [26, V.3.2]).

Remark 2.18 We want to show (2.3) in this context using a similar method

to that applied in Section 2.3.4. The main difference is that here, instead

of constructing X̃ by time-changing a solution of the single equation dG =

a(G)dW , we now construct X̃ by time-changing a solution of the system in

(2.27).

Now, we choose a complete probability space (Ω̃, F̃ , P̃ ) big enough to carry

a pair of Brownian motions (W,W ξ) with covariation 〈W,W ξ〉t = δt. Denote

by (F̃t)t≥0, the augmentation of the filtration generated by (W,W ξ).

Suppose that (G, ξ) is the unique solution of the system (2.27) given on

(Ω̃, F̃ , P̃ ) by (W,W ξ) and starting from (G0, ξ0) = (x, y) in R × S. Define

Γ = (Γt)t≥0 and A = (At)t≥0 (compare to (2.7) and (2.9), resp.) by

Γt =

∫ t

0

ξ−2
s ds, t ≥ 0, and At = inf{s ≥ 0 : Γs > t}.

These processes are continuous and strictly increasing since ξ does not hit zero

(recall that the state space of ξ is assumed to be S ⊆ (0,∞)).

Assume the following:

C2’: For each initial conditions (x, y) ∈ R × S, the associated process Γ

satisfies that P̃ ( limt↑∞ Γt =∞) = 1.

Under C2’, the properties in (2.8) and (2.10) still hold in this context. As

a consequence, the two technical Properties P1 and P2 on page 15 must also

be valid.
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Since ξ is (F̃t)t≥0-adapted, we see that

Gt = x+

∫ t

0

a(Gs)ξs dM̃s, (2.28)

ξt = y +

∫ t

0

η(ξs)dM̃
ξ
s +

∫ t

0

θ(ξs)dΓs, (2.29)

where the continuous local martingales M̃ and M̃ ξ given by the stochastic

integrals

M̃s =

∫ s

0

ξ−1
u dWu and M̃ ξ

s =

∫ s

0

ξ−1
u dW ξ

u

exist for each s ≥ 0 by (2.8).

Now consider the (F̃At)t≥0 - adapted processes

X̃ := G ◦ A, Ỹ := ξ ◦ A, B̃t := M̃ ◦ A, B̃Y = M̃ ξ ◦ A, t ≥ 0.

We have that B̃ and B̃Y are (F̃At)t≥0 - Brownian motions by the Dambis-

Dubins-Schwarz Theorem [39, V.1.6] and that

〈B̃, B̃Y 〉t = 〈M̃, M̃ ξ〉At =

∫ At

0

ξ−2
u d(〈W,W ξ〉)u = δΓAt = δt, t ≥ 0, a.s.,

by Property P1 on page 15.

It follows from (2.28)-(2.29) that (X̃, Ỹ ) constitutes a non-exploding weak

solution of the system (2.26) with Ỹt ∈ S, t ≥ 0. Hence

(X̃, Ỹ ) = (G ◦ A, ξ ◦ A)︸ ︷︷ ︸
under P̃

law
= (X, Y ).︸ ︷︷ ︸

under Px,y

As a consequence, we obtain that

v(x, y) = sup
0≤τ̃≤T

Ẽ [e−ατ̃g(X̃τ̃ )], (2.30)

where the stopping times τ̃ are with respect to the filtration generated by

(X̃, Ỹ ).
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Remark 2.19 Due to C2’ and the fact that the system (2.26) has weakly

unique solutions, we have that Px,y ( limt↑∞
∫ t

0
Y 2
s ds = ∞) = 1, which was

assumed in Section 2.3.2. Indeed, given that Ỹ = ξ ◦ A solves weakly the

second equation of (2.26), it follows that the law of Y under Px,y is the same

as the law of Ỹ under P̃ . Thus, for each t ≥ 0,∫ t

0

Y 2
s ds

law
=

∫ t

0

(Ỹs)
2ds = At.

In other words,
∫ ·

0
Y 2
s ds and A· are modifications of each other. Moreover,

both have continuous paths and so they must be indistinguishable. Therefore,

limt→∞At =∞ a.s. implies Px,y ( limt↑∞
∫ t

0
Y 2
s ds =∞) = 1.

Analogously to the families M and T of Section 2.2.3, we define here

M = { finite stopping times with respect to (F̃t)t≥0 a.s.},

T = { finite stopping times with respect to (F̃At)t≥0 a.s.},

and MT = {ρ ∈ M : 0 ≤ ρ ≤ AT}, TT = {τ ∈ T : 0 ≤ τ ≤ T}, for each

T ∈ [0,∞].

Remark 2.20 With these definitions, Lemma 2.10 remains valid in this set-

ting, but notice that the filtrations (F̃t)t≥0 and (F̃At)t≥0 are of a different

nature here.

Proposition 2.21 For any T ∈ [0,∞]:

v(x, y) = sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)]. (2.31)

Proof. Following the proof of Proposition 2.11, we only have to argue that

(X̃, Ỹ ) is strong Markov with respect to (F̃At)t≥0. Then we obtain that

v(x, y) = sup
τ∈TT

Ẽ [e−ατg(X̃τ )],

and Lemma 2.10 does the rest.
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Given that (G, ξ) is a strong solution to (2.27), it is a strong Markov process

with respect to (F̃t)t≥0, the natural filtration of the pair of driving Brownian

motions (W,W ξ) (see [36, Theorem 7.1.2]). Then, the time-changed process

(X̃, Ỹ ) is strong Markov with respect to (F̃At)t≥0 by [42, Theorem 65.9].

2.3.4 Monotonicity in y and drift of volatility

In this section we show Theorem 2.16 by comparing the values of the function

v(x, ·) using the same model (X, Y ) but with different initial conditions for Y .

Later on we will also compare the values of two functions v(i)(x, y), i = 1, 2,

associated to two different models (X(i), Y (i)), i = 1, 2, which differ not only in

the initial condition but also in the drift coefficient of the second component.

Proof of Theorem 2.16. Fix x ∈ R and y, y′ ∈ S such that y ≤ y′. We split

the proof into two parts.

(i) Let (G, ξ) and (G, ξ′) be the solutions to (2.27) starting from (x, y) and

(x, y′), respectively, which are both given by (W,W ξ) on (Ω̃, F̃ , P̃ ). Remark

that G is indeed the same for both pairs since (2.27) is a system of decoupled

equations.

Let C denote the coupling time of ξ and ξ′, that is, C = inf{t ≥ 0 : ξt ≥ ξ′t}
and set

ξ̄t = ξt∧C + (ξ′t − ξ′t∧C), t ≥ 0,

so that ξ̄t ≤ ξ′t for all t ≥ 0 everywhere.

The pair (G, ξ̄) solves the system (2.27) starting from (x, y) since

ξ̄t = y +

∫ t∧C

0

η(ξu) ξ
−1
u dW ξ

u +

∫ t∧C

0

θ(ξu) ξ
−2
u du

+

∫ t

t∧C
η(ξ′u) (ξ′u)

−1dW ξ
u +

∫ t

t∧C
θ(ξ′u)(ξ

′
u)
−2du

= y +

∫ t

0

η(ξ̄u) (ξ̄u)
−1dW ξ

u +

∫ t

0

θ(ξ̄u)(ξ̄u)
−2du.

By strong uniqueness, ξt = ξ̄t for all t ≥ 0 a.s. Hence

ξt ≤ ξ′t, t ≥ 0, a.s.,
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which results in the inequality

Γt =

∫ t

0

ξ−2
s ds ≥

∫ t

0

(ξ′s)
−2ds = Γ′t, t ≥ 0, a.s. (2.32)

(ii) The second part is exactly as that of Theorem 2.6. Here we use Proposition

2.21 instead of Proposition 2.11. �.

Let us now suppose that, for each i = 1, 2, (X(i), Y (i)) is a strong Markov

process given on a family of probability spaces (Ω(i),F (i), P
(i)
x,y, (x, y) ∈ R×S).

The pair (X(i), Y (i)) satisfies the system (2.26) with functions a, η and θ(i).

Finally, also assume the system

dXt = a(Xt)Yt dBt, dYt = η(Yt) dB
Y
t + θ(i)(Yt) dt,

with (X, Y ) unknown, admits a weakly unique non-exploding solution.

The value functions v(i) are given by

v(i)(x, y) = sup
0≤τ≤T

E(i)
x,y[ e

−α τg(X(i)
τ ) ], (x, y) ∈ R× S,

where the stopping times τ are with respect to the natural filtration of (X(i), Y (i)).

Now consider the following system, for each i = 1, 2:

dGt = a(Gt)dWt,

dξt = η(ξt)ξ
−1
t dW ξ

t + θ(i)(ξt)ξ
−2
t dt,

(2.33)

where (W,W ξ) are Brownian motions with covariation 〈W,W ξ〉t = δt on some

complete probability space (Ω̃, F̃ , P̃ ).

We proceed as in Section 2.3.3 with the natural notation, and impose the

following assumptions:

D1: For each i = 1, 2, let a, η, θ(i) be measurable functions such that the

system in (2.33) has, for all initial conditions (G0, ξ
(i)
0 ) ∈ R×S, a unique

non-exploding strong solution taking values in R× S.

D2: For each i = 1, 2 and for all initial conditions (x, y) ∈ R×S, the associ-

ated process Γ
(i)
t =

∫ t
0
(ξ

(i)
s )−2ds satisfies that P̃ ( limt↑∞ Γ

(i)
t =∞) = 1.
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D3: Fix (x, y(1)), (x, y(2)) ∈ R × S such that y(1) ≤ y(2). Let (G, ξ(i)) be the

solutions to (2.33) starting at (x, y(i)), i = 1, 2. The property

P̃ ( ξ
(1)
t ≤ ξ

(2)
t , ∀ t ≥ 0 ) = 1 (2.34)

is satisfied.

There are well-known sufficient conditions on the coefficients η and θ(i)

which ensure the validity of (2.34). This is part of the so-called comparison

theorems, like Theorem IX.3.7 in [39] or Theorem V.43.1 in [40]. However,

these Theorems usually ask for at least one of the the drifts b(i)(y) = θ(i)(y)/y2

to satisfy a Lipshitz condition, that is, |b(i)(x) − b(i)(y)| ≤ K|x − y| for some

constant K > 0. We do not impose such a condition here because, as we will

see in Section 4.3, there are examples of SDE’s with no Lipschitz drift and still

satisfying all of the above assumptions.

The next theorem should be compared with Theorem 6.4 of Hobson [24].

Hobson also applies time-change and coupling for comparing prices of Euro-

pean options in a general stochastic volatility model, and under the assumption

that g is convex.

Theorem 2.22 Let Conditions D1-D3 be satisfied. Also assume that the gain

function g is non-negative. If θ(1)(y) ≤ θ(2)(y), then for each x ∈ R,

v(1)(x, y(1)) ≤ v(2)(x, y(2)), for all y(1) ≤ y(2). (2.35)

Proof. Fix x ∈ R. Let (G, ξ(i)) be the solution to (2.33) starting from (x, y(i)),

i = 1, 2, which exist by Condition D1.

Condition D2 yields the reformulation of v(i)(x, y(i)). Specifically, for each

i = 1, 2, we have that

(G ◦ A(i), ξ(i) ◦ A(i))︸ ︷︷ ︸
under P̃

law
= (X(i), Y (i))︸ ︷︷ ︸

under P
(i)

x,y(i)

where A(i) is the right-inverse of Γ(i).
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Consequently,

v(i)(x, y) = sup
ρ∈M(i)

T

Ẽ [e−αΓ
(i)
ρ g(Gρ)],

where M(i)
T is the family of all the finite stopping times ρ with respect to

(F̃t)t≥0 such that 0 ≤ ρ ≤ A
(i)
T .

Finally, Condition D3 implies that Γ
(1)
t ≥ Γ

(2)
t for all t ≥ 0 a.s. So,

Ẽ [e−αΓ
(1)
ρ g(Gρ)] ≤ Ẽ [e−αΓ

(2)
ρ g(Gρ)], ∀ ρ ∈M(1)

T .

Since A
(1)
t ≤ A

(2)
t for all t ≥ 0 a.s. necessarily M(1)

T ⊆M
(2)
T . This gives

sup
ρ∈M(1)

T

Ẽ [e−αΓ
(1)
ρ g(Gρ)] ≤ sup

ρ∈M(2)
T

Ẽ [e−αΓ
(2)
ρ g(Gρ)],

or equivalently, the desired result in (2.35).

We state the next results without proofs, as these are very similar to those

of Section 2.2.4, with the obvious notation.

Corollary 2.23 Let all the other assumptions of Theorem 2.22 be satisfied,

but g is non-positive and the time horizon T =∞. Then, for each x ∈ R,

v(1)(x, y(1)) ≥ v(2)(x, y(2)), for all y(1) ≤ y(2).

Fix (x, y) ∈ R×S and let Kg+ ≡ Kg+x,y be the collection of all finite stopping

times τ with respect to the filtration generated by (X, Y ) with (X0, Y0) = (x, y)

and such that g(Xτ ) ≥ 0.

Corollary 2.24 Let Conditions D1-D3 be satisfied and the time horizon T =

∞. Assume that the gain function g is such that {x : g(x) ≥ 0} 6= ∅. Further

assume that v(1)(x, y) = supτ∈Kg+ E
(1)
x,y [e−ατg(X

(1)
τ )]. If θ(1)(y) ≤ θ(2)(y), then

v(1)(x, y) ≤ v(2)(x, y′) for all y′ ∈ S such that y ≤ y′. (2.36)

When θ(1) = θ(2) ≡ θ the setting in the above theorem reduces to that of

Theorem 2.22 but with g possibly negative. In such a case, Conditions D1-D2

are equivalent to C1’-C2’, while D3 is a fact rather than a assumption.

33



2.3.5 Continuity in y

Throughout this section we assume that Conditions C1’-C2’ on page 26 are

satisfied. We also agree on the following notation:

Let {yn}∞n=0 ⊆ S be a sequence in S such that yn → y0 as n→∞. Denote

by (G, ξn) the solution to (2.27), starting from (G0, ξ
n
0 ) = (x, yn), given by a

pair (W,W ξ) of Brownian motions with covariation 〈W,W ξ〉t = δt, t ≥ 0, on

a probability space (Ω̃, F̃ , P̃ ).

Using (G, ξn), define Γn, An, n = 0, 1, 2, . . . , like Γ, A on page 27. By

Proposition 2.21,

v(x, y0) = sup
ρ∈MT

Ẽ [e−αΓ0
ρg(Gρ)], v(x, yn) = sup

ρ∈Mn
T

Ẽ [e−αΓnρ g(Gρ)],

where Mn
T = {ρ ∈M : 0 ≤ ρ ≤ AnT a.s.}.

We shall frequently use the assumed integrability of supt≥0 e
−α t|g(X̃t)| for

each initial point (x, y) (recall the condition in (1.3)). Notice that we can write

sup
t≥0

e−αΓt|g(Gt)| = sup
t≥0

e−α t|g(X̃t)|

since Gt = X̃ ◦ Γt and the range of Γt over t ≥ 0 is (0,∞).

Discussion

Suppose that yn ↓ y0 as n→∞. By the coupling argument in the proof of

Theorem 2.16, without loss of generality, one may choose {ξn}∞n=0 such that

ξ1
t ≥ ξ2

t ≥ · · · ≥ ξnt ≥ · · · ≥ ξ0
t > 0, t ≥ 0, a.s.

Hence the pathwise limit limn ξ
n
t , t ≥ 0, exists and satisfies that

lim
n
ξnt ≥ ξ0

t > 0, t ≥ 0, a.s. (2.37)

Since the ξ-component corresponding to the unique strong solution to

(2.27) has continuous coefficients (see Condition C1’), we have that ξn con-

verges to ξ0 weakly if yn → y0 (see [44, Corollary 11.1.5]).
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Thus, for each t ≥ 0,

lim
n
ξnt

law
= ξ0

t and lim
n
ξnt ≥ ξ0

t , a.s.

This assertion implies that limn ξ
n
t = ξ0

t a.s for all t ≥ 0 (see Lemma 2.36).

Finally, the processes (ξ0
t )t≥0 and (limn ξ

n
t )t≥0 must be indistinguishable as a

consequence of the almost sure continuity of their paths, (see Lemma 2.37).

In other words, we have verified that

lim
n
ξnt = ξ0

t , t ≥ 0, a.s. (2.38)

It is intuitively clear that the continuity of v(x, ·) should follow after some

limiting arguments using the key equation (2.38).

The next lemma is the crucial tool in the remainder of this section.

Lemma 2.25 If the sequence (yn)∞n=1 is monotone, that is, either yn ↓ y0 or

yn ↑ y0 as n→∞, then

Γnt → Γ0
t and Ant → A0

t as n→∞ t ≥ 0, a.s. (2.39)

Proof. Suppose that yn ↓ y0 as n→∞. By (2.38),

Γ0
t =

∫ t

0

(ξ0
u)
−2du =

∫ t

0

(lim
n
ξnu)−2du = lim

n
Γnt , t ≥ 0, a.s. (2.40)

by monotone convergence. More precisely, Γnt ↑ Γ0
t for all t ≥ 0, a.s. Since An

and A0 are the right-inverses of the continuous increasing processes Γn and Γ0,

respectively, we have that Ant ↓ A0
t , t ≥ 0, a.s. This concludes the proof in the

case where the yn decreases.

In the case where yn ↑ y0 as n→∞, we see that 0 < ξ1
t ≤ · · · ≤ ξnt ≤ · · · ≤

ξ0
t and (2.38) also holds (the argument to obtain this equation is the same if

the ordering in (2.37) is reversed). Hence, we obtain (2.40) by Lebesgue’s

dominated convergence theorem. This ensures that Γnt ↓ Γ0
t , t ≥ 0 a.s., and so

Ant ↑ A0
t , t ≥ 0, a.s.
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The infinite horizon case

We now discuss the continuity of the value function v(x, ·) on S, in the

infinite horizon case. An advantage over the finite horizon case is that the

families of stopping times Mn
T coincide with M for all n when T =∞.

In the case where g is non-negative, left-continuity is an easy consequence

of Lemma 2.25 and the monotonicity of v(x, ·).

Proposition 2.26 Assume that T = ∞ and that g is non-negative. Then,

for each x ∈ R, the function v(x, ·) is left-continuous.

Proof. Let yn ↑ y0. Since g is non-negative, Theorem 2.16 implies that

lim sup
n→∞

v(x, yn) ≤ v(x, y0),

so it remains to show that

v(x, y0) ≤ lim inf
n→∞

v(x, yn). (2.41)

Pick an arbitrary ρ ∈ M. Since yn ↑ y0 we must have Γnρ ↓ Γ0
ρ as n → ∞.

It follows from Fatou’s Lemma and Lemma 2.25 that

Ẽe−αΓ0
ρg(Gρ) ≤ lim inf

n→∞
Ẽ e−αΓnρ g(Gρ). (2.42)

Now, since v(x, yn) = supρ′∈M Ẽ e
−αΓn

ρ′g(Gρ′) for each n = 0, 1, 2, . . ., we

obtain that

Ẽe−αΓ0
ρg(Gρ) ≤ lim inf

n→∞
v(x, yn). (2.43)

and taking the supremum over ρ ∈M on the left-hand side of (2.43) completes

the proof.

Corollary 2.27 With the assumptions of Proposition 2.26, the function v(x, ·)
is lower semi-continuous.

