Extendability of Eigenvalues for Continuous Families of Self-Adjoint Operators

Alexander Y. Gordon^{*†} and Elijah Ray[‡]

Department of Mathematics and Statistics University of North Carolina at Charlotte 9201 University City Blvd, Charlotte, NC 28223, U.S.A.

Abstract

We consider a continuous family $\{A_s\}_{s\in S}$ of self-adjoint operators in a separable Hilbert space parametrized by a complete metric space S. It is well known that simple isolated eigenvalues behave "well" under small changes of the parameter – they change continuously and do not disappear. On the other hand, eigenvalues embedded in the essential spectrum can display very "bad" behavior. Nevertheless, it turns out that for a Baire typical s all eigenvalues of A_s (if any) are *extendable*, that is, each of them belongs to a continuous branch of the (multivalued) eigenvalue function.

2010 Mathematics Subject Classification: 47B25

 $Key\ words:$ self-adjoint operator, operator family, eigenvalue, continuous branch

^{*}E-mail: aygordon@uncc.edu

[†]Corresponding author

[‡]E-mail: eray10@uncc.edu

1 Introduction and the main result

Suppose $\{A_s\}_{s\in S}$ is a family of self-adjoint operators in a Hilbert space \mathcal{H} parametrized by a metric space S and Q is a subset of \mathbb{R} . If $E^* \in Q$ is an eigenvalue of A_{s^*} , we say E^* is *Q*-extendable provided there is an open neighborhood U of s^* and a continuous mapping $s \mapsto E(s) \colon U \to Q$ with the property that for each $s \in U$, E(s) is an eigenvalue of A_s and $E(s^*) = E^*$.

The main result of the present work is the following statement.

Theorem 1 Let S be a complete metric space, \mathcal{H} a separable Hilbert space, Q an F_{σ} set in \mathbb{R} , and $\{A_s\}_{s\in S}$ a family of self-adjoint operators that is continuous in the strong resolvent sense (i.e., for each $z_0 \in \mathbb{C} \setminus \mathbb{R}$ and $x \in \mathcal{H}$, the mapping $s \mapsto (A_s - z_0 I)^{-1} x \colon S \to \mathcal{H}$ is continuous). Then there is a dense G_{δ} set $S_0 \subset S$ such that for all $s^* \in S_0$ any eigenvalue E^* of A_{s^*} that belongs to Q is Q-extendable.

Remark. Suppose the operators A_s are bounded, have only simple isolated eigenvalues, and the mapping $s \mapsto A_s$ is continuous in the norm sense. Then the conclusion of Theorem 1 is obvious. It becomes nontrivial if there may be eigenvalues embedded in the essential spectrum (a common phenomenon in the theory of random and almost-periodic operators [1], [7]).

A property of a point $s \in S$ is said to be *Baire typical* (or *generic*) if there is a dense G_{δ} subset of S whose points all have that property.

Theorem 1 strengthens the main result of [4] where the following alternative was established: in the setting of Theorem 1, either (i) for a Baire typical s the operator A_s has no eigenvalues, or (ii) there is an open set $U \subset S$ and an eigenvalue E(s) of A_s ($s \in U$) which is continuous in s.

Applications of this result include the generic absence of eigenvalues for certain ergodic families of one-dimensional Schrödinger operators (see [4]). Another application of this statement and of a closely related statement from [4] involving eigenvectors (see Corollary 2 below) is a unified explanation of such seemingly unrelated results as that of [2], [3], on the one hand, and that of [5], on the other (see [4]).

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1. In Section 3, we consider the case where the operators A_s can have only simple eigenvalues. Here, we will formulate and prove an extension of Theorem 1 which includes eigenvectors.

2 The proof

1. The F_{σ} set Q can be represented as the union of an increasing sequence of compact sets. Therefore, it suffices to prove Theorem 1 under the assumption that Q is compact. From now on we assume that this is the case.

Consider the topological product

$$\mathcal{L} := S \times Q \times B,$$

where $B = \{y \in \mathcal{H} \mid ||y|| \leq 1\}$ is the unit ball in the Hilbert space \mathcal{H} endowed with its weak topology. Note that \mathcal{L} is a product of two completely metrizable spaces S and $Q \times B$, the latter being compact.