Proof. The inequality in (2.41) was shown when yn ↑ y0, whereas the case

yn ↓ y0 follows by Theorem 2.16. Hence v(x, ·) is lower semi-continuous.
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To establish the right-continuity of v(x, ·), we are naturally tempted to use

the reverse Fatou’s Lemma and apply a similar argument as in Proposition

2.26 to show that lim supn→∞ v(x, yn) ≤ v(x, y0) when yn ↓ y0. But, although

it is true that

lim sup
n→∞

Ẽ e−αΓnρ g(Gρ) ≤ Ẽe−αΓ0
ρg(Gρ) ≤ v(x, y0), for all ρ ∈M,

it does not follow that

lim sup
n→∞

sup
ρ∈M

Ẽ e−αΓnρ g(Gρ) ≤ sup
ρ∈M

lim sup
n→∞

Ẽ e−αΓnρ g(Gρ)

and so a different argument has to be used.

We are able to show the right-continuity of v(x, ·) upon assuming an extra

integrability condition, originated from the estimate in (2.44). It is important

to mention that, from now on, we shall only make use of Lemma 2.25 (recall

that g ≥ 0 is imposed in Theorem 2.16) and so we consider the case where g

is possibly negative.

Lemma 2.28 Assume that T =∞. Fix y, y′ ∈ S such that y ≤ y′. Then, for

all N ∈ N

0 ≤ v(x, y′)− v(x, y) ≤ Ẽ

[(
1− e−α(ΓA′

N
−N)
)

sup
t≤N

e−αt|g(X̃ ′t)|
]

+ Ẽ

[
sup
t≥N

e−αt|g(X̃ ′t)|
]
.

(2.44)

where X̃ ′ = G ◦ A′ as usual.

Proof. Fix N ∈ N and an arbitrary ε > 0. Choose an ε - optimal stopping time

ρ′ε ∈M for v(x, y′) = supρ∈M Ẽ [e−αΓ′ρg(Gρ)] so that

0 ≤ v(x, y′)− v(x, y) ≤ ε+ Ẽ [e
−αΓ′

ρ′εg(Gρ′ε)− e
−αΓρ′εg(Gρ′ε)]. (2.45)

After factorizing g(Gρ′ε) and using that Γρ′ε −Γ′ρ′ε ≥ 0, it is easy to see that the

right-hand side of (2.45) is dominated by
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ε+ Ẽ
[ (

1− e−α(Γρ′ε
−Γ′

ρ′ε
)
)
e
−αΓ′

ρ′ε |g(Gρ′ε)|I(ρ′ε ≤ A′N)
]

+ Ẽ
[
e
−αΓ′

ρ′ε |g(Gρ′ε)|I(ρ′ε > A′N)
]
.

Moreover, on the event {ρ′ε ≤ A′N}, we have that

e
−αΓ′

ρ′ε |g(Gρ′ε)| ≤ sup
t≤A′N

e−αΓ′t |g(Gt)| = sup
t≤N

e−αt|g(X̃ ′t)| (2.46)

since {t ≤ A′N} = {Γ′t ≤ N} and X̃ ′t = GA′t
. Also,

0 ≤ Γρ′ε − Γ′ρ′ε =

∫ ρ′ε

0

(ξ−2
u − (ξ′u)

−2)du ≤
∫ A′N

0

(ξ−2
u − (ξ′u)

−2)du

= ΓA′N − Γ′A′N = ΓA′N −N.
(2.47)

Similarly, on the event {ρ′ε > A′N}

e
−αΓ′

ρ′ε |g(Gρ′ε)| ≤ sup
t≥A′N

e−αΓ′t|g(Gt)| = sup
t≥N

e−αt|g(X̃ ′t)|. (2.48)

Putting all together we obtain the estimate in (2.44) up to ε, but ε can be

made arbitrarily small so the proof is complete.

Proposition 2.29 Assume that T = ∞. Then, for each x ∈ R, the function

v(x, ·) is continuous provided the following condition holds: for each y0 ∈ S
there exists ȳ > y0 such that

sup
y0≤ y′<ȳ

Ẽ

[
sup
t≥N

e−αt|g(X̃ ′t)|
]
→ 0 as N ↑ ∞ (2.49)

where X̃ ′ = G ◦ A′ as usual.

Proof. Fix y0. We split the proof of continuity of v(x, ·) at y0 into left- and

right-continuity.

(i) Let yn ↑ y0. In Lemma 2.28, replace y′ and y by y0 and yn, respectively.

By Lemma 2.25, Γnt ↓ Γ0
t for all t ≥ 0 a.s. and so

lim
n→∞

(ΓnA0
N
−N) = 0 a.s.
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By (2.49), given an arbitrarily small ε > 0 we can choose N large enough

that

Ẽ

[
sup
t≥N

e−αt|g(X̃0
t )|
]
≤ ε,

and so Lemma 2.28 and the Dominated Convergence Theorem imply that

lim
n→∞

( v(x, y0)−v(x, yn) ) ≤ ε+Ẽ

[(
1− e

−α(limn Γn
A0
N

−N)
)

sup
t≤N

e−αt|g(X̃0
t )|
]

= ε,

which yields the left-continuity of v(x, ·) at y0.

(ii) Let yn ↓ y0 and assume without lost of generality that the sequence

{yn} is bounded above by ȳ such that (2.49) holds.

We know that Γȳt ≤ Γnt ≤ Γ0
t and Aȳt ≥ Ant ≥ A0

t for all t ≥ 0 a.s. and so

sup
t≤N

e−αt|g(X̃n
t )| = sup

t≤AnN
e−αΓnt |g(Gt)| ≤ sup

t≤AȳN

e−αΓȳt |g(Gt)| = sup
t≤N

e−αt|g(X̃ ȳ
t )|

where the right-hand side is integrable.

Now, given an arbitrarily small ε > 0, choose N large enough that

sup
y0≤ yn<ȳ

Ẽ

[
sup
t≥N

e−αt|g(X̃n
t )|
]
≤ ε,

and notice that N does not depend on n = 1, 2, . . . . Hence, we obtain from

Lemma 2.28 and the Dominated Convergence Theorem that

lim
n→∞

( v(x, yn)− v(x, y0) ) ≤ ε+ Ẽ

[(
1− e−α(limn Γ0

An
N
−N)
)

sup
t≤N

e−αt|g(X̃ ȳ
t )|
]

= ε,

which imply the right-continuity of v(x, ·) at y0.

Since y0 is arbitrary, we conclude that v(x, ·) is continuous.

The finite horizon case

The main part in the proof of the next proposition is in the spirit of Lemma

2.28, but now using T instead of N .
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Proposition 2.30 Assume that T < ∞ and that the gain function g is con-

tinuous. Then the function v(x, ·) is continuous.

Proof. (i) Fix y, y′ ∈ S such that y ≤ y′. Fix an arbitrary ε > 0 and choose

an ε - optimal stopping time ρ′ε ∈M′
T so that

0 ≤ v(x, y′)− v(x, y) ≤ ε+ Ẽ [e
−αΓ′

ρ′εg(Gρ′ε)− e
−αΓρ′ε∧AT g(Gρ′ε∧AT )]. (2.50)

Compare with (2.45) and notice that ρ′ε ∧ AT is used here instead of ρ′ε since

one cannot conclude that v(x, y) ≥ Ẽe−αΓρg(Gρ) for stopping times ρ which

may exceed AT with positive probability.

By considering the partition {ρ′ε ≤ AT} and {AT < ρ′ε ≤ A′T}, the right-

hand side of (2.50) can be dominated by

ε+ Ẽ
[ (

1− e−α(Γρ′ε
−Γ′

ρ′ε
)
)
e
−αΓ′

ρ′ε |g(Gρ′ε)| I(ρ′ε ≤ AT )
]

+ Ẽ
(

1− e−α(T−Γ′
ρ′ε

)
)
e
−αΓ′

ρ′ε |g(Gρ′ε)| I(AT < ρ′ε ≤ A′T )

+ Ẽ e−αT |g(Gρ′ε)− g(GAT )| I(AT < ρ′ε ≤ A′T ).

by “adding” ±e−αTg(Gρ′ε) in the case where AT < ρ′ε ≤ A′T .

Next, we argue similarly as we did in (2.46)-(2.47). We know that ρ′ε ≤ A′T
a.s. and so both

e−αT |g(Gρ′ε)| ≤ e
−αΓ′

ρ′ε |g(Gρ′ε)| ≤ sup
t≤A′T

e−αΓ′t|g(Gt)|, a.s.

and

0 ≤ Γρ′ε − Γ′ρ′ε ≤ ΓA′T − T, a.s.

hold. Meanwhile, since {AT < ρ′ε ≤ A′T} = {Γ′AT < Γ′ρ′ε ≤ T}, we have that

0 ≤ T − Γ′ρε ≤ T − Γ′AT , on {AT < ρ′ε ≤ A′T}.

Putting all together, we arrive to the following estimate for v(x, y′)−v(x, y)

with y ≤ y′:
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0 ≤ v(x, y′)− v(x, y)

≤ ε+ Ẽ

[(
2− e−α(ΓA′

T
−T ) − e−α(T−Γ′AT

)
)

sup
t≤A′T

e−αΓ′t|g(Gt)|

]
+ Ẽ

[
e−αT |g(Gρ′ε)− g(GAT )| I(AT < ρ′ε ≤ A′T )

]
.

(2.51)

Notice that the integrands on the right-hand side of (2.51) are bounded

above by

sup
t≤A′T

e−αΓ′t |g(Gt)|

because also e−αT |g(GAT )| = e−αΓAT |g(GAT )| ≤ supt≤A′T e
−αΓ′t|g(Gt)|.

(ii) Let yn ↑ y0. Replace y and y′ by yn and y0, respectively in (2.51).

By Lemma 2.25, Γnt ↓ Γ0
t for all t ≥ 0 a.s. and so

lim
n→∞

(ΓnA0
T
− T ) = 0, and lim

n→∞
(T − Γ0

AnT
) = 0 a.s.

and also, given that g is continuous,

lim
n→∞

|g(Gρ0
ε
)− g(GAnT

)| I(AnT < ρ0
ε ≤ A0

T ) = 0 a.s. (2.52)

as AnT can be made arbitrarily close to A0
T .

Since supt≤A0
T
e−αΓ0

t |g(Gt)| is integrable, it follows by dominated conver-

gence that

0 ≤ v(x, y0)− v(x, yn) → ε as yn ↑ y0.

(iii) Let yn ↓ y0. Now replace y and y′ by y0 and yn, respectively in (2.51).

By Lemma 2.25, Γnt ↑ Γ0
t for all t ≥ 0 a.s.

A symmetric argument to that of the part (ii) yields

0 ≤ v(x, yn)− v(x, y0) → ε as yn ↓ y0.

Simply note that, without loss of generality,

sup
t≤AnT

e−αΓnt |g(Gt)| ≤ sup
t≤A1

T

e−αΓ1
t |g(Gt)|, ∀n = 1, 2, . . . ,

41



where the right-hand side is integrable, and so dominated convergence can be

used again.

Since ε > 0 can be made arbitrarily small so the proof is complete.

Remark 2.31 The continuity of g is only used in the argument in (2.52).

Notice that, although the limit of AnT is A0
T as n → ∞, the limit of the

indicator functions I(AnT < ρ0
ε ≤ A0

T ) does not necessarily vanish.

2.4 Adding a running payoff

We are going to extend the monotonicity results on v(x, ·) by adding a so-

called running payoff or cost of observations. We do so for both cases, regime-

switching and diffusion, simultaneously because the ideas involved are the

same.

Suppose that the value function v(x, y) in (2.1) is, instead, of the form

v(x, y) = sup
0≤τ≤T

Ex,y [e−ατg(Xτ )− Cτ ], (x, y) ∈ R× S, (2.53)

where

Ct =

∫ t

0

e−α sc(Xs) ds

and c : R→ [0,∞) is a bounded Lebesgue integrable function.

Theorem 2.32 The statement and result of Theorems 2.6 and 2.16 remain

valid when v(x, y) is as in (2.53).

To start, recall the construction of the new probability space (Ω̃, F̃ , P̃ ),

as well as the time-changed process (X̃, Ỹ ) in Sections 2.2.3 and 2.3.3. These

constructions do not depend on g nor c, but on the dynamics of the pair (X, Y )

only.

Lemma 2.10 now reads as follows. Using the corresponding definitions for

MT and TT :
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Lemma 2.33 For any T ∈ [0,∞],

sup
τ∈TT

Ẽ [e−ατg(X̃τ )−
∫ τ

0

e−α tc(X̃t) dt] = sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)− C̃ρ], (2.54)

where

C̃ρ =

∫ ρ

0

e−αΓtc(Gt)Z
−2
t dt

in the regime-switching case, or

C̃ρ =

∫ ρ

0

e−αΓtc(Gt) ξ
−2
t dt

in the diffusion case.

Proof. In the regime-switching case, (X̃t, Ỹt) = (GAt , ZAt) and recall that

dΓt = Z−2
t dt (see equation (2.7) above).

If τ ∈ TT then ρ = Aτ ∈MT , and∫ τ

0

e−α tc(X̃t) dt =

∫ Γρ

0

e−α tc(GAt)dt =

∫ ρ

0

e−αΓtc(GAΓt
)dΓt

=

∫ ρ

0

e−αΓtc(Gt)Z
−2
t dt.

Complementing this fact with the first part of the proof of Lemma 2.10,

we obtain that for any τ ∈ TT ,

Ẽ [e−ατg(X̃τ )−
∫ τ

0

e−α tc(X̃t) dt] ≤ sup
ρ∈MT

Ẽ [e−αΓρg(Gρ)− C̃ρ].

Analogously, if ρ ∈MT then we can verify that

Ẽ [e−αΓρg(Gρ)− C̃ρ] ≤ sup
τ∈TT

Ẽ [e−ατg(X̃τ )−
∫ τ

0

e−α tc(X̃t) dt]

using a symmetric argument and the fact that τ = Γρ ∈ TT . The proof is then

complete.

In the diffusion case we only need to change the notation (use ξ instead of

Z), but the arguments are not affected.
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Following the proof of Theorem 2.6, with the natural change of notation,

it is easy to convince ourselves that one only has to verify that (compare with

(2.18))

Ẽ [e−αΓρg(Gρ)− C̃ρ ] ≤ Ẽ [e−αΓ′ρg(Gρ)− C̃ ′ρ ] for every ρ ∈MT . (2.55)

But (2.55) follows thanks to (2.16) and (2.17), the fact that both g and c are

non-negative, and

e−αΓt ≤ e−αΓ′t and C̃t ≥ C̃ ′t, ∀t ≥ 0, a.s.

The rest of the proof of Theorem 2.6 remains unchanged.

2.5 Proofs of auxiliary results

Lemma 2.34 Let τ and τn, n = 1, 2, . . . , be stopping times of a filtration

(Ft)t≥0 satisfying the usual conditions.

(i) If τn ↓ τ then Fτ =
⋂
nFτn.

(ii) If τ = c a.s where c is a non-negative constant, then Fτ ⊆ Fc.

(iii) The event {τ1 ≤ τ2} ∈ Fτ2.

(iv) If X is a right-continuous adapted process then Xτ is Fτ -measurable on

the event {τ <∞}.

Proof. (i) The fact that τ ≤ τn, n = 1, 2, . . ., implies that Fτ ⊂
⋂
nFτn . On

the other hand, if B ∈
⋂
nFτn then B ∩ {τn < t} ∈ Ft, n = 1, 2, . . ., and so

B ∩ {τ < t} = B ∩
⋃
n

{τn < t} =
⋃
n

B ∩ {τn < t} ∈ Ft, t ≥ 0.

(ii) If B ∈ Fτ then B ∩ {τ ≤ t} ∈ Ft, t ≥ 0. In particular, taking t = c

and noticing that {τ > c} is a null set we obtain

B = B ∩ {τ ≤ c}
⋃

B ∩ {τ > c} ∈ Fc.
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(iii) To see that {τ1 ≤ τ2} ∈ Fτ2 , note that for any r ≥ 0

{τ1 < τ2} ∩ {τ2 < r} =
⋃

q∈Q, q≤r

{τ1 ≤ q} ∩ {q < τ2} ∩ {τ2 < r} ∈ Fr

and so {τ1 < τ2} ∈ Fτ2 . Hence, {τ1 < τ2 + ε} ∈ Fτ2+ε for each ε > 0 and by

part (i),

{τ1 ≤ τ2} =
⋂
ε>0

{τ1 < τ2 + ε} ∈
⋂
ε>0

Fτ2+ε = Fτ2 .

(iv) Let τn be the approximating sequence of τ given by τn = b2nτc+1
2n

where

b·c is the floor function which returns the integral part of the argument. Then

each τn takes values on {k/2n : k = 1, 2, . . . , } and τn ↓ τ . By the right-

continuity of X we have that Xτ = limnXτn .

We aim to show that for each Borel set B it holds true that {Xτ ∈ B} ∈ Fτ .
By part (i), it is enough to prove that {Xτ ∈ B} ∈ Fτn for each n = 1, 2, . . .

Note that

{Xτm ∈ B} ∩ {τm < t} =
⋃

k/2m<t

{Xk/2m ∈ B} ∩ {τm = k/2m} ∈ Fk/2m ⊂ Ft

for each t ≥ 0. Thus {Xτm ∈ B} ∈ Fτn , m > n. Because Xτ = limmXτm the

latter implies that {Xτ ∈ B} ∈ Fτn , n = 1, 2, . . ., as required.

Proof of Proposition 2.2. It is clear that At increases with t.

Fix t ≥ 0. We first show that A is a time-change. At is a stopping time

because it is the first entry time of the right-continuous process Γ· into the

open set (t,∞). Indeed, At = inf{s ≥ 0 : Γs ∈ (t,∞)} and if Γs ∈ (t,∞) then

Γu ∈ (t,∞) for every u ∈ [s, s+ ε) for some ε > 0 allowing us to write

{At < r} =
⋃

s<r, s∈Q

{Γs ∈ (t,∞)} ∈ Fr,

where we have also used that Γ is adapted. The filtration (Ft)t≥0 is right-

continuous and so At is a stopping time. To see that t 7→ At is right-continuous,

simply write {Γs > t} =
⋃
ε>0{Γs > t+ ε}.

Next, we verify that Γs = inf{t ≥ 0 : At > s}. On the one hand, if

At > s then s /∈ {u ≥ 0 : Γu > t} and so Γs ≤ t. The latter implies that
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Γs ≤ inf{t ≥ 0 : At > s}. On the other hand, it is clear from the definition

of A that AΓs ≥ s and so AΓs+ε > s. The previous fact together with the

increasing property of A imply that Γs+ε ≥ inf{t ≥ 0 : At > s} and the

right-continuity of Γ gives Γs ≥ inf{t ≥ 0 : At > s}.

Finally, Γs is an (FAt)t≥0-stopping time. This follows from the right-

continuity of the filtration (FAt)t≥0. Indeed, we want {Γs ≤ r} ∈ FAr for each

r ≥ 0. Now, the event {Γs = r} = {Ar+ε > s, for ε > 0 arbitrarily small} is

necessarily in FAr because the filtration (FAt)t≥0 is right-continuous. �

Proof of Corollary 2.3. (i) The process A can only jump if Γ has intervals

of constancy.

(ii) By definition of At, it is strictly increasing because of the continuity of Γ.

It is finite and has the limit limt→∞A∞ =∞ since limt→∞ Γt =∞.

(iii) Note that, by the continuity of Γ,

AΓs = inf{t ≥ 0 : Γt > Γs} =

s if Γs− <∞

∞ if Γs− =∞.

Thus, if Γ is also finite then AΓs = s, 0 ≤ s <∞. Arguing symmetrically and

using parts (i)-(ii) we obtain that ΓAs = s, 0 ≤ s <∞.

Finally, by the definition of As it is plain that (As < t ⇒ s ≤ Γt), but

{s = Γt} is null because on that event one has that AΓt = As = t. Conversely,

by Proposition 2.2 we have that (s < Γt ⇒ As ≤ t), but again {As = t} is null

because on that event one has that Γt = ΓAs = s. �

Proof of Lemma 2.4. Fix ρ ∈M. We want to show that

{Γρ ≤ r} ∈ FAr , ∀ r ≥ 0. (2.56)

By part (iii) of Corollary 2.3, we know that the event

Ω0 = {ω : s < Γt(ω) if and only if As(ω) < t for all 0 ≤ s, t <∞}

is so that P (Ω0) = 1 and that, for each r ≥ 0, Ar is a finite (Ft)t≥0-stopping
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time. It is also clear that

{Γρ ≤ r} ∩ Ω0 = {ρ ≤ Ar} ∩ Ω0.

By part (iii) of Lemma 2.34, {ρ ≤ Ar} ∈ FAr since both ρ and Ar are (Ft)t≥0-

stopping times. Therefore the claim in (2.56) holds true, that is, Γρ ∈ T .

By the symmetry of Γ and A, the second assertion (τ ∈ T ⇒ Aτ ∈M) is

proved. �

Proof of Proposition 2.5. Define the so-called big filtration Fbig = (F bigt )t≥0

by

F bigt := FWt ∨ σ({Zs : s ≥ 0}), t ≥ 0.

Since W is independent of Z, W is also an Fbig-Brownian motion and M

is an Fbig-continuous local martingale. It follows by Theorem V.1.6 in [39]

that B· = MA· is an (F bigAt )t≥0-Brownian motion. In particular, the property

of independent increments of B yields that

Bt is independent of F bigA0
= F big0 , t ≥ 0. (2.57)

Next, notice that 〈M〉s is strictly increasing in s because f(·)2 > 0. Hence

〈M〉As = s for all s ≥ 0 (recall part (iii) of Corollary 2.3), and so

At =

∫ At

0

d〈M〉s
f(Zs)2

=

∫ t

0

1

f(ZAs)
2
ds.

That is, A· (and so ZA·) is a functional of Z.

Finally, by the definition of Fbig and the last assertion,

F big0 ⊇ σ({Zs : s ≥ 0}) ⊇ σ({ZAs : s ≥ 0}).

Therefore, using (2.57), we conclude that B· is independent of ZA· . �

The following elementary lemmas were used to show Lemma 2.25.
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Definition 2.35 Two processes U = (Ut)t≥0 and V = (Vt)t≥0 defined on the

same probability space are modifications of each other if

for each t ≥ 0, Ut = Vt, a.s.

They are indistinguishable if

Ut = Vt, for each t ≥ 0, a.s.

Lemma 2.36 Let U and V be two random variables on the same probability

space satisfying U ≥ V a.s. with U having the same law as V . Then U = V

a.s.

Proof. Let Q denote the set of rational numbers and P the probability measure.

Then

{V < U} =
⋃
q∈Q

{V ≤ q < U} =
⋃
q∈Q

({V ≤ q}\{U ≤ q}) .

If P (V < U) > 0 then there exists q ∈ Q such that P (V ≤ q) > P (U ≤ q),

but this contradicts the assumption that U and V have the same law.

Lemma 2.37 If U = (Ut)t≥0 and V = (Vt)t≥0 are modifications of each other

and have a.s. continuous paths then they are indistinguishable.

Proof. Let Q+ denote all the non-negative rational numbers. Consider the

event A = {Uq = Vq, q ∈ Q+} and its complement (in Q+)

Ac =
⋃
q∈Q+

{Uq 6= Vq}.

Since U and V are modifications of each other, it follows that {Uq 6= Vq}
is null for each q ∈ Q+ and then it is clear that A happens a.s.

Finally, every t ≥ 0 can be approximated by a sequence of rational numbers,

say {qn(t)}∞n=1 ⊂ Q+. Thus, by the a.s. continuity of the paths, we have that:

Ut = lim
n
Uqn(t) = lim

n
Vqn(t) = Vt, ∀t ≥ 0, a.s.

as required.
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Chapter 3

Control of stochastic volatility

3.1 Setting and problem statement

In this chapter we derive the solution of a zero-sum game of stopping and

control. The solution is presented in Section 3.3.2, under verifiable conditions.

Examples where these conditions are satisfied are provided in the next chapter.

Theorems 3.16 and 3.17 state that the value of the game identifies with

the value function of certain optimal stopping problem associated to an ex-

tremal scenario. In particular, we exhibit a saddle point under the assumption

that the space of control values is compact. The proof is based on analytical

methods for which smoothness of such a candidate value function is required.

To show the latter, the strong Markov property as well as the probabilistic

representation of solutions to Dirichlet-type problems are the main tools used.

The setting is similar to that of Sections 2.2.1 and 2.3.1 with the main

difference that here, we allow for some parameter uncertainty in the dynamics

of Y . This uncertainty is incorporated through the Q-matrix (MC case) or

the drift of the volatility (diffusion case), and is represented in either case by

the parameter process π = (πt)t≥0. The standing assumption is that π is only

known to lie within two level-dependent values at each time.

Let (X, Y ) be defined on a probability space (Ω,F , P ), and adapted to a

filtration F := (Ft)t≥0 of sub-σ algebras of F . The process X evolves with the
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dynamics

dXt = a(Xt)Yt dBt + µ(Xt) dt, (3.1)

where B is an F-adapted Brownian motion, and a, µ are continuous functions

and a2(·) > 0. Now, Y = Y π is a continuous-time controlled Markov chain

or a controlled diffusion process. More precisely, the sample paths of Y are

affected by a control process π = (πt)t≥0 adapted to F. Such a process belongs

to a set A of admissible controls which we now define.

Definition 3.1 (Admissible controls)

(i) Let S be a finite subset of (0,∞) (which we assume to be {1, 2, . . . ,m}
without loss of generality). At time t, given y, y′ ∈ S, πt[y, y

′] represents the

infinitesimal rate at which Yt jumps from y to y′. We write πt to denote the

matrix (πt[y, y
′]).

Let UMC be the class consisting of all F-adapted processes π = (πt)t≥0 with

values in the space of Q-matrices of jump rates on the state space S.

The set A of admissible controls is defined as

A = {π = ( (πt[y, y
′]) )t≥0 ∈ UMC : πt[y, y

′] ∈ Ay,y′ , y, y′ ∈ S, t ≥ 0},

where Ay,y′ = {0} if |y − y′| > 1 and Ay,y′ is a compact subset of [0,∞) if

|y − y′| = 1. In other words if π ∈ A then, for each t ≥ 0, (πt[y, y
′]) is a

tridiagonal m×m-matrix satisfying:

πt[y, y
′] = 0 if |y−y′| > 1, πt[y, y

′] ≥ 0 if |y−y′| = 1,
∑
y′∈S

πt[y, y
′] = 0.

(ii) Let UD be the class consisting of all F-adapted processes π = (πt)t≥0 with

values in R. Given π ∈ UD, suppose that Y π satisfies the equation

dYt = η(Yt) dB
Y
t + πt dt,

where BY is an F-adapted Brownian motion, F-adapted, with 〈B,BY 〉t = δ t

for some δ ∈ [−1, 1], and η is a continuous function with η2(·) > 0. Assume

that Y π has state space S ⊆ (0,∞).
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The set A of admissible controls is defined as

A = {π = (πt)t≥0 ∈ UIP : πt ∈ AYt , t ≥ 0},

where Ay is a compact subset of R, for each y ∈ S.

In either case, we denote the family of admissible controls by A and the

state space R × S of (X, Y ) by E . The precise description of the sets will be

apparent from the context.

Remark 3.2 If π ∈ UMC is constant, that is πt[y, y
′] = q[y, y′] for all y, y′ ∈ S

and all t ≥ 0, then we are in the setting of Section 2.2.1. If π ∈ UD is such

that πt = θ(Yt) for all t ≥ 0, then it corresponds to the setting of Section 2.3.1.

For each T ∈ [0,∞], denote byMT the family of all stopping times τ with

respect to the filtration F, which are no greater than T . If T =∞ we simply

write M.

For each π and τ , define the objective function

Jx,y(τ, π) = Ex,y

[
e−ατg(Xπ

τ )−
∫ τ

0

e−α sc(Xπ
s ) ds

]
, (x, y) ∈ R× S, (3.2)

where α > 0, g is a non-negative and continuous function, and c is a non-

negative and bounded function.

Throughout this chapter, we assume that limt→∞ e
−αtg(Xπ

t ) = 0 a.s. for

each π, so that e−ατg(Xπ
τ ) = 0 on the event {τ =∞}.

Problem. Find a pair (τ̂ , π̂) such that

sup
τ

inf
π
Jx,y(τ, π) = Jx,y(τ̂ , π̂) = inf

π
sup
τ
Jx,y(τ, π). (3.3)

where τ is chosen from MT and π from a set A of admissible controls to be

specified below.

This Problem is associated to a zero-sum game of stopping and control

with objective function Jx,y(τ, π), in which the maximizer chooses a stopping

rule τ ∈ MT whereas the minimizer chooses a control π ∈ A. It is common

to refer to (τ̂ , π̂) as a saddle point and Jx,y(τ̂ , π̂) as the value of the game.
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3.2 Optimal stopping and regularity

Suppose that (X, Y ) is the strong Markov process taking values in E = R×S,

given as in either Section 2.2.1 (regime-switching) or 2.3.1 (diffusion) setting,

and X has drift as in (3.1).

Consider the value function:

v(x, y) = sup
τ∈MT

Ex,y

[
e−ατg(Xτ )−

∫ τ

0

e−α sc(Xs) ds

]
. (3.4)

When T < ∞, we will need to emphasize the dependence of the value

function on the time to expiration: for each t ∈ [0, T ],

v(x, y, t) = sup
τ∈Mt

Ex,y[ e
−ατg(Xτ )−

∫ τ

0

e−α sc(Xs) ds ]. (3.5)

Notice that v(x, y, 0) = g(x) and v(x, y, T ) = v(x, y).

Typically, there are two related approaches to study the value functions

in (3.4)-(3.5): the martingale and the analytical one. The first one refers

to a probabilistic interpretation of v, whereas the latter refers to regularity

properties of v as a real-valued function. These approaches are linked through

the probabilistic representation of the solution of an appropriate free-boundary

problem, which coincides with v.

3.2.1 The infinite horizon case

Assume that the time horizon is infinite, i.e. T =∞.

We know that (see Theorem B.3 and Remark B.4) the optimal stopping

time in the problem (3.4) is given by

τ ∗ = inf{t ≥ 0 : (Xt, Yt) /∈ C} ≤ ∞, (3.6)

the first exit time of (Xt, Yt) from the so-called continuation region

C = {(x, y) ∈ E : v(x, y) > g(x)}.
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That is,

v(x, y) = Ex,y

[
e−α τ

∗
g(Xτ∗)−

∫ τ∗

0

e−α sc(Xs) ds

]
.

We proceed to derive some analytical properties of v. The approach re-

lies on some regularity of the parameters of the problem, including a priori

information on the value function itself, as we see next.

We start with the diffusion setting.

Proposition 3.3 (Diffusion case) Suppose that the infinitesimal generator

L of (X, Y ), acting on functions h : E → R with h ∈ C2,2(E), is

1

2
a(x)2y2 ∂2

∂ x2
+

1

2
η2(y)

∂2

∂ y2
+ µ(x)

∂

∂ x
+ π(y)

∂

∂ y
. (3.7)

Assume that the functions a, µ, η, π and c are locally Hölder continuous. If

v(x, y) is (jointly) continuous then v is the probabilistic solution of the Dirichlet-

type problem

(L− α)h(x, y) = c(x), in C

h(x, y) = g(x), on ∂C.

In particular, v is C2,2 in C.

Proof. The assertion v(x, y) = g(x) on ∂C is clear.

Since both v and g are continuous, C is open. Fix (x0, y0) ∈ C and let U be

an open ball centered at (x0, y0) which is strictly contained in C. Now consider

the revised Dirichlet-type problem

(L− α)h(x, y) = c(x), in U

h(x, y) = v(x, y), on ∂U.
(3.8)

Thanks to the continuity assumption on a and η and that a(·)2, η(·)2 > 0,

we have that a(·)2, η(·)2 are bounded away from zero in any bounded open

interval. This fact together with S ⊆ (0,∞), imply that the operator L (and

so L − α) is uniformly elliptic in any bounded subset of E = R × S (see [16]

for definition of ellipticity).

Given that a, µ, η, π and c are locally Hölder continuous, that v is contin-

uous, and the fact that L− α is uniformly elliptic in U , there exists a unique
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solution h to (3.8) which belongs to C2,2(U) ∩ C0(Ū) (see [17, Theorem 6.13]

or [16, Theorem 6.2.4]).

Applying Itô’s formula to e−αth(Xt, Yt), it follows that the probabilistic

representation of h in U is given by

h(x, y) = Ex,y

[
e−ατUv(XτU , YτU )−

∫ τU

0

e−αsc(Xs)ds

]
, (x, y) ∈ U,

where τU is the first exit time of (X, Y ) from U (see also [16, Theorem 6.5.1]).

Moreover, by the strong Markov property of the diffusion (X, Y ), and using

the fact that τU ≤ τ ∗, it follows that h(x, y) = v(x, y) everywhere in U (see

Lemma B.5). In particular, the partial derivatives vxx, vyy, vx, vy exist and are

continuous at (x0, y0).

Since (x0, y0) ∈ C was arbitrary the claim of the proposition follows.

We now proceed to verify the smoothness of v(·, y) in the regime-switching

case. An important difference from the previous setting is that the associated

Dirichlet-type problem is not in its classic form because the infinitesimal gen-

erator of (X, Y ) is not a linear partial differential operator. We use a local

argument to freeze the Markov chain Yt at the first jump time so that Xt, up

to this time, is an autonomous process and the associated generator is a linear

partial differential operator. Although this technique is natural, we are not

aware of its application in the literature.

For each y ∈ S, let Cy be the y-section of the continuation set, that is,

Cy := {x ∈ R : (x, y) ∈ C}.

Proposition 3.4 (Regime-switching case) Suppose that the infinitesimal

generator L of (X, Y ), acting on functions h : E → R with h(·, y) ∈ C2(R), is

1

2
a(x)2y2 ∂2

∂ x2
+ µ(x)

∂

∂ x
+ [h(x, y + 1)− h(x, y)]λy + [h(x, y − 1)− h(x, y)]µy,

(3.9)

where λy, µy ≥ 0 are the upwards and downwards jump rates, respectively.

Assume that the functions a, µ and c are locally Hölder continuous. If v(·, y)

is locally Hölder continuous, then v is the probabilistic solution of the Dirichlet-

54



type problem

(L− α)h(x, y) = c(x), in C

h(x, y) = g(x), on ∂C.

In particular, for each y ∈ S, v(·, y) is C2 in Cy.

Proof. The assertion v(x, y) = g(x) on ∂C is clear.

Since v(·, y) and g are continuous, Cy is open.

Fix y ∈ S and choose an arbitrary x0 ∈ Cy. Let I = (l, u) be an open

interval centered at x0 such that I ⊂ Cy.

Define f(x) := λy v(x, y + 1) + µy v(x, y − 1), which is a locally Hölder

continuous function, and the linear ordinary differential operator L̃ by

L̃ :=
1

2
a(x)2 y2 ∂2

∂ x2
+ µ(x)

∂

∂ x
− κ(y), (3.10)

where κ(y) = λy + µy (the rate of leaving y). Since a is continuous and

a2(·) > 0, the operator L̃ is uniformly elliptic in I.

Consider the Dirichlet problem (in the variable x):

(L̃− α)H(x) = c(x)− f(x), in I

H(l) = v(l, y),

H(u) = v(u, y)

(3.11)

Given that a, µ and c − f are locally Hölder continuous in I, and that

L̃ − α is uniformly elliptic in I, there exists a unique solution H to (3.11)

which belongs to C2(I) ∩ C0(Ī) (see [17, Theorem 6.13]).

Define h on Ī × S as follows: for each x ∈ Ī, set h(x, y) := H(x) and

h(x, y′) := v(x, y′) for y′ 6= y. Now, we aim to give a probabilistic representa-

tion of h(x, y), x ∈ I.

Let T1 be the first exit time of X from I and T2 be the first jump time

of the Markov chain Y from y, and set τ = T1 ∧ T2. We can apply Dynkin’s

formula to obtain, for all x ∈ I,

h(x, y) = Ex,ye
−ατh(Xτ , Yτ )− Ex,y

[∫ τ

0

e−αs(L− α)h(Xs, Ys)ds

]
.
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On the one hand notice that, for all s < τ ,

(L− α)h(Xs, Ys) = (L̃− α)h(Xs, Ys) + f(Xs) = c(Xs).

On the other hand, h(Xτ , Yτ ) = v(Xτ , Yτ ) because of the boundary condi-

tion on H and the definition of h. Putting the latter facts together,

h(x, y) = Ex,y

[
e−ατv(Xτ , Yτ )−

∫ τ

0

e−αsc(Xs)ds

]
, x ∈ I.

Moreover, using the strong Markov property and the fact that τ ≤ τ ∗, it

follows that h(·, y) = v(·, y) in I (see Lemma B.5). But h(·, y) = H(·) in

I, which implies that (L − α)v(x, y) = c(x), for all x ∈ I, as required. In

particular, v(·, y) ∈ C2(I).

Since y ∈ S and x0 ∈ Cy were chosen arbitrarily, the claim of the proposition

follows.

Remark 3.5 The arguments in the proof of Proposition 3.4 are not restricted

to the case where the Q-matrix of Y is tridiagonal. We only assumed this to

tailor the result to our setting.

Remark 3.6 We know from Theorem B.3 in Appendix B that, defining

Vt := e−αtv(Xt, Yt)−
∫ t

0

e−αsc(Xs) ds,

the stopped process V·∧τ∗ = (Vt∧τ∗)t≥0 is a martingale under Px,y, for each

fixed (x, y) ∈ E .

If moreover V·∧τ∗ is known to be uniformly integrable (e.g. when g is

bounded), then the assertion h(x, y) = v(x, y) in the proofs of smoothness of v

are readily seen. For instance, in the proof of Proposition 3.3, we obtain that

h(x, y) = Ex,y VτU = Ex,y Vτ∗ = v(x, y)

since τU ≤ τ ∗ (see Theorem II.3.2 in [39]). This holds even if τ ∗ = ∞ with

positive probability (see Appendix B for more details).
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3.2.2 The finite horizon case

Let us now assume that the time horizon is finite, i.e. T <∞.

Fix t ∈ [0, T ]. We know that (see Theorem B.3 and Remark B.6) the

optimal stopping time in the problem (3.5) is given by

τ ∗t = inf{0 ≤ s ≤ t : (Xs, Ys, t− s) /∈ C} ≤ t, (3.12)

the first exit time of (Xs, Ys, t− s) from

C = {(x, y, u) ∈ E × [0, T ] : v(x, y, u) > g(x)}.

That is,

v(x, y, t) = Ex,y

[
e−α τ

∗
t g(Xτ∗t

)−
∫ τ∗t

0

e−α sc(Xs) ds

]
.

In the next statements we consider the parabolic operator L − α − ∂
∂ t
,

where L will be either the operator (3.7) in Proposition 3.7 or (3.9) (with

h(x, ·) replaced by h(x, ·, t)) in Proposition 3.8. Although the idea of the

proof of smoothness of v is very similar to that of the infinite horizon case,

we provide the proofs for completeness. Since T < ∞, we show instead that

v identifies with the solution of a revised initial-boundary value-type problem

by restricting the domain to a bounded cylinder contained in C with v as the

boundary condition. Again, the strong Markov property of (X, Y ) plays an

important role for this identification to hold.

Proposition 3.7 Let the assumptions of Proposition 3.3 be satisfied. If v(x, y, t)

is (jointly) continuous then v is the probabilistic solution of the initial-boundary

value-type problem

(L− α− ∂/∂ t)h(x, y, t) = c(x), in C,

h(x, y, t) = g(x), on ∂C,

where L is in (3.7). In particular, v is C2,2,1 in C.