Consider a set

$$\mathcal{R} := \{ \eta = \langle s, E, y \rangle \in \mathcal{L} \mid A_s y = Ey, \ y \neq 0 \}.$$

Let $\{g_k\}_{k=1}^{\infty}$ be a dense sequence in the unit sphere of \mathcal{H} , and consider the following subset of \mathcal{R} :

$$\mathcal{R}_k := \left\{ \eta = \langle s, E, y \rangle \in \mathcal{L} \mid A_s y = Ey, \ (y, g_k) = \frac{3}{4} \right\}.$$
(1)

2. The set \mathcal{R}_k is closed in \mathcal{L} .

To show this, we should verify that if

$$\mathcal{R}_k \ni \eta_j = \langle s_j, E_j, y_j \rangle \to \eta = \langle s, E, y \rangle \in \mathcal{L} \quad \text{as} \quad j \to \infty,$$

then $\eta \in \mathcal{R}_k$. That $(y, g_k) = \frac{3}{4}$ is obvious, since $y_j \xrightarrow{w} y$ (by \xrightarrow{w} we denote the weak convergence in \mathcal{H}). To check that $A_s y = Ey$, or equivalently, $(A_s - z_0 I)^{-1} y = (E - z_0)^{-1} y$, where $z_0 \in \mathbb{C} \setminus \mathbb{R}$, we pass to the limit in the equation $(A_{s_j} - z_0 I)^{-1} y_j = (E_j - z_0)^{-1} y_j$, using the strong convergence of the operator $(A_{s_j} - z_0 I)^{-1}$ to $(A_s - z_0 I)^{-1}$ and relations $y_j \xrightarrow{w} y$ and $E_j \to E$. **3.** Let

$$Z_k := \operatorname{pr}_S(\mathcal{R}_k) \tag{2}$$

(by pr_S , $\operatorname{pr}_{S \times Q}$, etc. we denote the corresponding projections of the product $\mathcal{L} = S \times Q \times \mathcal{H}$ onto $S, S \times Q$, etc.).

The set Z_k is closed in S.

This is a special case of the following statement.

Lemma 1 If X and Y are topological spaces, Y is compact, and C is a closed subset of $X \times Y$, then $pr_X(C)$ is closed.

Denote by F_k the boundary of the set Z_k . Since F_k is closed and nowhere dense, the set

$$S_0 := S \setminus \bigcup_{k=1}^{\infty} F_k \tag{3}$$

is a dense G_{δ} set.

4. If $\eta = \langle s, E, y \rangle \in \mathcal{R}_k$ and $\tilde{\eta} = \langle s, \tilde{E}, \tilde{y} \rangle \in \mathcal{R}_k$, then $E = \tilde{E}$.

Proof. We have $A_s y = Ey$ and $A_s \tilde{y} = \tilde{E}\tilde{y}$, so that if $E \neq \tilde{E}$, then y and \tilde{y} are orthogonal. Putting z = y/||y|| and $\tilde{z} = \tilde{y}/||\tilde{y}||$, we have $||z|| = ||\tilde{z}|| = 1$, $(z, \tilde{z}) = 0$ and $|(z, g_k)| \geq \frac{3}{4}$, $|(\tilde{z}, g_k)| \geq \frac{3}{4}$. By Bessel's inequality $||g_k||^2 \geq (\frac{3}{4})^2 + (\frac{3}{4})^2 > 1$, which is impossible since $||g_k|| = 1$.

The statement just proved implies that in the set

$$\mathcal{G}_k := \operatorname{pr}_{S \times O}(\mathcal{R}_k)$$

the second component of each pair $\langle s, E \rangle$ is uniquely determined by its first component; hence \mathcal{G}_k is the graph of a function

$$s \mapsto E_k(s) \colon Z_k \to Q$$
 (4)

(obviously, $\operatorname{pr}_{S}(\mathcal{G}_{k}) = \operatorname{pr}_{S}(\mathcal{R}_{k}) = Z_{k}$).

Again by Lemma 1, the set \mathcal{G}_k is closed. Therefore, in view of the following lemma, the function $E_k(\cdot)$, having a closed graph, is continuous.

Lemma 2 If X and Y are topological spaces, Y is compact, and a mapping $f: X \to Y$ has a closed graph, then f is continuous.