Proof. The assertion v(x, y, t) = g(x) on ∂C is clear.
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Fix (x0, y0, t0) ∈ C. Since both v and g are continuous C is open, and

so we can choose an open rectangle R around (x0, y0) and an open interval

I = (t1, t2) around t0 such that the cylinder Q = R× I is open and contained

in C.

Let Br denote the interior of Q̄ ∩ {t = t2} (this is the area obtained by

intersecting the closure of the cylinder with the right end-point of I, and

without the edge) and consider the revised initial-boundary value-type problem

(L− α− ∂/∂ t)h(x, y, t) = c(x), in Q ∪Br

h(x, y, t) = v(x, y, t), on ∂Q\Br.
(3.13)

The operator L − α − ∂/∂ t is uniformly parabolic in Q. This property is

inherited from the uniform ellipticity of L in R and the fact that the functions

a and η are time-homogeneous.

Given that, by assumption, the functions a, µ, η, π and c are locally Hölder

(hence uniformly Hölder in Q̄) and v is continuous, there exists a unique

solution h to (3.13) which is continuous in Q̄ and has continuous derivatives

hx, hy, hxx, hyy, ht (see [16, Theorem 6.3.6]).

Take an arbitrary (x, y, t) ∈ Q and let τQ be the first exit time of the process

(Xs, Ys, t − s) from Q (notice that it cannot exit across Br). Applying Itô’s

formula to e−αsh(Xs, Ys, t− s) we obtain that the probabilistic representation

of h in Q is given by

h(x, y, t) = Ex,y

[
e−ατQv(XτQ , YτQ , t− τQ)−

∫ τQ

0

e−αuc(Xu)du

]

Finally, using that τQ ≤ τ ∗t , one sees that h(x, y, t) = v(x, y, t) everywhere

in Q (see Lemma B.7). In particular, v ∈ C2,2,1(Q).

Since (x0, y0, t0) ∈ C was arbitrary the proof is complete.

In what follows, for each y ∈ S, Cy denotes the set

Cy := {(x, t) ∈ R× [0, T ] : (x, y, t) ∈ C}.

58



Proposition 3.8 Let the assumptions of Proposition 3.4 be satisfied. If v(·, y, ·)
is locally Hölder continuous then v is the probabilistic solution of the initial-

boundary value-type problem

(L− α− ∂/∂ t)h(x, y, t) = c(x), in C

h(x, y, t) = g(x), on ∂C.

where L is in (3.9). In particular, for each y ∈ S, v(·, y, ·) is C2,1 in Cy.

Proof. Fix y ∈ S and (x0, t0) ∈ Cy.

Since v(·, y, ·) and g are continuous, Cy is open. Let Q be an open rectangle

around (x0, t0) such that Q ⊆ Cy, and Br be the upper open edge of Q.

Define f(x, t) := λy v(x, y + 1, t) + µy v(x, y − 1, t), which is a continuous

function, and recall the operator L̃ in (3.10).

Consider the classical initial-boundary value problem

(L̃− α− ∂/∂ t)H(x, t) = c(x)− f(x, t), in Q ∪Br

H(x, t) = v(x, y, t), on ∂Q\Br.
(3.14)

The operator L̃ − α − ∂/∂ t is uniformly parabolic in Q. Arguing as before,

by Theorem 6.3.6 in [16], we conclude that there exists a solution H to (3.14)

which is continuous in Q̄ and such that H(x, t) ∈ C2,1(Q).

Recall that y ∈ S is fixed from the beginning. Now, for each (t, x) ∈ Q

and y′ ∈ S, set

h(x, y′, t) :=

H(x, t) if y′ = y

v(x, y′, t) if y′ 6= y.

Using this function and a local argument (we freeze Y at its first jump),

we will show that

v(x, y, t) ≡ H(x, t) in Q.

Take (t, x) ∈ Q. Consider the stopping times T1 = inf{s ≥ 0 : (Xs, t−s) /∈ Q}
and T2 = inf{s ≥ 0 : Ys 6= y}, and set τ = T1 ∧ T2. Notice that T1 ≤ t a.s.
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Since Ys ≡ y up to the time τ , an application of Dynkin’s formula yields

h(x, y, t) = Ex,y
[
e−ατh(Xτ , Yτ , t− τ)

]
− Ex,y

[∫ τ

0

e−ατ (L− α− ∂/∂ t)h(Xs, Ys, t− s)ds
]
.

Now, h(Xτ , Yτ , t − τ) = v(Xτ , Yτ , t − τ) a.s. Indeed, if τ = T1 we use

the boundary condition in (3.14), otherwise the equality still holds by the

definition of h.

Moreover, after a simple algebraic manipulation it can be seen that, for

each (t, x) ∈ Q,

(L− α− ∂/∂ t)h(x, y, t) = (L̃− α− ∂/∂ t)h(x, y, t) + f(x, t) = c(x).

We then arrive to the expression

h(x, y, t) = Ex,y

[
e−ατv(Xτ , Yτ , t− τ)−

∫ τ

0

e−ατc(Xs)ds

]
.

Upon recalling Lemma B.5 it is seen that h(·, y, ·) = v(·, y, ·) in Q. But

h(·, y, ·) = H(x, t) in Q, which in turn yields that (L−α−∂/∂ t)v(x, y, t) = c(x)

and in particular v(·, y, ·) ∈ C2,1(Q).

Since y ∈ S and (x0, y0) ∈ Cy were arbitrary, the proof is complete.

3.3 Characterization of the value of the game

Proposition 3.9 Suppose that there exists τ̂ ∈ MT and π̂ ∈ A, and a func-

tion w(x, y) : E → R such that

w(x, y) ≤ Jx,y(τ̂ , π), and w(x, y) ≥ Jx,y(τ, π̂), (3.15)

for all π ∈ A and τ ∈MT . Then w is the value of the game, that is,

sup
τ

inf
π
Jx,y(τ, π) = w(x, y) = inf

π
sup
τ
Jx,y(τ, π). (3.16)

If w(x, y) ≡ Jx,y(τ̂ , π̂) is such a function, then (τ̂ , π̂) is a saddle point.
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Proof. Fix an initial condition (x, y) ∈ E .

The last assertion simply refers to the defining property of a saddle point.

The first inequality in (3.15) implies two things: first, that w(x, y) ≤
supτ Jx,y(τ, π) for all π, which yields

w(x, y) ≤ inf
π

sup
τ
Jx,y(τ, π);

second, that

w(x, y) ≤ inf
π
Jx,y(τ̂ , π) ≤ sup

τ
inf
π
Jx,y(τ, π).

Similarly, the second inequality in (3.15) also implies two things: first, that

w(x, y) ≥ infπ Jx,y(τ, π) for all τ , and so

w(x, y) ≥ sup
τ

inf
π
Jx,y(τ, π);

and finally, that

w(x, y) ≥ sup
τ
Jx,y(τ, π̂) ≥ inf

π
sup
τ
Jx,y(τ, π).

Putting all together we can see that if w satisfies (3.15) then it is the value

of the game.

The saddle point, if it exists, may not be unique as the following example

shows.

Example 3.10 Suppose that g(x) ≡ 0 and that c(x) > 0 for all x ∈ R. Then

Jx,y(τ, π) ≤ 0 for all τ and π.

Set τ̂ = 0, and note that Jx,y(τ̂ , π) = 0 for all π. Hence, for each π, the

pair (τ̂ , π) is a saddle point and w(x, y) ≡ 0 is the value of the game.
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3.3.1 Verification theorems

For each constant π ∈ Ay, denote by Lπ the operator

Lπ =
1

2
a(x)2 y2 ∂

2

∂x2
+

1

2
η2(y)

∂2

∂y2
+ µ(x)

∂

∂x
+ π

∂

∂y
.

Theorem 3.11 (Diffusion case, T = ∞) Assume that the horizon T is

infinite. Suppose that w : E → R is a continuous function such that the

following conditions hold:

(i) Its restriction on the open set C = {(x, y) ∈ E : w(x, y) > g(x)} is C2,2,

and satisfies

inf
π∈Ay

(Lπ − α )w(x, y) = c(x), in C,

w(x, y) = g(x), on E\C,
(3.17)

where the infimum is taken over all constant and admissible values.

(ii) For each π ∈ A, let τ̂ ≡ τ̂π := inf{t ≥ 0 : (Xπ
t , Y

π
t ) /∈ C}. The family

{e−ατw(Xπ
τ , Y

π
τ ) : finite τ ≤ τ̂} is uniformly integrable.

(iii) For each π ∈ A, limt→∞Ex,ye
−αtw(Xπ

t , Y
π
t ) = 0.

Then

w(x, y) ≤ Jx,y(τ̂ , π), for all π ∈ A. (3.18)

Proof. Fix an initial condition (x, y) ∈ E .

Pick an arbitrary π ∈ A and define the process N(π) = (Nt(π))t≥0 by

Nt(π) := e−αtw(Xπ
t , Y

π
t ), t ≥ 0.

For each R > 0, let UR denote the open ball centered at (x, y) of radius R,

and let τR denote

τR = min{τ̂ , inf{t ≥ 0 : (Xπ
t , Y

π
t ) /∈ UR} } ≤ ∞.

Notice that τR → τ̂ a.s. as R→∞.
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Since w is a smooth function in C2,2(C), we can apply Itô’s formula for

semimartingales (see Theorem II.33 in [38]) to obtain

Nt∧τR(π)− w(x, y) =

∫ t∧τR

0

e−αu(Lπu − α)w(Xπ
u , Y

π
u )du+Mt∧τR ,

where

Mt =

∫ t

0
e−αswx(Xπ

s , Y
π
s ) a(Xπ

s )Y π
s dBs +

∫ t

0
e−αswy(X

π
s , Y

π
s )η(Y π

s )dBY
s ,

and for each ω ∈ Ω,

Lπu(ω) =
1

2
a(x)2 y2 ∂

2

∂x2
+

1

2
η2(y)

∂2

∂y2
+ µ(x)

∂

∂x
+ πu(ω)

∂

∂y
.

Given that wx, wy, a and η are continuous, they are bounded in UR. This

implies that Mt∧τR has bounded quadratic variation for each t ≥ 0, and hence

the process M·∧τR is a true martingale.

Moreover, by (3.17) we have that

(Lπu − α )w(Xu, Yu) ≥ inf
πu∈AYu

(Lπ − α )w(Xu, Yu) = c(Xu), in C, (3.19)

which yields∫ t∧τR

0

e−αu(Lπu − α)w(Xπ
u , Y

π
u )du ≥

∫ t∧τR

0

e−αu c(Xπ
u )du.

Hence for each R > 0,

Nt∧τR(π)− w(x, y) ≥
∫ t∧τR

0

e−αu c(Xπ
u )du+Mt∧τR ,

and after taking expectation we obtain

w(x, y) ≤ Ex,y

[
Nt∧τR(π)−

∫ t∧τR

0

e−αu c(Xπ
u )du

]
. (3.20)
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Using that τR → τ̂ a.s. and the continuity of w we obtain the limit

lim
R→∞

Nt∧τR(π) = e−ατ̂∧tw(Xπ
t∧τ̂ , Y

π
t∧τ̂ ), a.s.

and further

lim
t→∞

e−ατ̂∧tw(Xπ
t∧τ̂ , Y

π
t∧τ̂ ) = e−ατ̂g(Xπ

τ̂ ), on {τ̂ <∞} a.s.

by the definition of τ̂ .

Since the family {e−ατw(Xπ
τ , Y

π
τ ) : finite τ ≤ τ̂} is uniformly integrable by

assumption, it follows by dominated convergence that, for each t ≥ 0,

lim
R→∞

Ex,y [Nt∧τR(π)] = Ex,y
[
e−ατ̂∧tw(Xπ

t∧τ̂ , Y
π
t∧τ̂ )
]
.

On the one hand, by dominated convergence, we can see that

lim
t→∞

Ex,y[e
−ατ̂∧tw(Xπ

t∧τ̂ , Y
π
t∧τ̂ )I(τ̂ <∞)] = Ex,y[e

−ατ̂g(Xπ
τ̂ )]

since e−ατ̂g(Xπ
τ̂ ) = 0 on {τ̂ =∞} a.s.

On the other hand, the assumption in (iii) yields

lim
t→∞

Ex,y[e
−αtw(Xπ

t , Y
π
t )I(τ̂ =∞)] = 0.

Therefore, after taking the limit as R→∞ and t→∞ in (3.20), we obtain

w(x, y) ≤ Ex,y

[
e−ατ̂g(Xπ

τ̂ )−
∫ τ̂

0

e−αu c(Xπ
u )du

]
= Jx,y(τ̂ , π),

where we also used monotone convergence for the Lebesgue integral part. This

verifies (3.18), since π was chosen arbitrarily, and the proof is complete.

In what follows, each constant, admissible Q-matrix (π[y, y′]), denote by

Lπ the operator

Lπw(x, y) =
1

2
a(x)2 y2wxx(x, y) + µ(x)wx(x, y) + [w(x, y + 1)− w(x, y)]π[y, y + 1]

+ [w(x, y − 1)− w(x, y)]π[y, y − 1].
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Theorem 3.12 (Regime-switching case, T =∞) Assume that the horizon

T is infinite. Suppose that w : E → R is a function such that for each x ∈ R,

w(x, ·) is bounded; and for each y ∈ S, w(·, y) is continuous. Suppose that:

(i) The restriction of w(·, y) : R → R on the open set Cy = {x ∈ R :

w(x, y) > g(x)} is C2, and that the function w satisfies

inf
π

(Lπ − α )w(x, y) = c(x), in C,

w(x, y) = g(x), on E\C,
(3.21)

where C = {(x, i) ∈ E : w(x, i) > g(x)} and the infimum is taken over

all constant and admissible Q-matrices.

(ii) For each π ∈ A, let τ̂ ≡ τ̂π := inf{t ≥ 0 : (Xπ
t , Y

π
t ) /∈ C}. The family

{e−ατw(Xπ
τ , Y

π
τ ) : finite τ ≤ τ̂} is uniformly integrable.

(iii) For each π ∈ A, limt→∞Ex,ye
−αtw(Xπ

t , Y
π
t ) = 0.

Then

w(x, y) ≤ Jx,y(τ̂ , π), for all π ∈ A. (3.22)

Proof. The only consideration to bear in mind in this setting is the form of

the operator Lπu(ω)w(x, y), which is now given by

1

2
a(x)2 y2wxx(x, y) + µ(x)wx(x, y) + [w(x, y + 1)− w(x, y)]πu[y, y + 1](ω)

+ [w(x, y − 1)− w(x, y)]πu[y, y − 1](ω).

The rest of the arguments are identical to those in Theorem 3.11.

Remark 3.13 Condition (i) of Theorems 3.11 and 3.12 may also be stated

using variational inequalities. That is, we may require instead that w satisfies

the following:

w(x, y) ≥ g(x) everywhere, inf
π

(Lπw − αw − c ) ≥ 0 in C (3.23)

where C = {(x, y) ∈ E : w(x, y) > g(x)}, and

min
{

inf
π

(Lπw − αw − c ), w − g
}

= 0. (3.24)
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The disadvantage of this formulation is that it needs w and g to satisfy enough

regularity conditions to belong to the domain of Lπ, unlike the formulation in

(3.17) and (3.21) which only assumes that w is C2 in C and g is non-negative

and continuous.

When T < ∞ the arguments in the preceding proofs are virtually the

same, except for natural changes in the notation. Then we only give the

corresponding statements.

Theorem 3.14 (Diffusion case, T < ∞) Assume that the horizon T is

finite. Suppose that w : E × [0, T ] → R is a continuous function such the

following conditions hold:

(i) Its restriction on the open set C = {(x, y, t) ∈ E × [0, T ] : w(x, y, t) >

g(x)} is C2,2,1, and satisfies

inf
π

(Lπ − α− ∂/∂ t )w(x, y, t) = c(x), in C,

w(x, y, 0) = g(x), on E × {0},

w(x, y, t) = g(x), on E × (0, T ]\C,

(3.25)

where the infimum is taken over all constant and admissible π ∈ Ay.

(ii) For each π ∈ A, let τ̂ ≡ τ̂π := inf{t ≥ 0 : (Xπ
t , Y

π
t , T − t) /∈ C} ≤ T .

The family {e−ατw(Xπ
τ , Y

π
τ , T − τ) : τ ≤ τ̂} is uniformly integrable.

Then w(x, y, T ) ≤ Jx,y(τ̂ , π) for all π ∈ A.

Theorem 3.15 (Regime-switching case, T <∞) Assume that the horizon

T is finite. Suppose that w : E × [0, T ] → R is a function such that for each

(x, t) ∈ R × [0, T ], w(x, ·, t) is bounded; and for each y ∈ S, w(·, y, ·) is

continuous. Suppose that:

(i) The restriction of w(·, y, ·) : R × [0, T ] → R on the open set Cy = {x ∈
R : w(x, y, t) > g(x)} is C2,1.

Also, w satisfies (3.25) where the infimum is taken over all constant and

admissible Q-matrices π = (π[y, y′]).
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(ii) For each π ∈ A, let τ̂ ≡ τ̂π := inf{t ≥ 0 : (Xπ
t , Y

π
t , T − t) /∈ C} ≤ T .

The family {e−ατw(Xπ
τ , Y

π
τ , T − τ) : τ ≤ τ̂} is uniformly integrable.

Then w(x, y, T ) ≤ Jx,y(τ̂ , π), for all π ∈ A.

3.3.2 Existence of a saddle point

In this section, we characterize the value of the game problem, stated on page

51, as the value function of an optimal stopping problem associated to an

extremal scenario.

In the context of Proposition 3.3, suppose that π(y) is replaced by the

admissible control,

πmin(y) = inf Ay, y ∈ S ⊆ (0,∞),

which is well-defined since Ay is a compact subset of R. In particular πmin =

(πmin(Yt))t≥0 is an admissible and Markovian control.

Let (Xt, Yt) ≡ (Xmin
t , Y min

t ) be the associated diffusion process and vmin the

corresponding value function as in (3.4). From now on we avoid to write the

superscript on (Xmin
t , Y min

t ) for ease of presentation.

When T =∞, the following convergence in probability will be assumed:

For each π ∈ A, e−αtvmin(Xπ
t , Y

π
t )

p−→ 0 (3.26)

This condition holds, for instance, when g is bounded.

Theorem 3.16 (Diffusion case) Let T ∈ [0,∞] be the time horizon. Sup-

pose that the functions a, µ, η, πmin and c are locally Hölder continuous, vmin

is continuous, and vmin is non-decreasing as a function of y. If T = ∞ also

assume that (3.26) holds. Then, for each (x, y) ∈ E,

sup
τ

inf
π
Jx,y(τ, π) = vmin(x, y) = inf

π
sup
τ
Jx,y(τ, π).

That is, vmin is the value of the game and (τ ∗, πmin) is a saddle point, where

τ ∗ is the optimal stopping time for vmin.
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Proof. Set π̂ = πmin, τ̂ = τ ∗ and w = vmin. We only have to verify (3.15).

To start, by the optimality of τ̂ ,

w(x, y) ≥ Jx,y(τ, π̂), for all τ ∈MT

with equality for τ = τ̂ .

(I) Suppose that T =∞. We will verify Conditions (i)-(iii) of Theorem 3.11.

Since w(x, ·) is non-decreasing, we have that for each y ∈ S

π̂(y) = arg min
π∈Ay

∂w

∂y
(x, y) π,

for all x ∈ R. Using this and Proposition 3.3 it follows that Condition (i) is

satisfied.

To check Conditions (ii)-(iii), first notice that the function w can be esti-

mated by

w(x, y) = Ex,y

[
e−ατ̂g(Xτ̂ )−

∫ τ̂

0

e−αsc(Xs), ds

]
≤ Ex,y

[
sup
s≥0

e−αs g(Xs)

]
+ Ex,y

[ ∫ ∞
0

e−αsc(Xs), ds

]
≤ Ex,y

[
sup
s≥0

e−αs g(Xs)

]
+D < ∞

where we have used the triangle inequality and D > 0 is some constant due to

the fact that c is bounded. The expectation is finite because of the integrability

condition (1.3) on g.

Now, for each t ≥ 0 and π ∈ A, (Xπ
t , Y

π
t ) is Ft-measurable. The strong

Markov property of the diffusion (X, Y ) (see for instance [36, Theorem 7.2.4])

when started from (Xπ
t , Y

π
t ) implies that,

e−αtw(Xπ
t , Y

π
t ) ≤ e−αtEXπ

t ,Y
π
t

[
sup
s≥0

e−αs g(Xs)

]
+D

= Ex,y

[
sup
s≥0

e−α(s+t) g(Xs+t) | Ft
]

+D

≤ Ex,y

[
sup
s≥0

e−αs g(Xs) | Ft
]

+D.
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Since (Xπ
τ , Y

π
τ ) is Fτ -measurable, we can even replace t by a finite stopping

time τ ∈M with τ ≤ τ̂ , in the above inequalities.

Setting S∗ = sups≥0 e
−αs g(Xs) + D, the collection of conditional expecta-

tions {Ex,y[S∗ | Fτ ] : finite τ ∈M} is uniformly integrable. Indeed, setting

Dτ = Ex,y[S
∗ | Fτ ], Dτ is Fτ -measurable and

lim
K→∞

sup
τ
Ex,y(Dτ I(Dτ ≥ K) ) = lim

K→∞
sup
τ
Ex,y[S

∗ I(Ex,y[S
∗ | Fτ ] ≥ K) ]

= lim
K→∞

Ex,y[S
∗ I(Ex,y[S

∗] ≥ K) ]

=Ex,y[ lim
K→∞

S∗ I(Ex,y[S
∗] ≥ K) ] = 0,

where we have used the tower property of conditional expectations, dominated

convergence and the fact that Ex,y[S
∗] <∞.

As a consequence, the family {e−ατw(Xπ
τ , Y

π
τ ) : finite τ ≤ τ̂} also is uni-

formly integrable, that is Condition (ii) holds.

Finally, using Condition (3.26) together with the fact that {e−αtw(Xπ
t , Y

π
t ) :

t ≥ 0} is uniformly integrable, we obtain (see Section 13.7 in [46]) that

e−αtw(Xπ
t , Y

π
t )

L1

−→ 0.

This proves Condition (iii).

Then

w(x, y) ≤ Jx,y(τ̂ , π), for all π ∈ A,

and this concludes the proof when T =∞.

(II) Suppose that T < ∞. Likewise, it suffices to verify Conditions (i)-(ii)

of Theorem 3.14. This can be done in the same way as in part (I) with no

substantial differences.

We now turn to the regime-switching case.

In the context of Proposition 3.4, suppose that the upward and downward

rates λy and µy are replaced by

λmin
y = inf Ay,y+1, and µmin

y = sup Ay,y−1, y ∈ S,

respectively. Denote by πmin the tridiagonal Q-matrix with entries λmin
y , µmin

y ,
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y ∈ S. In particular, πmin is admissible.

As before, let (Xt, Yt) ≡ (Xmin
t , Y min

t ) be the associated strong Markov

process and vmin the corresponding value function.

Theorem 3.17 (Regime-switching case) Let T ∈ [0,∞] be the time hori-

zon. Suppose that the functions a, µ, c and vmin(·, y) (vmin(·, y, ·) when T <∞)

are locally Hölder continuous, and vmin is non-decreasing as a function of y.

If T =∞ also assume (3.26). Then, for each (x, y) ∈ E,

sup
τ

inf
π
Jx,y(τ, π) = vmin(x, y) = inf

π
sup
τ
Jx,y(τ, π).

That is, vmin is the value of the game and (τ ∗, πmin) is a saddle point, where

τ ∗ is the optimal stopping time for vmin.

Proof. We only have to show that w = vmin satisfies Conditions (i)-(iii) of

Theorem 3.12 when T = ∞ and Conditions (i)-(ii) of Theorem 3.15 when

T <∞.

Here we set π̂ = πmin and use that the Q-matrix π̂ = (π̂[y, y′]) is such that,

for each fixed y ∈ S,

π̂[y, y + 1] = arg min
λ∈Ay,y+1

[w(x, y + 1)− w(x, y)]λ,

π̂[y, y − 1] = arg min
µ∈Ay,y−1

[w(x, y − 1)− w(x, y)]µ,

and when T <∞ simply replace w(x, ·) by w(x, ·, t).

Proposition 3.4 (resp. 3.8) and the expression for π̂ above verify Condition

(i) when T =∞ (resp. T <∞).

The rest of the proof does not change in comparison with the proof of the

previous Theorem.

Remark 3.18 (a). As stated in Theorems 3.16 and 3.17, the continuity of

the value function vmin is required to identify it with the value of the game.

This requirement goes back to Propositions 3.3 and 3.4 to guarantee that

vmin belongs to the domain of the associated operator Lmin, at least in the

continuation region C.
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There are well-known results regarding the continuity of v when (X, Y ) is

a diffusion process. For instance, Krylov shows in Theorem 6.4.14 [35] that

the region where v is continuous coincides with the set where the infinitesimal

generator L of (X, Y ) (see expression in Proposition 3.3 above) is elliptic,

provided the drift and diffusion coefficients σ(x, y) and b(x, y) are Lipschitz

and satisfy a linear growth condition. Here,

‖σ(x, y)‖2 = a2(x)y2 + η2(y), |b(x, y)|2 = µ(x)2 + π(y)2.

We do not impose, however, these conditions because they rule out some

classical examples. For instance, in the Heston model (S, V ) appearing in

Section 4.3.2, the volatility coefficient of each component has the factor
√
x

which is not a Lipschitz function, but is Hölder continuous.

(b). The non-decreasing property of the function vmin(x, ·) was studied in

Chapter 2 in the case when X is driftless. Sufficient conditions are given for

instance in Theorems 2.6 and 2.16 (see also Section 2.4), under the assumption

that g is non-negative. We extend these results in the next chapter to the case

when X has drift.
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Chapter 4

Application to option pricing

4.1 American options setting

Suppose that the dynamics of X are given by

dXt = Xt Yt dBt (4.1)

and so that (X, Y ) is like in the setting of Section 2.2 or 2.3, with the particular

case a(x) = x.

Note that the stochastic integral
∫ t

0
Ys dBs, t ≥ 0, is well-defined since Y is

adapted and either a piecewise-constant or a continuous process. Then, X is

an exponential local martingale of the form

Xt = X0 exp

{∫ t

0

Ys dBs −
1

2

∫ t

0

Y 2
s ds

}
, t ≥ 0, a.s. (4.2)

The American options we are interested in, pay g(eατXτ ) when exercised

at a stopping time τ before the maturity T ∈ [0,∞]. Assuming that the

probability measure Px,y is used for pricing when X0 = x and Y0 = y, (x, y) ∈
R+ × S, the price of such an option is

v(x, y) = sup
0≤τ≤T

Ex,y [e−ατg(eατXτ )], (4.3)
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where the supremum is taken over all finite stopping times with respect to the

filtration generated by (X, Y ), and α > 0 stands for the instantaneous interest

rate.

The process (eαtXt)t≥0 describes a simple model for the price of an asset

with stochastic volatility Y .

Since g is not applied to Xτ but to eατXτ , some of the conditions for our

results in Chapter 2 have to be slightly adjusted.

First, the condition

Ex,y

[
sup

0≤t≤T
e−αt|g(eαtXt)|I(t <∞)

]
<∞

for all (x, y) ∈ R+ × S is now assumed throughout.

The analogue to what was obtained in Propositions 2.11 and 2.21, but now

for the value function given in (4.3), is

v(x, y) = sup
ρ∈MT

Ẽ [e−αΓρg(eαΓρGρ)], (4.4)

without imposing further conditions.

Following the proofs of Theorems 2.6 and 2.16, but now considering v(x, y)

in (4.4) instead, one can see that one only needs to verify that

Ẽ [e−αΓρg(eαΓρ Gρ)] ≤ Ẽ [e−αΓ′ρg(eαΓ′ρGρ)] for every ρ ∈MT , (4.5)

where Γt ≥ Γ′t, t ≥ 0 a.s. This is the analogue of the crucial comparison in

(2.18).

Notice that (4.5) is true, for instance, when g is non-increasing. More

generally, if we assume that

g is a non-negative and measurable function such that g 6= 0,

g(ax) ≤ ag(x), for all a ≥ 1, x ≥ 0,
(4.6)
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then the inequality in (4.5) holds. Indeed, for each fixed ρ ∈ MT , simply

choose a = eα(Γρ−Γ′ρ) ≥ 1 and note that

g(eαΓρ Gρ) = g(a eαΓ′ρ Gρ) ≤ ag(eαΓ′ρ Gρ), a.s.

We obtain the following analogues of Theorems 2.6 and 2.16, respectively,

for the value function in (4.3).

Theorem 4.1 (MC case) Assume that g satisfies (4.6). Also assume that

Y is skip-free. Then, for each x ∈ R+, v(x, ·) is non-decreasing on S.

Proof. By Theorem 2.6 and the previous discussion, we only need to verify

Condition C1 on page 13 but this is plain thanks to the special case a(x) = x.

Theorem 4.2 (Diffusion case) Assume that g satisfies (4.6). Also assume

Conditions C1’-C2’ on page 26 with a(x) = x. Then, for each x ∈ R+, v(x, ·)
is non-decreasing on S.

Proof. The proof follows by Theorem 2.16 and the above discussion.

Remark 4.3 Since a(x) = x, Conditions C1’-C2’ on page 26 become a con-

dition only on the autonomous process ξ in (2.27).

The class of functions in (4.6) was introduced by Ekström [10] to compare

prices of American options when the volatility is stochastic but only depends

on the stock price process and time.

The following classes of functions satisfy the condition in (4.6):

• Non-increasing: it is plain that (4.6) holds.

• Concave: since g(0) ≥ 0, we have that g(λy) ≥ λg(y) for any λ ∈ [0, 1]

and y ≥ 0. Now, for any a ≥ 1 and x ≥ 0, simply set λ = 1/a and

y = ax to obtain the desired inequality.
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4.2 A regime-switching model

Consider the regime-switching model of Guo and Zhang [19] and Jobert and

Rogers [30] for the stock price process:

dSt = St(Zt dBt + r(Zt)dt),

and Z is an irreducible, continuous-time Markov chain with finite state space

S ⊂ (0,∞) and independent of B. It is assumed that r(z) > 0 for all z ∈ S =

{y1, y2, . . . , ym}. Here it is understood that y1 < y2 < · · · < ym.

The value of a perpetual American-type option with random discount is

given by (cf. equation (13) in [30])

v(x, y) = sup
τ∈F

Ex,y

[
exp

(
−
∫ t

0

r(Zs)ds

)
g(Sτ )

]
, (4.7)

where the payoff g is a measurable function, and (x, y) ∈ R+ × S. The supre-

mum is over all stopping times τ with respect to F = (Ft)t≥0 (we write τ ∈ F),

the augmentation of the natural filtration of (S,Z), and Ex,y denotes the con-

ditional expectation E[· | S0 = x, Z0 = y].

4.2.1 From additive to linear discounting

In this section we show that the value function in (4.7) is non-decreasing in

y, which has an impact in determining the shape of the optimal stopping

boundary (see next section).

We shall further exploit the time-change technique to deduce that this value

function can be reduced to one with a linear discount factor, so that we can

apply Theorem 4.1.

Some of the ideas here are in the spirit of Cissé et al. [8].

Let us rewrite St as follows:

St = x+

∫ t

0

Su r
′(Zu)dMu +

∫ t

0

Su r(Zu)du
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where

r′(z) =
z√
r(z)

(4.8)

and

Mt =

∫ t

0

√
r(Zu)dBu.

Define the random, additive functional R = (Rt)t≥0 and its right-inverse

A = (At)t≥0 by

Rt :=

∫ t

0

r(Zs)ds, At := inf{s ≥ 0 : Rs > t}.

The process R possesses all the properties as Γ in (2.8), and so does A. In

particular, 〈M〉t = Rt and A defines a time-change with At =
∫ t

0
1

r(Ys)
ds.

Define Xt := S ◦ At and Yt := Z ◦ At and Wt = M ◦ At, t ≥ 0. Then

dXt = Xt(r
′(Yt) dWt + dt), X0 = x, (4.9)

where W is an FA-Brownian motion (FA = (FAt)t≥0). Also, arguing very

similarly to the way we did in Section 2.2.2, Y is a Markov chain with generator

LY f(y) =
1

r(y)
Lf(y), (4.10)

where L denotes the generator of Z, and f is any bounded and measurable

function.

The proof of the following result is exactly as that of Lemma 2.10, but

with different notation. We include the proof for completeness and ease of

reference.

Lemma 4.4 The following holds:

v(x, y) ≡ sup
τ∈F

Ex,y
[
e−Rτ g(Sτ )

]
= sup

τ∈FA
Ex,y

[
e−τg(Xτ )

]
(4.11)

Proof. First, for every τ ∈ F, τ ′ = Rτ ∈ FA, by Lemma 2.4. Since

e−Rτ g(Sτ ) = e−Rτ g(SARτ ) = e−τ
′
g(Xτ ′)
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we obtain

sup
τ∈F

Ex,y
[
e−Rτ g(Sτ )

]
≤ sup

τ∈FA
Ex,y

[
e−τg(Xτ )

]
.

Next, for every τ ∈ FA, τ ′ = Aτ ∈ F, again by Lemma 2.4. Since

e−τg(Xτ ) = e−RAτ g(SAτ ) = e−Rτ ′g(Sτ ′),

the other inequality must hold.

Starting with the strong Markov process (S,Z) with respect to F, the time-

changed process (X, Y ) is also strong Markov but with respect to FA. Also,

the stopping times on the right-hand side of (4.11) can take values on the

entire half-line (0,∞) since limtRt =∞. In other words, we are in the setting

of Section 4.1 with: a modified volatility, namely r′(Yt) instead of Yt; a unitary

instantaneous interest rate r ≡ 1; and with infinite horizon T =∞.

In [30], there was no assumption on the order of the values of r(·) what-

soever as the main focus of the authors is on pricing. But, for the purpose

of monotonicity of the function v(x, ·), the order of the values of r(y) when

comparing different y’s becomes important.

Proposition 4.5 Assume that g satisfies (4.6). Also assume that Z is skip-

free and that r(·) is decreasing in its argument. Then, for each x ∈ R+, v(x, ·)
is non-decreasing on S, where v is given in (4.7).

Proof. The process Y , as a time-change of the original Markov chain Z, inherits

the skip-free property of Z.

Also, notice that r′(·) in (4.8) satisfies that for any y1 ≤ y2, r′(y1) ≤ r′(y2).

The result now follows from Remark 2.14, Theorem 4.1 and Lemma 4.4.

4.2.2 Threshold ordering

We are going to apply Proposition 4.5 in the case that the gain function is

g(x) = max{K − x, 0} where K > 0 is the strike price.

The authors of [19] and [30] verified that the value function is uniquely
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attained at a stopping time of the form

τ ? = inf{t ≥ 0 : St < b[Zt]} (4.12)

where the vector b[yi], i = 1, 2, . . . ,m, is indexed by the states of the Markov

chain Z. The values b[yi] are the so-called thresholds.

As part of the program to calculate the value of v(x, y), there is an standing

assumption: that b[y1] ≥ · · · ≥ b[ym] (see PROBLEM 1 in [30]). It is then

stated in a footnote on the same page 2066 that “When it comes in practice

to identifying the thresholds, no assumption is made on the ordering, and all

possible orderings are considered.”

This approach has exponential complexity as the number of states in-

creases. However, our result in Proposition 4.5, reduces this complexity to

choosing a unique ordering, namely

b[y1] > · · · > b[ym]. (4.13)

Indeed, since τ ? is the unique optimal stopping time for the problem in

(4.7), by general theory, it must coincide with the first time that the process

(X, Y ) enters the stopping region {(x, y) : v(x, y) = g(x)}. Thus, as it is not

optimal to stop when g is zero in this example:

v(x, yi) = g(x) for x ≤ b[yi] while v(x, yi) > g(x) for x > b[yi]

for each i = 1, . . . ,m. Now suppose that (4.13) does not hold. Then, there

exists i such that b[yi] < x ≤ b[yi+1] for some x. So v(x, yi+1) = g(x) < v(x, yi),

but this contradicts the result of Proposition 4.5.

4.2.3 Continuity of the value function in x

We learned, in Section 4.2.1, that we can study functional properties of v(x, y)

in (4.7) under an equivalent model (X, Y ) obtained by a suitable time-change.

The new pair (X, Y ) has the advantage that X has linear and deterministic

drift (unlike S).

78



In this section, we assume that the model for X is given by

dXt = Xt(Yt dBt + µ dt),

with X0 ∈ R+, where µ ∈ R and Y is an irreducible, continuous-time Markov

chain with finite state space S ′ and independent of B. Notice that X is

explicitly given by

Xt = X0 exp

{
µ t+

∫ t

0

Ys dBs −
1

2

∫ t

0

Y 2
s ds

}
, t ≥ 0, a.s. (4.14)

We are interested in the (Lipschitz) continuity of

w(x, y) = sup
τ∈F

Ex,y
[
e−ατg(Xτ )

]
(4.15)

as a function of x. Here, α > 0 and the supremum is over all stopping times

τ with respect to the augmentation of the natural filtration of (X, Y ), F. As

usual we assume that, for each initial value (x, y),

Ex,y

[
sup
t≥0

e−αtg(Xt)

]
<∞. (4.16)

Remark 4.6 The function w identifies with v in (4.7) via Lemma 4.4. Simply

set α = µ = 1 in (4.14)-(4.15) and the state space of Y equals S ′ = {r′(y) :

y ∈ S}.

We start with a simple result, which is a straightforward consequence of

the form of X in (4.14).

Theorem 4.7 Assume that g is a convex function. Then, for each y ∈ S ′,
the function w(·, y) is convex in R+.

Proof. Consider Eyt := exp(µt +
∫ t

0
YsdBs − 1

2

∫ t
0
Y 2
s ds), where the superscript

indicates that Y0 = y. Then we can write w(x, y) = supτ E[e−ατg(x Eyτ )].
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Let λ be in [0, 1]. Then for each pair x, x′ ∈ R+,

λw(x, y) + (1− λ)w(x′, y) ≥ sup
τ

{
λE [e−ατg(x Eyτ )] + (1− λ)E [e−ατg(x′ Eyτ )]

}
≥ sup

τ

{
E e−ατ (λg(x Eyτ ) + (1− λ)g(x′ Eyτ ) )

}
≥ sup

τ

{
E e−ατ g( [λx+ (1− λ)x′] Eyτ )

}
= w(λx+ (1− λ)x′, y).

That is, for each y, the function w(·, y) is convex in the positive half-line.

Remark 4.8 An immediate by-product of the preceding proposition is that

if g is convex then w(·, y) is locally Lipschitz continuous in R+.

Let us introduce some notation. From the general theory of optimal stop-

ping for Markov processes (see Appendix B), the continuation region for the

problem (4.15) is given by C = {(x, y) ∈ R+ × S ′ : w(x, y) > g(x)}. For each

y ∈ S ′, consider the y-section

Cy = {x ∈ R+ : w(x, y) > g(x)}.

In what follows we verify that w(·, y) is locally Lipschitz continuous in

Cy and continuous across the boundary ∂Cy provided g is continuous. As a

consequence, we have the following results.

Theorem 4.9 Assume that g is non-negative and continuous. Then, for each

y ∈ S ′, the function w(·, y) is continuous in R+.