5. Suppose s^* belongs to the set S_0 defined by (3) and $E^* \in Q$ is an eigenvalue of A_{s^*} . Then there exists a vector $y \in \mathcal{H}$ with ||y|| = 1 such that $A_{s^*}y = E^*y$. Pick an element g_k of the sequence $\{g_l\}_{l=1}^{\infty}$ so close to y that $|a| > \frac{3}{4}$ where $a := (y, g_k)$. Let $y^* := (\frac{3}{4a}) y$. Then $(y^*, g_k) = \frac{3}{4}$ and $||y^*|| < 1$ which implies that $\langle s^*, E^*, y^* \rangle \in \mathcal{R}_k$.

It follows that $s^* \in Z_k$ and $\langle s^*, E^* \rangle \in \mathcal{G}_k$. The latter inclusion means that $E^* = E_k(s^*)$, where the function $E_k \colon Z_k \to Q$ is continuous. The inclusions $s^* \in Z_k$ and $s^* \in S_0$ imply that s^* belongs to the set $U_k = Z_k \setminus F_k$ – the interior of Z_k . Putting $U := U_k$ and defining the function $E(\cdot)$ as the restriction of $E_k(\cdot)$ to U completes the proof of Theorem 1.

Corollary 1 [4] Let $\{A_s\}_{s\in S}$ be a family of operators which satisfies the conditions of Theorem 1, and Q an F_{σ} subset of \mathbb{R} . Let Z be the set of all $s \in S$ for which the operator A_s has at least one eigenvalue in Q. An alternative takes place: either (i) Z is a meager set, or

(ii) there exist a nonempty open set $U \subset Z$ and a continuous function

$$s \mapsto E(s) \colon U \to Q$$

such that for each $s \in U$, E(s) is an eigenvalue of A_s .

Proof. Suppose the set Z is not meager. Then its intersection with the dense G_{δ} set S_0 of Theorem 1 is nonempty. Let $s^* \in Z \cap S_0$. Since $s^* \in Z$, the operator A_{s^*} has at least one eigenvalue E^* in the set Q; and since $s^* \in S_0$, that eigenvalue is Q-extendable, which gives (ii).

3 The case of simple eigenvalues

In the case where all eigenvalues of the operators A_s are simple, the statement of Theorem 1 can be strengthened by including eigenvectors.

Theorem 2 Let $\{A_s\}_{s\in S}$ be a family of operators that satisfies the conditions of Theorem 1, and Q an F_{σ} subset of \mathbb{R} . Assume, in addition, that all eigenvalues of the operators A_s are simple. Then there is a dense G_{δ} set $S_1 \subset S$ such that for any triple $\langle s^*, E^*, y^* \rangle \in S_1 \times Q \times (\mathcal{H} \setminus \{0\})$ with $A_{s^*}y^* = E^*y^*$ there exist an open neighborhood U of s^* and a mapping $s \mapsto$ $\langle E(s), y(s) \rangle \colon U \to Q \times (\mathcal{H} \setminus \{0\})$ with the following properties:

- (a) $A_s y(s) = E(s)y(s)$ for all $s \in U$;
- (b) the mapping $s \mapsto E(s)$ is continuous;
- (c) the mapping $s \mapsto y(s)$ is weakly continuous;
- (d) $E(s^*) = E^*;$
- (e) $y(s^*) = y^*;$
- (f) $||y(s) y(s^*)|| \to 0$ as $U \ni s \to s^*$.

Proof. In what follows, we use the objects and notation introduced in the proof of Theorem 1. We can assume again that the set Q is compact.

1. Suppose s^* belongs to the set S_0 defined by (3) and $A_{s^*}y^* = E^*y^*$, where $E^* \in Q$ and $y^* \neq 0$. We can select k and scale y^* (like we did before) so that $\langle s^*, E^*, y^* \rangle \in \mathcal{R}_k$.

For each point s of $Z_k = \operatorname{pr}_S(\mathcal{R}_k)$, there is only one triple $\langle s, E, y \rangle \in \mathcal{R}_k$ with the given s. (The uniqueness of E was established in the proof of Theorem 1; the uniqueness of y follows from the simplicity of the eigenvalue E of A_s and the equality $(y, g_k) = \frac{3}{4}$ (see (1)).)

Consequently, the set \mathcal{R}_k is the graph of a mapping $s \mapsto \langle E_k(s), y_k(s) \rangle$: $Z_k \to Q \times B$, which is continuous by Lemmas 1 and 2. This means that the functions $E_k(\cdot)$ and $y_k(\cdot)$ on Z_k are continuous and weakly continuous, respectively. Therefore, the restriction of the mapping $Z_k \ni s \mapsto \langle E_k(s), y_k(s) \rangle \in$ $Q \times B$ to the open set $U_k = \operatorname{int} Z_k$ has properties (a) – (e).

2. Fix an orthonormal basis e_1, e_2, \ldots of the Hilbert space \mathcal{H} . The function $q_k(s) := \|y_k(s)\|^2$ $(s \in Z_k)$ is the pointwise limit of a sequence of continuous functions: $q_k(s) = \lim_{n \to \infty} q_k^{(n)}(s)$, where

$$q_k^{(n)}(s) = \sum_{j=1}^n |(y_k(s), e_j)|^2$$

Consequently, there is a dense G_{δ} set $X_k \subset Z_k$ such that the function $q_k(\cdot)$ is continuous at all points of X_k (see [6, Theorem 7.3]).

Let $Y_k := Z_k \setminus X_k$. This set is meager. Therefore, the set $S_0 \setminus \bigcup_{k=1}^{\infty} Y_k$ contains a dense G_{δ} set, S_1 .

If $s^* \in Z_k$ belongs to S_1 , then $s^* \in X_k \cap U_k$. Therefore, as $U_k \ni s \to s^*$, $y_k(s) \xrightarrow{w} y_k(s^*)$ and $||y_k(s)|| \to ||y_k(s^*)||$ hence $||y_k(s) - y_k(s^*)|| \to 0$. This completes the proof of Theorem 2.

Corollary 2 Let $\{A_s\}_{s\in S}$ be a family of operators that satisfies the conditions of Theorem 1, and Q an F_{σ} subset of \mathbb{R} . Also assume that all eigenvalues of the operators A_s are simple. Then an alternative takes place: either (i) for all Baire typical s, the operator A_s has no eigenvalues in Q, or

(ii) there is a non-empty open set $U \subset Z$ and a mapping $U \ni s \mapsto \langle E(s), y(s) \rangle \in Q \times (\mathcal{H} \setminus \{0\})$ such that

(a) $A_s y(s) = E(s)y(s)$ for all $s \in U$;

(b) the function $E(\cdot)$ is continuous;

(c) the function y(s) is weakly continuous;

(d) for all points s^* in a dense G_{δ} subset of U we have $||y(s) - y(s^*)|| \to 0$ as $U \ni s \to s^*$.

This result was used in [4] to derive (in a very different way than their original proof) the following theorem of Jitomirskaya and Simon [5]. Let $v_0(\cdot)$ be a real-valued almost periodic function on \mathbb{R} , and $H(v_0)$ its hull (i.e., the set of uniform limits of its shifts endowed with the topology of uniform convergence). If the function $v_0(\cdot)$ is even, then for a Baire typical element v of $H(v_0)$ the Schrödinger operator $A_v = -d^2/dx^2 + v(x)$ acting in $L^2(\mathbb{R})$ has no eigenvalues. The $l^2(\mathbb{Z})$ version of this result was also proved in [5].

The question whether the same is true for any real-valued almost periodic function $v_0(\cdot)$ on \mathbb{R} (or \mathbb{Z}) remains open.

References

- Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Birkhauser, Boston, MA, 1990.
- [2] del Rio, R., Makarov, N., Simon, B.: Operators with singular continuous spectrum, II. Rank one operators. *Comm. Math. Phys.* 165, 59-67 (1994).
- [3] Gordon, A. Y.: Pure point spectrum under 1-parameter perturbations and instability of Anderson localization. *Comm. Math. Phys.* 164, 489-505 (1994).

- [4] Gordon, A. Y.: A spectral alternative for continuous families of selfadjoint operators. – *Journal of Spectral Theory* (in press).
- [5] Jitomirskaya, S. Ya., Simon, B.: Operators with singular continuous spectrum, II. Almost periodic Schrödinger operators. *Comm. Math. Phys.* 165, 201-205 (1994).
- [6] Oxtoby, J.: Measure and category, 2nd edition. Springer, New York, 1980.
- [7] Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. Springer, New York, 1992.