Proof. The result follows from Lemmas 4.11 and 4.12 below.

Theorem 4.10 Assume that g is non-negative and locally Lipschitz continu-

ous. Then, for each y ∈ S ′, the function w(·, y) is locally Lipschitz continuous

in R+.

Proof. The result follows from Lemmas 4.12 and 4.13 below.
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Lemma 4.11 Assume that g is non-negative and continuous. Then, for each

y ∈ S ′, the function w(·, y) is continuous in Cy.

Proof. Fix y ∈ S ′ and denote by q[y] the rate of leaving y, that is, q[y] =∑
y′ 6=y q[y, y

′]. Let τ ∗ be the optimal stopping time for the problem with initial

condition (x, y). For any δ ∈ R satisfying x+ δ ∈ R+, the form of X in (4.14)

implies that

w(x+ δ, y) ≥ E
[
e−ατ

∗
g(Xτ∗) | X0 = x+ δ, Y0 = y

]
= E

[
e−ατ

∗
g

(
x+ δ

x
Xτ∗

)
| X0 = x, Y0 = y

]
.

Since g is non-negative and continuous, Fatou’s Lemma yields the inequality

lim infδ→0w(x + δ, y) ≥ w(x, y), i.e., w(·, y) is lower semi-continuous in R+.

This in turn implies that the set Cy is open.

Let I be a bounded open interval contained in Cy. It is enough to show

that x 7→ w(x, y) is continuous in I.

Denote by T1 and T2 the first exit of X from I, and the first jump time of

the Markov chain Y from y, respectively. Set τ = T1 ∧ T2. Then we have that

τ ≤ τ ∗ and since (X, Y ) is a strong Markov process it follows that

w(x, y) = Ex,y e
−ατw(Xτ , Yτ ), ∀x ∈ I. (4.17)

We shall show that the functions

F1(x) :=Ex,y[ e
−αT1w(XT1 , YT1) I{T1 < T2} ], and

F2(x) :=Ex,y[ e
−αT2w(XT2 , YT2) I{T2 < T1} ]

are continuous in I, so that the result follows because w(x, y) = F1(x) +F2(x)

(since Px,y(T1 = T2) = 0).

We next use the following fact to show the continuity of F1 and F2. Let X̃

be the solution to the equation dX̃t = X̃t(y dBt +µ dt) started at X̃0 = x, and

killed at an independent, exponentially distributed random time eγ ∼ Exp(γ).

That is, X̃ is a geometric Brownian motion started at X̃0 = X0 = x and Xt = ∂

for all t ≥ eγ, where ∂ is a cemetery point. We know that X̃ is a strong Feller

process (see [44]) and therefore, for every bounded and measurable function φ
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on Ī ∪ ∂, the functions

x 7→ E [φ(X̃T1) | X̃0 = x] and x 7→ E [φ(X̃t) I{t < T1} | X̃0 = x]

are continuous in I (see [5, Theorem 2.1 and Lemma 2.2]). By convention

φ(∂) = 0.

Set φ(x) = w(x, y) and eγ = eα ∧ T2, where eα ∼ Exp(α) is independent of

T2 (that is, γ = α + q[y]).

Since X̃ is independent of Y0 = y, and on the event {T1 < T2} one has that

X̃T1 = XT1 , YT1 = y a.s.,

E [φ(X̃T1) | X̃0 = x] = E [φ(X̃T1) I{T1 < eγ} | X̃0 = x, Y0 = y ]

= E [w(X̃T1 , y) I{T1 < T2} I{T1 < eα} | X̃0 = x, Y0 = y ]

= E [w(XT1 , YT1) I{T1 < T2} I{T1 < eα} | X0 = x, Y0 = y ]

= Ex,y

[∫ ∞
0

{
αe−αsw(XT1 , YT1) I{T1 < T2} I{T1 < s}

}
ds

]
= Ex,y

[
e−αT1w(XT1 , YT1) I{T1 < T2}

∫ ∞
T1

{
αe−α(s−T1) ds

}]
= Ex,y [ e−αT1w(XT1 , YT1) I{T1 < T2}] = F1(x).

Hence F1(·) is continuous in I.

Let us now turn to F2(x). Since T2 ∼ Exp(q[y]),

F2(x) =

∫ ∞
0

q[y] e−q[y] tEx,y[ e
−α tw(Xt, Yt) I{t < T1} | T2 = t] dt.

Now, take y′ 6= y and set φ(x) = w(x, y′) and eγ = eα, where eα ∼ Exp(α)

is independent of T2.

Since X̃ is independent of Y0 = y and T2,

E [φ(X̃t) I(t < T1) | X̃0 = x] = E [φ(X̃t) I{t < T1} | X̃0 = x, Y0 = y, T2 = t]

= E [w(X̃t, y
′) I{t < T1} I{t < eα} | X̃0 = x, Y0 = y, T2 = t]

= E [w(Xt, y
′) I{t < T1} I{t < eα} | X0 = x, Y0 = y, T2 = t]

= Ex,y [e−αtw(Xt, y
′) I{t < T1} | T2 = t]
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for each t > 0. The LHS of this chain of equalities (and so the RHS)

is continuous in I with respect to x. Hence the conditional expectation

Ex,y[ e
−α tw(Xt, Yt) I{t < T1} | T2 = t] in the expression for F2(x), given

by ∑
y′ 6=y

q[y, y′]

q[y]
Ex,y[ e

−α tw(Xt, y
′) I{t < T1} | T2 = t],

is also continuous in I with respect to x.

We conclude that F2(·) is continuous in I by dominated convergence (recall

that w is bounded), and so the proof is complete.

Lemma 4.12 (Continuous-fit) Assume that g is non-negative and continu-

ous. Then, for each y ∈ S ′, w(·, y) is continuous on the boundary ∂Cy.

Proof. Let us fix y ∈ S ′.

We know that Cy is open (see proof of Lemma 4.11) and so it is the union

of countably many open intervals. We shall assume, for ease of presentation,

that Cy is a half line of the form (b,∞) for some b ≡ b[y] ∈ R (like in Section

4.2.2) so that ∂Cy = {b}. The reasoning below applies likewise to the case

where Cy is a union of open intervals without substantial changes.

Since w(x, y) = g(x) on (−∞, b] and g is continuous, it is clear that w(·, y)

is left-continuous at b. It remains to see right-continuity.

Let δ > 0. On the one hand, since (b+ δ, y) ∈ Cy we have

w(b+ δ, y)− w(b, y) ≥ g(b+ δ)− g(b)

and so the continuity of g yields

lim inf
δ↓0

w(b+ δ, y)− w(b, y) ≥ 0. (4.18)

On the other hand, let τ δ denote the optimal stopping time for the problem

with initial condition (b+ δ, y). Then

w(b+ δ, y) = E
[
e−ατ

δ

g(Xτδ) | X0 = b+ δ, Y0 = y
]

= E

[
e−ατ

δ

g

(
b+ δ

b
Xτδ

)
| X0 = b, Y0 = y

]
.
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As τ δ is suboptimal for the problem w(b, y), we obtain that

w(b+δ, y)−w(b, y) ≤ E

[
e−ατ

δ

{
g

(
b+ δ

b
Xτδ

)
− g(Xτδ)

}
| X0 = b, Y0 = y

]
.

Using Fatou’s lemma (recall the assumption (4.16)) as well as the continuity

of the paths of X,

lim sup
δ↓0

w(b+ δ, y)− w(b, y) ≤ 0. (4.19)

Putting (4.18) and (4.19) together we conclude that w(·, y) is right-continuous

at b and the proof is complete.

Lemma 4.13 Assume that g is non-negative and continuous. Then, for each

y ∈ S ′, the function w(·, y) is locally Lipschitz continuous in Cy.

Proof. Fix y ∈ S ′. Let I be a bounded open interval contained in Cy.

Take x, x′ ∈ I with x 6= x′ and assume that X = (Xt)t≥0 in (4.14) starts

at x. Also denote by X ′ = (X ′t)t≥0 the process satisfying (4.14) with driving

Brownian motion −B = (−Bt)t≥0 and started from X ′0 = x′. Suppose without

loss of generality that x > x′ > 0 (the case x′ > x > 0 is covered by symmetry).

Consider the coupling time

τ(x, x′) := inf{t > 0 : Xt = X ′t}.

Let T1 be the first time that either X or X ′ exits from the interval I, and

T2 be the first jump time of the Markov chain Y from y. If τ = T1 ∧ T2 then,

for each x ∈ I,

w(x, y) = E e−ατw(Xτ , Yτ ) and w(x′, y) = E e−ατw(X ′τ , Yτ ).

The function w(·, y) is bounded on I (as it is continuous in Cy), say byK/2 > 0.

Thus the difference in payoffs is bounded by K times the probability that the

processes X and X ′ have not coupled by first exit time from I and by first

jump of the chain. That is,

|w(x, y)− w(x′, y)| ≤ K P (T1 ∧ T2 < τ(x, x′) ). (4.20)
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We next argue that P (T2 < τ(x, x′) ) is O(x− x′) as x− x′ → 0.

After simple calculations, we see that Xt = X ′t if and only if log(x) +∫ t
0
YsdBs = log(x′) +

∫ t
0
Ysd(−Bs). Setting r = log(x/x′) > 0 and

Rt := r +

∫ t

0

2YsdBs, t ≥ 0,

it follows that τ(x, x′) = inf{t > 0 : Rt ≤ 0}.

Let us consider At :=
∫ t

0
4Y 2

s ds, t ≥ 0. By the DDS Theorem, we know that

there is a standard Brownian motion W such that Rt and r + WAt coincide.

Hence

τ(x, x′) = inf{t > 0 : Rt ≤ 0} = inf{t > 0 : WAt ≤ −r}. (4.21)

Notice that by the continuity of the paths of At,

{T2 < τ(x, x′) } ⊆ {WAs > −r, ∀s ≤ T2 } = {Ws > −r, ∀s ≤ AT2 }.

Moreover, as the chain Y takes only a finite number of positive values, we have

that At is bounded from below by k(t) = 4m2t where m is the smallest state

value. Hence,

{Ws > −r, ∀s ≤ AT2 } ⊆ { inf
s≤AT2

Ws ≥ −r} ⊆ { inf
s≤k(T2)

Ws ≥ −r}.

Hence

P (T2 < τ(x, x′) ) ≤ P

(
inf

s≤k(T2)
Ws ≥ −r

)
.

Since k(T2) has exponential distribution and is independent of B, it follows

that the right-hand side is O(r) as r → 0 (see e.g. [6]). Using that r =

log(x)−log(x′), we conclude that the right-hand side is O(x−x′) as x−x′ → 0.

The probability P (T1 < τ(x, x′) ) can also be seen to be O(x − x′) as

x − x′ → 0. Intuitively, as the starting points x and x′ get arbitrarily close,

the probability that either X or X ′ exits I before they couple gets very close

to zero.
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4.3 Two Bessel-type models

4.3.1 The Hull & White model

Consider the model for the stock price S and its instantaneous variance V of

Hull & White (cf. (a)-(b) on page 284 in [25]):

dSt = St(
√
V t dBt + r dt)

dVt = 2η Vt dB
Y
t + κVt dt,

(4.22)

where η, κ are positive constants, and B,BY are independent Brownian mo-

tions. Setting Xt = e−rtSt and Y =
√
V transforms the above system into

dXt = XtYt dBt

dYt = ηYt dB
Y
t + θYt dt,

(4.23)

where θ = (κ−η2)/2. Assuming a positive initial condition y > 0, the equation

for Y has a pathwise unique positive solution for every η, θ ∈ R.

The system in (4.23) is a particular case of (2.26) with

a(x) = x, η(y) = η y, θ(y) = θ y.

We shall verify that Conditions C1’ and C2’ on page 26 are satisfied in this

context.

Calculating the equation for ξ in (2.27) gives a constant diffusion coefficient

η and, if Zt denotes ξt/η for each t ≥ 0 then

dZt = dW ξ
t +

θ

η2
Z−1
t dt.

We could easily rewrite the last equation as

dZt = dW ξ
t +

φ− 1

2
Z−1
t dt (4.24)

which formally is an equation for a Bessel process with dimension φ = 1 +

2θ/η2 = κ/η2. This equation, and so the equation for ξ, only has a unique
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non-exploding strong solution if φ ≥ 2 and this solution stays positive when

started from a positive initial condition. Hence Condition C1’ holds true.

On the other hand, Condition C2’ requires that limt→∞ Γt =∞ a.s., where

Γt =

∫ t

0

1

ξ2
u

du = η2

∫ t

0

1

Z2
u

du, t ≥ 0.

This is true thanks to Proposition 4.24 with p = 2, provided φ ≥ 2.

Moreover, since Bessel processes are Feller processes (see [39, p446]), it

follows that Z, and so ξ, is a Feller solution.

Therefore, assuming φ ≥ 2 (i.e. κ ≥ 2η2), the conclusion of Theorem

4.2 applies to American-type options (with either finite or infinite horizon)

whenever the corresponding pay-off function g satisfies the stated conditions.

4.3.2 The Heston model

Consider the model for the stock price S and its instantaneous variance V of

Heston [22]:

dSt = St(
√
V t dBt + r dt)

dVt = 2η
√
V t dB

Y
t + λ(κ− Vt) dt,

(4.25)

where η, λ, κ are positive constants and B,BY are Brownian motions with

covariation δ ∈ [−1, 1].

The equation for V describes the so-called Cox-Ingersoll-Ross process (also

known as the square root process) and it is well-known (see [9, p.391]) that,

with a positive initial condition, this equation has a pathwise unique positive

solution provided λκ ≥ 2η2.

Setting Xt = e−rtSt and Y =
√
V transforms the above system into

dXt = X Yt dBt

dYt = η dBY
t +

(
θ1

Yt
− θ2 Yt

)
dt,

(4.26)

where θ1 = (λκ− η2)/2 and θ2 = λ/2. It is clear that the pathwise uniqueness

of the equation for V ensures the pathwise uniqueness of positive solutions of
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the equation for Y .

The system in (4.26) is a particular case of (2.26) with

a(x) = x, η(y) = η, θ(y) =
θ1

y
− θ2 y.

Again, we shall verify that Conditions C1’ and C2’ on page 26 are satisfied

in this context.

Calculating the equation for ξ in (2.27) yields

dξt =
η

ξt
dW ξ

t +

(
θ1

ξ3
t

− θ2

ξt

)
dt (4.27)

and hence Zt = f(ξt), with f(x) = x2/(2η), satisfies

dZt = dW ξ
t +

(
φ− 1

2Zt
− δ
)
dt (4.28)

with φ = θ1/η
2 + 3/2 = κλ

2η2 + 1 and δ = θ2/η = λ
2η

.

Notice that the equation for Z above is that of a Bessel process with drift,

and so by changing to an equivalent probability measure, Z is a Bessel process

with dimension φ. In other words, up to a change of measure, if φ ≥ 2 then

Zt = f(ξt) is the unique, non-exploding strong solution to (4.28) and is strictly

positive a.s.

Since f is a strictly increasing and smooth function and so invertible on

(0,∞), we have that ξt = f−1(Zt) is a positive strong solution to (4.27). We

claim that this is the only solution and so Condition C1’ holds provided φ ≥ 2.

Indeed, if ξ′ also solves (4.27), with the same driving Brownian motion and

same initial condition, then we must have that f(ξ′t) is a solution to (4.28).

But this equation has pathwise uniqueness, that is, f(ξt) = f(ξ′t) for all t ≥ 0

a.s. and this implies that ξt = ξ′t for all t ≥ 0 a.s. because f−1 is injective on

(0,∞).

Finally, the process

Γt =

∫ t

0

1

ξ2
u

du =
1

2η

∫ t

0

1

Zu
du, t ≥ 0,
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satisfies Condition C2’ if φ ≥ 2, by Proposition 4.24 with p = 1.

The Feller property of the Bessel process Z carries over to ξ.

So, as in the previous example, the conclusion of Theorem 4.2 applies to

American-type options (with either, finite or infinite horizon) whenever φ ≥ 2

(or λκ ≥ 2η2) and the corresponding pay-off function g satisfies the stated

conditions.

4.3.3 Price scenarios

In stochastic volatility models, the drift of volatility typically characterizes the

choice of the pricing measure (which is not unique), but there is no definite

criterion telling us which measure should be used (see Hobson [23], [24]).

In this section we deduce that increasing the drift of volatility yields larger

American option prices. This is shown, for instance, by Hobson [24] for Eu-

ropean options with convex payoff; and by Ekström [10] for American options

but in the case Vt = σ(t, St), so that there is not extra source of randomness.

Consider the system in (4.22) (or (4.25)) and suppose that (S(i), V (i)),

i = 1, 2, are the corresponding solutions which differ only in the coefficient

κ = κi > 0 and the initial conditions (S
(i)
0 , V

(i)
0 ) = (x, y(i)) such that y(1) ≤ y(2).

For each i = 1, 2, the associated American option price is (cf. (4.3)):

v(i)(x, y(i)) = sup
0≤τ≤T

E(i)
x,y [e−rτg(S(i)

τ )]

In the previous sections, we verified Conditions D1-D2 on page 31. Now

consider the next situations:

Hull and White model. In the context of Section 4.3.1, assume that 2η2 ≤
κ1 ≤ κ2.

If Z
(i)
t = ξ

(i)
t /η denotes the associated Bessel process with dimension φ(i) =

κ(i)/η2 as in (4.24), then 2 ≤ φ(1) ≤ φ(2).

Heston model. In the context of Section 4.3.2, assume that 2η2/λ ≤ κ1 ≤ κ2.

If Z
(i)
t = (ξ

(i)
t )2/(2η) denotes the associated Bessel process with dimension

φ(i) = κ(i)λ
2η2 + 1 (up to a change of measure) as in (4.28), then 2 ≤ φ(1) ≤ φ(2).
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In either of the above cases, Condition D3 on page 31 is also satisfied since,

by Proposition 4.23,

0 < Z
(1)
t ≤ Z

(2)
t , ∀t ≥ 0, a.s.

Theorem 4.14 Assume that g satisfies (4.6). If the coefficients κ(i), i = 1, 2,

are related as above, then for each x ∈ R+

v(1)(x, y(1)) ≤ v(2)(x, y(2)), for all y(1) ≤ y(2).

Proof. The idea of the proof is outlined in the proof of Theorem 2.22, for which

all Conditions D1-D3 hold in this context. There are some natural changes

of notation. Here,

v(i)(x, y) = sup
ρ∈M(i)

T

Ẽ [e−rΓ
(i)
ρ g(erΓ

(i)
ρ Gρ)], (4.29)

for each i = 1, 2 and using that g satisfies (4.6) we obtain

Ẽ [e−rΓ
(1)
ρ g(erΓ

(1)
ρ Gρ) ≤ Ẽ [e−rΓ

(2)
ρ g(erΓ

(2)
ρ Gρ)] for every ρ ∈M(1)

T .

The last inequality completes the proof because M(1)
T ⊆M

(2)
T .

Remark that there is no continuity assumption on g to obtain the above

comparison.

4.3.4 Properties of American-type option prices

Suppose that the stochastic volatility model (S, V ) is either the Hull & White

model in (4.22) or the Heston model in (4.25). In this setting, V stays positive

a.s. and

St = S0 exp

(
rt+

∫ t

0

√
VsdBs −

1

2

∫ t

0

Vsds

)
, t ≥ 0, a.s. (4.30)

Consider the value of a perpetual American-type option associated to
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(S, V ), represented by

v(x, y) = sup
τ
Ex,y[e

−rτg(Sτ )], (x, y) ∈ R2
+, (4.31)

where the payoff function g is non-negative and the supremum is over all

stopping times with respect to the augmentation of the natural filtration of

(S, V ).

We are implicitly assuming that the support of g restricted to the positive

half-line is non-empty, and we write supp(g) = {x ∈ R+ : g(x) > 0} 6= ∅.
For technical reasons, we further assume that e−ατg(Sτ ) vanishes on the event

{τ =∞} (e.g. if g is bounded).

Proposition 4.15 If g satisfies (4.6) then the function (x, y) 7→ v(x, y) is

strictly positive on R+ × R+.

Proof. Let (x, y) ∈ R2
+ be an arbitrary initial condition for (S, V ).

If x ∈ supp(g) then v(x, y) ≥ g(x) > 0, and we are done.

Let us now suppose that x /∈ supp(g). Given that g satisfies (4.6), neces-

sarily g(x̄) = 0 for all x̄ ≥ x. Indeed, if x̄ ≥ x then we can find a ≥ 1 such

that x̄ = ax and so 0 ≤ g(x̄) ≤ ag(x) = 0.

But supp(g) 6= ∅ by assumption, hence there must exist x < x such that

x ∈ supp(g). Consider the stopping time

τ = inf{t ≥ 0 : St ≤ x} ≤ ∞.

Using that e−rτg(Sτ ) = 0 on the event {τ =∞}, we have that

v(x, y) ≥ Ex,ye
−rτg(Sτ )

= g(x)Ex,ye
−rτI(τ <∞) + Ex,ye

−rτg(Sτ )I(τ =∞)

= g(x)Ex,ye
−rτI(τ <∞) > 0.

The last strict inequality is due to the fact that g(x) > 0 and that τ > 0

with positive probability on the event {τ <∞}. The latter is true because S

has continuous paths and S0 = x > x. The proof is now complete.
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Proposition 4.16 Assume that g is a continuous function satisfying (4.6).

Then, for each x ∈ R+, the American-type option value v(x, y) is a continuous

and non-decreasing function of y.

Proof. From the calculations in Sections 4.3.1 and 4.3.2 we know that, by

Theorem 4.2, the function v(x, ·) is non-decreasing on S = (0,∞). We also

verified that the time-changed diffusion ξ in those examples is a Feller process.

Upon assuming that g is continuous, the proof of the continuity of v(x, ·) is

along the lines of the proofs of Propositions 2.26 and 2.29, with some natural

changes. We require continuous g because we deal with the payoff g(Sτ ) =

g(erτXτ ) instead of g(Xτ ), and recall that the limit arguments in the proofs

of Propositions 2.26 and 2.29 only involve the discount factor.

The following result complements Proposition 4.16 and its proof is identical

to that of Theorem 4.7 so we omit it here.

Proposition 4.17 Assume that g is a convex function. Then, for each y ∈
R+, the function v(·, y) is convex in R+.

Combining Propositions 4.16 and 4.17, we now show that v is jointly con-

tinuous everywhere.

Let us first prepare a lemma borrowed from [4]. We shall use the following

notation: for ρ > 0, I(x; ρ) denotes the open interval (x− ρ, x+ ρ).

Lemma 4.18 Let f : R → R be a convex function, x0 ∈ R and ρ > 0. If

η = supx∈I(x0;ρ) f(x) and α ∈ (0, 1) then

|f(x)− f(x0)| ≤ α( η − f(x0) ), ∀x ∈ I(x0;α ρ).

Theorem 4.19 Assume that g is a non-negative, non-increasing and convex

function. Then the function v(x, y) is jointly continuous on R+ × R+.

Proof. Fix (x0, y0) ∈ R2
+. By Proposition 4.16, v(x, ·) is continuous at y0.

Then it suffices to prove that x 7→ v(x, y) is continuous at x0 uniformly over a

neighborhood of y0.
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Fix ρ > 0 such that I(x0; ρ) ⊂ R+. Since v(·, y) is convex by Proposition

4.17, it is also continuous in I(x0; ρ) and so

η(y) := sup
x∈I(x0;ρ)

v(x, y) <∞.

Moreover, by Lemma 4.18, for any α ∈ (0, 1) the convexity of v(·, y) yields

|v(x, y)− v(x0, y)| ≤ α( η(y)− v(x0, y) ), ∀x ∈ I(x0;α ρ). (4.32)

Now, let U be a neighborhood of y0 such that U×I(x0; ρ) ⊂ R2
+. It follows

that the function v(·, ·) is bounded in U×I(x0; ρ) because v(·, y) is continuous

and v(x, ·) is non-decreasing. This implies that

η := sup
y∈U

η(y) <∞

and we can replace η(y) in (4.32) by η.

Since α > 0 can be made arbitrarily small and does not depend on y, we

conclude that v(·, y) is continuous at x0 uniformly in y ∈ U .

Proof of Lemma 4.18. Fix x ∈ I(x0;α ρ). By the convexity of f we have

that

f(x)− f(x0) = f

(
α

(
x− (1− α)x0

α

)
+ (1− α)x0

)
− f(x0)

≤ αf

(
x− (1− α)x0

α

)
+ (1− α)f(x0)− f(x0)

= α

(
f

(
x0 +

x− x0

α

)
− f(x0)

)
≤ α( η − f(x0) ),

since |x− x0|/α ≤ ρ.

Now set α′ = α/(1 + α), and again by convexity it follows that
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f(x0)− f(x) = f

(
α′
(

(1 + α)x0 − x
α

)
+ (1− α′)x

)
− f(x)

≤ α′f

(
(1 + α)x0 − x

α

)
+ (1− α′)f(x)− f(x)

= α′
(
f

(
x0 +

x0 − x
α

)
− f(x)

)
≤ α′( η − f(x) )

= α′( [η − f(x0)] + [f(x0)− f(x)] ),

where we used that |x0 − x|/α ≤ ρ. From here,

(1− α′)( f(x0)− f(x) ) ≤ α′( η − f(x0) ).

Finally, after multiplying the last inequality by 1 + α, we obtain

f(x0)− f(x) ≤ α( η − f(x0) )

which completes the proof. �

4.3.5 Monotone optimal boundary

As in the previous section, assume that the stochastic volatility model (S, V )

is either the Hull & White model in (4.22) or the Heston model in (4.25).

In this section we concentrate on the American put option, that is, when

g(x) = max{K−x, 0} for some K > 0 in (4.31). All the results of the previous

section hold in this setting.

From the theory of optimal stopping (see Appendix B), the optimal stop-

ping rule for v(x, y) is given by

τ ∗ = inf{t ≥ 0 : v(St, Vt) /∈ C} ≤ ∞, (4.33)

where C = {(x, y) ∈ R2
+ : v(x, y) > g(x)}.

Now, for each fixed y ∈ R+, consider the y-section Cy = {x ∈ R+ : v(x, y) >

g(x)}, and define

b(y) := inf Cy. (4.34)
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The aim of this section is to show that the optimal stopping boundary of

v is characterized by the mapping y 7→ b(y) and that b is non-increasing and

left-continuous in y.

Before stating and proving the main theorem, we show a further property

of v(x, y) in the direction of the variable x, which will be used to deduce the

continuity of b(y) (compare with Proposition 1 in [30]).

We use that max{a− b, 0} ≥ max{a, 0} −max{b, 0}.

Proposition 4.20 For each y ∈ R+, the mapping x 7→ v(x, y)− g(x) is non-

decreasing in (0, K).

Proof. Fix x ∈ (0, K) and let ε > 0 be such that x+ ε < K. Suppose that τ ∗

is optimal for v(x, y). Then

v(x+ ε, y) ≥ Ex+ε,y e
−rτ∗g(Sτ∗) = Ex,y e

−rτ∗g

(
x+ ε

x
Sτ∗

)
= Ex,y e

−rτ∗ max

{
K − x+ ε

x
Sτ∗ , 0

}
= Ex,y e

−rτ∗ max
{
K − Sτ∗ −

ε

x
Sτ∗ , 0

}
≥ Ex,y e

−rτ∗ max {K − Sτ∗ , 0} −
ε

x
Ex,y e

−rτ∗Sτ∗

= v(x, y)− ε

x
Ex,y e

−rτ∗Sτ∗ .

Now, recalling that
∫ t

0
Y 2
s ds < ∞ a.s. for each t ≥ 0 in our examples,

we must have that the process (e−rtSt)t≥0 is a non-negative continuous local

martingale. Hence (e−rtSt)t≥0 is a supermartingale and, in particular,

Ex,y e
−rτ∗Sτ∗ ≤ x.

The previous arguments yield v(x+ ε, y) ≥ v(x, y)− ε.

Finally, since x+ ε < K, we must have that g(x)− g(x+ ε) = ε. From here

we conclude that

v(x+ ε, y)− g(x+ ε) ≥ v(x, y)− g(x)

as required.
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Remark 4.21 Remark that the inequality v(x+ ε, y) ≥ v(x, y)− ε could have

been obtained even if x ≥ K. We only used that x < K in the final part of the

above proof. Instead, we obtain that x 7→ v(x, y) is non-increasing in [K,∞).

By adapting the arguments in [27], we are now ready to show the main

result of this section.

Theorem 4.22 The optimal stopping time τ ∗ is given by

τ ∗ = inf{t ≥ 0 : St ≤ b(Vt)}, (4.35)

where the boundary b(y) satisfies that 0 < b(y) < K, and is a non-increasing

and left-continuous function.

Proof. We split the proof into four parts. We shall use that, by definition,

b(y) = inf Cy = inf {x ∈ R+ : v(x, y) > g(x)}.

Notice that if x ≥ K then necessarily x ∈ Cy because g(x) = 0 and v(x, y) > 0

by Proposition 4.15. Thus Cy 6= ∅ and b(y) ≤ K.

(I). The function y 7→ b(y) is non-increasing.

Since v(x, ·) is non-decreasing by Proposition 4.16, we have that for each

ε > 0,

y ≤ y + ε ⇒ Cy ⊆ Cy+ε ⇒ b(y) ≥ b(y + ε),

proving the claim.

(II). We establish (4.35). To this end it is enough to prove that, for each

y ∈ R+,

Cy = {x ∈ R+ : x > b(y)}.

We know that if x ≥ K then x ∈ Cy.

On the other hand, suppose that x ∈ Cy is such that x < K. Such an x

exists because Cy is open by the continuity of v(·, y) (see Proposition 4.17) and

g, while [K,∞) ⊆ Cy.

Using that x 7→ v(x, y) − g(x) is non-decreasing in (0, K) by Proposition
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4.20, we have that for each ε > 0 such that x+ ε < K,

x < x+ ε ⇒ v(x+ ε, y)− g(x+ ε) > 0 ⇒ (x+ ε) ∈ Cy.

Since Cy is open, b(y) /∈ Cy. This completes the proof.

(III). The boundary b(y) satisfies that 0 < b(y) < K. Since v(x, y) > 0

everywhere and b(y) /∈ Cy,

v(b(y), y) = g(b(y)) > 0.

But g(b(y)) = max{K − b(y), 0} > 0 if and only if 0 < b(y) < K.

(IV). The function y 7→ b(y) is left-continuous.

We know that (b(y), y) ∈ Cc for all y ∈ R+.

Let {yn, y} be a sequence in R+ such that yn ↑ y.

By part (I), b(y) ≤ lim infn b(yn). On the other hand, using that Cc is

closed and that for each n, (b(yn), yn) ∈ Cc, we obtain ( lim supn b(yn) , y) ∈ Cc.
This in turn yields lim supn b(yn) ≤ b(y).

Putting all together, the claim is evident.

4.3.6 Appendix: Bessel processes

We consider some well-known facts about Bessel processes that are used above.

We refer to Chapter XI in [39], Section V.48 in [40], or the survey [18] for a

deeper insight into this class of processes.

Consider the stochastic differential equation

Xt = x+ 2

∫ t

0

√
|Xs| dBs + φ t, (4.36)

where x ≥ 0 and φ ≥ 0. By Theorems IV.2.3 and IV.2.4 in [26] we know that

for each x ≥ 0, there exists a non-exploding weak solution to (4.36). This can

be seen because the coefficients σ(x) = 2
√
|x| and b(x) ≡ φ are continuous

and satisfy the linear growth condition |σ(x)|2 + |b(x)|2 ≤ K(1 + |x|2) Also, by

part (ii) of Theorem IX.3.5 in [39], we know that pathwise uniqueness holds
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for this equation, because

|
√
x−√y|2 ≤ |x− y|, x, y ≥ 0, and

∫ ∞
0+

da

a
= +∞,

which verify the conditions of that theorem.

In other words, the equation in (4.36) has a unique non-exploding strong

solution X = (Xt)t≥0 and it is referred to as the square Bessel process with

dimension φ.

Since Xt ≡ 0 is the solution when x = 0 and φ = 0, by a simple application

of the comparison Theorem IX.3.7 in [39], we have that for φ ≥ 0,

Xt ≥ 0, for all t > 0 a.s.

If φ = 2 then Xt can be represented as the Euclidean norm |Wt|2 of a

two-dimensional Brownian motion W . Given that W does not hit {0} in finite

time with positive probability, the same is true for X. Hence, for φ ≥ 2,

Xt > 0, for all t > 0 a.s., (4.37)

again by Theorem IX.3.7 in [39].

When φ ≥ 2, we can apply Itô’s formula to Zt = f(Xt), with f(x) =
√
x,

by the fact in (4.37) so that we obtain the stochastic differential equation

dZt = dBt +
φ− 1

2Zt
dt, φ ≥ 2. (4.38)

This equation has at least one solution for each initial condition z = x2 > 0,

namely Zt =
√
Xt. It turns out that this is the only solution, because if Z ′

also solves (4.38) (with the same driving Brownian motion) and Z ′0 = z, then

Zt − Z ′t =

∫ t

0

φ− 1

2

(
1

Zs
− 1

Z ′s

)
ds.

Setting Φ(t) = |Zt − Z ′t| and β(t) = φ−1
2Zt Z′t

> 0 we have that, for each t ≥ 0,

0 ≤ Φ(t) ≤
∫ t

0

β(s) Φ(s)ds.
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By Gronwall’s inequality we conclude that Φ(t) ≡ 0, or equivalently, that

Zt ≡ Z ′t for all t ≥ 0.

The unique non-exploding strong solution Z = (Zt)t≥0 to (4.38) is referred

to as the Bessel process with dimension φ.

We used the following elementary comparison result, which is a consequence

of the above discussion:

Proposition 4.23 Let φi, zi, i = 1, 2 be real numbers such that 2 ≤ φ1 ≤ φ2

and 0 < z1 ≤ z2. Let Zi, i = 1, 2 be two Bessel processes with dimension

φi and with respect to the same driving Brownian motion, such that Zi
0 = zi.

Then

0 < Z1
t ≤ Z2

t , ∀ t ≥ 0 a.s.

We also made use of Proposition A.1(ii)-(iii) in [24] in the examples, so we

re-state it here for ease of reference.

Proposition 4.24 (Hobson [24]) Let Z = (Zt)t≥0 be a Bessel process with

dimension φ and such that Z0 > 0. Define Γt ≡ Γ
(p)
t =

∫ t
0
Z−ps ds.

(a) Suppose that φ > 2. Then limt→∞ Γ
(p)
t =∞ if and only if p ≤ 2.

(b) Suppose that φ = 2. Then limt→∞ Γ
(p)
t =∞ for all p.
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Appendix A

Estimates of moments and

integrability

The main goal of this Appendix is to provide sufficient conditions on g and on

the dynamics of (X, Y ) in order to obtain

Ex,y

[
sup

0≤t≤T
e−αt|g(Xt)|

]
<∞ (A.1)

where T ∈ [0,∞].

We first derive some estimates of the moments of the solution to an stochas-

tic differential equation (SDE) with regime-switching coefficients. The proof

of Proposition A.1 below is inspired by ideas in Kyrlov [35], and it is somewhat

an extension of Corollary 2.5.12 in that book.

Estimates of moments of SDE’s with regime-switching

The result of this section is of independent interest, and this is the reason

why we assume the following general set-up.

Let (Wt,Ft) be a d1-dimensional Brownian motion. Suppose that r =

(rt)t≥0 is a continuous-time Markov chain, adapted to (Ft)t≥0, with finite state

space S ⊂ R. The process r determines the regime-switching dynamics.

For d ∈ N and x0 ∈ Rd, x = (xt)t≥0 is a progressively measurable process
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in Rd, with respect to (Ft)t≥0, satisfying that

xt = x0 +

∫ t

0

σs(xs, rs)dWs +

∫ t

0

bs(xs, rs)ds, a.s. (A.2)

where σt(x, r) is a random matrix of dimension d×d1; and bt(x, r) is a random

vector of dimension d.

Proposition A.1 Fix T > 0. Let there exist a constant K > 0 such that

‖σt(x, r)‖+ |bt(x, r)| ≤ K(1 + |x|), for all t ≥ 0, x ∈ Rd, r ∈ S. (A.3)

Then for all t ∈ [0, T ], q ≥ 0, there exists a constant N = N(x0, K, t, q) such

that

E sup
s≤t
|xs|q ≤ N <∞. (A.4)

Remark A.2 The particular case where S is a singleton corresponds to Corol-

lary 2.5.12 in [35].

Proof. Fix an arbitrary t ∈ [0, T ] and q ≥ 0.

We split the proof into three parts.

(I). Assume that xt(ω) is bounded in ω and t.

Notice that

|xt|2 ≤ 4

[
|x0|2 +

∣∣∣∣∫ t

0

σs(xs, rs)dWs

∣∣∣∣2 +

∣∣∣∣∫ t

0

bs(xs, rs)ds

∣∣∣∣2
]
.

The linear growth condition in (A.3) implies the following. First, the

stochastic integral M· =
∫ ·

0
σs(xs, rs)dWs satisfies that

E 〈M〉t = E

∫ t

0

‖σs(xs, rs)‖2ds ≤ 2K2E

∫ t

0

(1 + |xs|2)ds <∞

for all t ≥ 0, since xt is assumed to be bounded. Then M is a martingale.

Second, using Hölder’s inequality,∣∣∣∣∫ t

0

bs(xs, rs)ds

∣∣∣∣2 ≤ t

∫ t

0

|bs(xs, rs)|2ds ≤ 2K2t

∫ t

0

(1 + |xs|2)ds.
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Putting the last assertions together we obtain, after taking supremum over

[0, t] and expectation,

E sup
0≤s≤t

|xs|2 ≤ 4

[
|x0|2 + E sup

0≤s≤t
|Ms|2 + 2K2t E

∫ t

0

(1 + |xs|2)ds

]
≤ 4

[
|x0|2 + 4E|Mt|2 + 2K2t E

∫ t

0

(1 + |xs|2)ds

]
≤ 4

[
|x0|2 + (2K2)4E

∫ t

0

(1 + |xs|2)ds+ 2K2t E

∫ t

0

(1 + |xs|2)ds

]
≤ 4|x0|2 + 8K2(4 + t)

∫ t

0

(1 + E sup
0≤u≤s

|xu|2)ds

where we have used Doob’s inequality, the fact that M2
t −〈M〉t is a martingale

(see for instance [39, II.1.7 and IV.1.3]), the linear growth condition in (A.3),

Fubini’s Theorem and the boundedness of xt.

Now set ϕ(t) = sup0≤s≤t |xs|2, a = 1 + 4|x0|2, and b = 8K2(4 + t), so that

1 + Eϕ(t) ≤ a+ b

∫ t

0

{ 1 + Eϕ(s) }ds.

Then, by Grownwall’s Lemma, we have that 1 + Eϕ(t) ≤ a ebt, that is

E sup
0≤s≤t

|xs|2 ≤ N̄(x0, K, t)

where N̄(x0, K, t) = (1 + 4|x0|2)e8K2t(4+t).

(II). Since xt is continuous and bounded in t, it follows that sups≤t |xs|p =

(sups≤t |xs|)p for any p ≥ 0. Using this equality with p = q and then with

p = 2, we obtain that

E sup
0≤s≤t

|xs|q ≤
(
E sup

0≤s≤t
|xs|2

)q/2
≤ N(x0, K, t, q)

where we also used Hölder’s inequality in the form Eηq ≤ [Eη2]q/2. Here,

N ≡ N(x0, K, t, q) = N̄(x0, K, t)
q/2.

(III). We now assume the general case for xt(ω).

For each R > 0, consider the stopping time τR = inf{t ≥ 0 : |xt| ≥ R}.
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Then the stopped process xt∧τR(ω) is bounded in ω, t and moreover,

xt∧τR = x0 +

∫ t∧τR

0

σs(xs, rs)dWs +

∫ t∧τR

0

bs(xs, rs)ds

= x0 +

∫ t

0

I{s < τR}σs(xs∧τR , rs∧τR)dWs

+

∫ t

0

I{s < τR}bs(xs∧τR , rs∧τR)ds.

Notice that xt∧τR solves (A.2) only that with the coefficients σs(x, r), bs(x, r)

replaced by I{s < τR}σs(x, r), I{s < τR}bs(x, r), respectively. However, for

each fixed ω,

‖I{s < τR}σs(x, r)‖ ≤ ‖σt(x, r)‖, and |I{s < τR}bt(x, r)| ≤ |bt(x, r)|.

Then the linear growth condition in (A.3) is satisfied for the coefficients of

xt∧τR .

From parts (I)-(II), we know that

E sup
0≤s≤t

|xs∧τR |q ≤ N, for each R > 0.

Given that limR→∞ τR =∞ a.s, it follows that limR→∞ |xs∧τR |q = |xs|q a.s. by

continuity of the paths of xt. As this is true for each s ≤ t, we must have

|xs|q ≤ limR→∞ supu≤t |xu∧τR |q for each s ≤ t. Hence

sup
0≤s≤t

|xs|q ≤ lim
R→∞

sup
0≤s≤t

|xs∧τR |q, a.s.

Finally, Fatou’s Lemma implies

E sup
0≤s≤t

|xs|q ≤ lim inf
R→∞

E sup
0≤s≤t

|xs∧τR |q ≤ N,

and the proof of Proposition A.1 is complete.
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Sufficient conditions for integrability

In this section we provide sufficient conditions in order for (A.1) to hold.

To this end, we shall adapt Proposition A.1 to the setting in this thesis.

Fix the initial condition (x, y) ∈ R× S and a time horizon T ∈ [0,∞].

In the regime-switching case, we typically work with

Xt = x+

∫ t

0

a(Xs)Ys dBs +

∫ t

0

µ(Xs) ds, t ≥ 0, Px,y − a.s.

where the process Y is a continuous-time, irreducible Markov chain on the

finite state space S = {yi : i = 1, 2, . . . ,m} ⊂ (0,∞) with Q-matrix (q[yi, yj]).

In the notation of Proposition A.1,

d = 1, xt = Xt, rt = Yt, ‖σ(x, r)‖2 = a2(x)r2, |b(x, y)| = |µ(x)|.
(A.5)

In the diffusion case, we typically work with the system

Xt = x+

∫ t

0

a(Xs)Ys dBs+

∫ t

0

µ(Xs) ds, Yt = y+

∫ t

0

η(Ys)dB
Y
s +

∫ t

0

θ(Ys)ds

for all t ≥ 0, Px,y- a.s. where 〈B,BY 〉t = δ t for some δ ∈ [−1, 1].

In the notation of Proposition A.1,

d = 1, xt = (Xt, Yt), rt = constant

‖σ(x, y)‖2 = a2(x)y2 + η2(y), |b(x, y)|2 = µ(x)2 + θ(y)2.
(A.6)

We assume the following:

(S1) The measurable gain function g has polynomial growth, that is,

|g(x)| ≤ C(1 + |x|q)

for some constants C, q ≥ 0.

(S2) The measurable functions a, µ, η and θ satisfy a liner growth condition.
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(S3) If T =∞, further assume that

lim
t→∞

e−αt|g(Xt)| = 0 a.s.

With Assumption (S1), we have that for each T ′ <∞,

Ex,y

[
sup

0≤t≤T ′
e−αt|g(Xt)|

]
≤ C + Ex,y

[
sup

0≤t≤T ′
|Xt|q

]
. (A.7)

Denote by C∗ the right-hand side of (A.7). Then we also have that

Ex,y

[
sup
t≥0

e−αt|g(Xt)|
]
≤ C∗ + Ex,y

[
sup
t≥T ′

e−αt|g(Xt)|
]
. (A.8)

Under Assumption (S2), it is easy to see that the linear growth condition

in (A.3) holds true in either of the cases (A.5) or (A.6). Hence C∗ is finite,

thanks to Proposition A.1.

If the horizon T is infinite, then Assumption (S3) implies that we can

choose a sufficiently large T ′ such that

sup
t≥T ′

e−αt|g(Xt)| ≈ 0 a.s.

This implies that the right-hand side of (A.8) is finite.
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Appendix B

Key results from optimal

stopping

Fix a time horizon T ∈ [0,∞]. Assume that (X, Y ) is a strong Markov process

defined on (Ω,F , Px,y, (x, y) ∈ E), with (augmented) natural filtration F =

(Ft)t≥0.

We shall use the common notation τ ∈ FT (resp. τ ∈ F[t,T ]) to mean a

stopping time τ : Ω → [0,∞] with respect to F subject to 0 ≤ τ ≤ T (resp.

t ≤ τ ≤ T ) a.s.

Consider the value function

v(x, y) = sup
τ∈FT

Ex,y [e−ατg(Xτ )− Cτ ], (x, y) ∈ R× S. (B.1)

where

Ct =

∫ t

0

e−α sc(Xs) ds,

With this notation, v is like in (2.1) when c ≡ 0, or like in (2.53) when c ≥ 0

and bounded.

Recall that we are assuming the integrability condition in (1.3).

We shall state some classical results from the theory of optimal stopping,

mainly based on Theorem I.2.2 in [37]. But before that, let us introduce some

notation:
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Define the process U = (Ut)t≥0 by

Ut = e−α tg(Xt)− Ct

and V = (Vt)0≤t≤T to be the so-called Snell envelope of U with respect to the

filtration F,

Vt = ess sup
τ∈F[t,T ]

Ex,y [Uτ | Ft].

We will also use U(t, τ), which is defined for each τ ∈ F[t,T ] as

U(t, τ) := e−α τg(Xτ )−
∫ τ

t

e−α sc(Xs) ds.

Notice that Vt may also be written as

Vt = ess sup
τ∈F[t,T ]

Ex,y [U(t, τ) | Ft]−
∫ t

0

e−α sc(Xs) ds,

and that Vt ≥ Ut Px,y-a.s. for each t ≥ 0 and V0 = v(x, y).

Lemma B.1 The process V = (Vt)0≤t≤T is the smallest F-supermartingale

which dominates U .

The proof of this Lemma is very similar to that of part 1o of Theorem 2.2

in [37]. The only difference is that here, for each fixed t ≥ 0, one shows the

existence of a sequence {τk : k ≥ 1} in F[t,T ] such that,

ess sup
τ∈F[t,T ]

Ex,y [U(t, τ) | Ft] = lim
k→∞

Ex,y [U(t, τk) | Ft], (B.2)

where the limit is monotonously increasing. The rest of the arguments are the

same after the natural changes in notation.

The following result is used in the proof of Propositions 2.11 and 2.21 and

states that the stopping times in (B.1) may be taken with respect to a larger

filtration G, provided (X, Y ) is a G-strong Markov process.
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Proposition B.2 Suppose that (X, Y ) is a strong Markov process with respect

a filtration G = (Gt)t≥0, and Ft ⊆ Gt for all t ≥ 0, with G0 = F0. Then

v(x, y) = sup
τ∈GT

Ex,y [e−ατg(Xτ )− Cτ ].

Proof. Let Ṽ = (Ṽt)t≥0 be defined as

Ṽt = ess sup
τ∈G[t,T ]

Ex,y [U(t, τ) | Gt]−
∫ t

0

e−α sc(Xs) ds,

so that Ṽ is the smallest G-supermartingale which dominates U .

Since Ft ⊆ Gt, it is clear that V0 ≤ Ṽ0.

We will show that V is a G-supermartingale, which implies that Ṽt ≤ Vt

a.s. for each t ≥ 0. In particular, this yields that V0 = Ṽ0, proving the result.

For each t ≥ 0, the terms on the right-hand side of (B.2) satisfy that

Ex,y [U(t, τk) | Ft] = Ex,y [U(t, τk) | σ(Xt, Yt)] = Ex,y [U(t, τk) | Gt], k ≥ 1,

by the strong Markov property of (X, Y ) with respect to both, F and G.

If u ≤ t then

Ex,y[Vt | Gu] =Ex,y

[
lim
k→∞

Ex,y [U(t, τk) | Ft]−
∫ t

0

e−α sc(Xs) ds | Gu
]

=Ex,y

[
lim
k→∞

Ex,y [U(t, τk) | Gt]−
∫ t

0

e−α sc(Xs) ds | Gu
]

=Ex,y

[
lim
k→∞

Ex,y

[
U(t, τk)−

∫ t

0

e−α sc(Xs) ds | Gt
]
| Gu

]
= lim

k→∞
Ex,y

[
Ex,y

[
U(t, τk)−

∫ t

0

e−α sc(Xs) ds | Gt
]
| Gu

]
= lim

k→∞
Ex,y

[
U(t, τk)−

∫ t

0

e−α sc(Xs) ds | Gu
]

where we have used monotone convergence.
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Now, by the linearity of the Lebesgue integral,

Ex,y

[
U(t, τk)−

∫ t

0

e−α sc(Xs) ds | Gu
]

=Ex,y

[
U(u, τk) +

∫ t

u

e−α sc(Xs) ds−
∫ t

0

e−α sc(Xs) ds | Gu
]

=Ex,y

[
U(u, τk)−

∫ u

0

e−α sc(Xs) ds | Gu
]

=Ex,y [U(u, τk) | Gu]−
∫ u

0

e−α sc(Xs) ds

=Ex,y [U(u, τk) | Fu]−
∫ u

0

e−α sc(Xs) ds.

Putting all together,

Ex,y[Vt | Gu] = lim
k→∞

Ex,y [U(u, τk) | Fu]−
∫ u

0

e−α sc(Xs) ds

≤ ess sup
τ∈F[u,T ]

Ex,y [U(u, τ) | Fu]−
∫ u

0

e−α sc(Xs) ds = Vu.

Hence V is a G-supermartingale, and the proof is complete.

It is interesting that in the previous statements there is no need to impose

any assumption on the function g other than measurable. However, for the

next result which is used in Section 3.2, we add the assumption that g is

upper semi-continuous so that the gain process U = (Ut)0≤t≤T has upper

semi-continuous paths.

Let τ ∗ be the first time that V coincides with U , that is,

τ ∗ = inf{0 ≤ t ≤ T : Vt = Ut}.

If T <∞ then VT = UT and so τ ∗ ≤ T <∞ a.s. Otherwise, τ ∗ ≤ ∞.

Theorem B.3 Suppose that τ ∗ < ∞ Px,y-a.s. and that g is an upper semi-

continuous function. Then τ ∗ attains the supremum in (B.1), the process

V = (Vt)0≤t≤T is the smallest F-supermartingale which dominates U , and the

stopped process V·∧τ∗ = (Vt∧τ∗)0≤t≤T is an F-martingale.

We refer to Theorem 2.2 in [37] for a proof: simply replace Gt and St by
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Ut and Vt, respectively.

Remark B.4 When T = ∞, the strong Markov property of (X, Y ) implies

that

ess sup
τ∈F[t,∞]

Ex,y [U(t, τ) | Ft] = ess sup
τ∈F[t,∞]

Ex,y [e−ατg(Xτ )−
∫ τ

t

e−αsc(Xs)ds | Ft]

= e−αt ess sup
τ∈F[t,∞]

Ex,y [e−α(τ−t)g(Xτ )−
∫ τ

t

e−α(s−t)c(Xs)ds | Ft]

= e−αtv(Xt, Yt).

So, in fact,

Vt = e−αtv(Xt, Yt)−
∫ t

0

e−α sc(Xs) ds. (B.3)

The latter implies that Vt = Ut if and only if v(Xt, Yt) = g(Xt). As a

consequence, τ ∗ takes the form

τ ∗ = inf{ t ≥ 0 : v(Xt, Yt) = g(Xt) } ≤ ∞.

In Section 3.2, we assume that limt→∞ e
−αtg(Xt) = 0 a.s. In this case, it is

readily seen that both, U∞ := limt→∞ Ut and U(t,∞) := lims→∞ U(t, s), exist

because c is bounded, and so the result in Theorem B.3 is not affected when

τ ∗ =∞ with positive probability.

The following Lemma is a by-product of the strong Markov property and

it is used in the proofs of Propositions 3.3 and 3.4.

Lemma B.5 Suppose that T =∞. Fix (x, y) ∈ E and assume that g is upper

semi-continuous and satisfies that limt→∞ e
−αtg(Xt) = 0 a.s. Then for every

finite stopping time τ such that τ ≤ τ ∗,

Ex,y Vτ = Ex,y Vτ∗ = v(x, y),

where V is of the form in (B.3).

Proof. By Theorem B.3 and Remark B.4, it follows that

v(x, y) = Ex,y

(
e−ατ

∗
g(Xτ∗)−

∫ τ∗

0

e−αsc(Xs)ds

)
= Ex,y Vτ∗ .
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Since limt→∞ e
−αtg(Xt) = 0 a.s. we have that

Ex,y Vτ = Ex,y

[
e−ατ EXτ ,Yτ

(
e−ατ

∗
g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs)ds

)]
− Ex,y

[∫ τ

0

e−αsc(Xs)ds

]
Let us now concentrate on the first expectation of the right-hand side of this

equality. We have that

EXτ ,Yτ

(
e−ατ

∗
g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs)ds

)
= Ex,y

[(
e−ατ

∗
g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs)ds

)
◦ θτ | Fτ

]
= Ex,y

[
e−α(τ∗−τ)g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs+τ )ds | Fτ
]

= Ex,y

[
e−α(τ∗−τ)g(Xτ∗)I(τ ∗ <∞)− eατ

∫ τ∗

τ

e−αsc(Xs)ds | Fτ
]
,

where θτ shifts the paths by τ .

Given that
∫ τ

0
e−αsc(Xs)ds is Fτ -measurable, we obtain that

Ex,y Vτ = Ex,y

[
Ex,y

[
e−ατ

∗
g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs)ds | Fτ
] ]

= Ex,y

[
e−ατ

∗
g(Xτ∗)I(τ ∗ <∞)−

∫ τ∗

0

e−αsc(Xs)ds

]
= Ex,yVτ∗ ,

which completes the proof.

We remark that the optional sampling Theorem cannot be used in the case

that τ ∗ is unbounded, unless the martingale V·∧τ∗ is uniformly integrable.

Since we are assuming the integrability condition in (1.3) and that c is

bounded, we can show that V·∧τ∗ is indeed uniformly integrable. Then the

following is an alternative proof to the above Lemma under (1.3), although

the strong Markov property is again the main tool.

Alternative proof of Lemma B.5. It is enough to show that V·∧τ∗ is uniformly
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integrable. Then we can use Theorem II.3.2 in [39].

The fact that c is non-negative and bounded together with the strong

Markov property of the (X, Y ) imply that, on the event {t < τ ∗}, Vt∧τ∗ is

bounded above by∣∣∣∣e−αtv(Xt, Yt)−
∫ t

0

e−αsc(Xs)ds

∣∣∣∣ ≤ e−αt|v(Xt, Yt)|+
∫ t

0

e−αsc(Xs)ds

≤ e−αtEXt,Yt

(∣∣∣∣e−ατ∗g(Xτ∗)−
∫ τ∗

0

e−αsc(Xs)ds

∣∣∣∣)+

∫ t

0

e−αsc(Xs)ds

≤ e−αtEXt,Yt

[
sup
s≥0

{
e−αs |g(Xs)|+

∫ s

0

e−αuc(Xu)du

}]
+

∫ t

0

e−αsc(Xs)ds

= Ex,y

[
sup
s≥0

e−α(s+t) |g(Xs+t)|+
∫ ∞
t

e−αuc(Xu)du | Ft
]

+

∫ t

0

e−αsc(Xs)ds

≤ Ex,y

[
sup
s≥0

e−αs |g(Xs)|+
∫ ∞

0

e−αuc(Xu)du | Ft
]

≤ Ex,y

[
sup
s≥0

e−αs |g(Xs)| | Ft
]

+D <∞.

where we have used the triangle inequality, the integrability condition (1.3) on

g, and D > 0 is some constant due to the assumption that c is bounded.

On the event {t ≥ τ ∗},

Vt∧τ∗ = Vτ∗ = e−ατ
∗
g(Xτ∗)−

∫ τ∗

0

e−αsc(Xs)ds.

Therefore, setting S∗ = sups≥0 e
−αs |g(Xs)|+D, the collection of conditional

expectations {Ex,y[S∗ | Ft] : t ≥ 0} is uniformly integrable. Moreover,

|Vt∧τ∗| ≤ Ex,y[S
∗ | Ft],

from which we conclude that {Vt∧τ∗ : t ≥ 0} is uniformly integrable as well,

as required. �

To finish this Appendix and to complete the exposition, let us consider

the finite horizon case, T < ∞. In this case, we shall need to emphasize the

dependance of the value function v on the time to expiration:

112



v(x, y, t) = sup
τ∈Ft

Ex,y[ e
−ατg(Xτ )− Cτ ], 0 ≤ t ≤ T. (B.4)

Notice that v(x, y, 0) = g(x) and v(x, y, T ) = v(x, y).

Remark B.6 When T < ∞, the strong Markov property of (X, Y ) implies

that

ess sup
τ∈F[t,T ]

Ex,y [U(t, τ) | Ft] = ess sup
τ∈F[t,T ]

Ex,y [e−ατg(Xτ )−
∫ τ

t

e−αsc(Xs)ds | Ft]

= e−αt ess sup
τ∈F[t,T ]

Ex,y [e−α(τ−t)g(Xτ )−
∫ τ

t

e−α(s−t)c(Xs)ds | Ft]

= e−αt ess sup
τ∈F[0,T−t]

EXt,Yt [e−ατg(Xτ )−
∫ τ

0

e−αsc(Xs)ds]

= e−αtv(Xt, Yt, T − t).

So, in fact,

Vt = e−αtv(Xt, Yt, T − t)−
∫ t

0

e−α sc(Xs) ds. (B.5)

The latter implies that Vt = Ut if and only if v(Xt, Yt, T − t) = g(Xt). As

a consequence, τ ∗ takes the form

τ ∗ = inf{ 0 ≤ t ≤ T : v(Xt, Yt, T − t) = g(Xt) }.

Moreover, the previous reasoning and the form of v(x, y, t) also yields that

for each t ∈ [0, T ],

τ ∗t = inf{ 0 ≤ s ≤ t : v(Xs, Ys, t− s) = g(Xs) }

is optimal for v(x, y, t).

Unlike the infinite horizon case in which the optimal time to stop may be

infinite, the following Lemma is a straightforward consequence of Theorem B.3

and the optional sampling Theorem.

Lemma B.7 Suppose that T <∞. Fix (x, y, t) ∈ E × [0, T ] and assume that
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g is upper semi-continuous. Then for every stopping time τ such that τ ≤ τ ∗t ,

Ex,y V
t
τ = Ex,y V

t
τ∗t

= v(x, y, t),

where V t
· is given by

V t
s = e−αsv(Xs, Ys, t− s)−

∫ s

0

e−αuc(Xu) du, 0 ≤ s ≤ t.

Proof. Theorem B.3 establishes that the process (V t
s∧τ∗t

)s≤t is a martingale.

The result holds by the optional sampling Theorem, because τ ∗t ≤ t a.s.
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