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Abstract

We consider a continuous family {As}s∈S of self-adjoint operators

in a separable Hilbert space parametrized by a complete metric space

S. It is well known that simple isolated eigenvalues behave “well”

under small changes of the parameter – they change continuously and

do not disappear. On the other hand, eigenvalues embedded in the

essential spectrum can display very “bad” behavior. Nevertheless, it

turns out that for a Baire typical s all eigenvalues of As (if any) are

extendable, that is, each of them belongs to a continuous branch of

the (multivalued) eigenvalue function.
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1 Introduction and the main result

Suppose {As}s∈S is a family of self-adjoint operators in a Hilbert space H
parametrized by a metric space S and Q is a subset of R. If E∗ ∈ Q is

an eigenvalue of As∗ , we say E∗ is Q-extendable provided there is an open

neighborhood U of s∗ and a continuous mapping s 7→ E(s) : U → Q with the

property that for each s ∈ U , E(s) is an eigenvalue of As and E(s∗) = E∗.

The main result of the present work is the following statement.

Theorem 1 Let S be a complete metric space, H a separable Hilbert space,

Q an Fσ set in R, and {As}s∈S a family of self-adjoint operators that is

continuous in the strong resolvent sense (i.e., for each z0 ∈ C\R and x ∈ H,

the mapping s 7→ (As − z0I)−1x : S → H is continuous). Then there is a

dense Gδ set S0 ⊂ S such that for all s∗ ∈ S0 any eigenvalue E∗ of As∗ that

belongs to Q is Q-extendable.

Remark. Suppose the operators As are bounded, have only simple

isolated eigenvalues, and the mapping s 7→ As is continuous in the norm

sense. Then the conclusion of Theorem 1 is obvious. It becomes nontrivial

if there may be eigenvalues embedded in the essential spectrum (a common

phenomenon in the theory of random and almost-periodic operators [1], [7]).

A property of a point s ∈ S is said to be Baire typical (or generic) if

there is a dense Gδ subset of S whose points all have that property.

Theorem 1 strengthens the main result of [4] where the following alter-

native was established: in the setting of Theorem 1, either (i) for a Baire

typical s the operator As has no eigenvalues, or (ii) there is an open set

U ⊂ S and an eigenvalue E(s) of As (s ∈ U) which is coninuous in s.

Applications of this result include the generic absence of eigenvalues for

certain ergodic families of one-dimensional Schrödinger operators (see [4]).

Another application of this statement and of a closely related statement from
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[4] involving eigenvectors (see Corollary 2 below) is a unified explanation of

such seemingly unrelated results as that of [2], [3], on the one hand, and that

of [5], on the other (see [4]).

The rest of the paper is organized as follows. In Section 2 we prove

Theorem 1. In Section 3, we consider the case where the operators As can

have only simple eigenvalues. Here, we will formulate and prove an extension

of Theorem 1 which includes eigenvectors.

2 The proof

1. The Fσ set Q can be represented as the union of an increasing sequence of

compact sets. Therefore, it suffices to prove Theorem 1 under the assumption

that Q is compact. From now on we assume that this is the case.

Consider the topological product

L := S ×Q×B,

where B = {y ∈ H | ‖y‖ ≤ 1} is the unit ball in the Hilbert spaceH endowed

with its weak topology. Note that L is a product of two completely metrizable

spaces S and Q×B, the latter being compact.

Consider a set

R := {η = 〈s, E, y〉 ∈ L | Asy = Ey, y 6= 0} .

Let {gk}∞k=1 be a dense sequence in the unit sphere of H, and consider the

following subset of R:

Rk :=

{
η = 〈s, E, y〉 ∈ L

∣∣∣ Asy = Ey, (y, gk) =
3

4

}
. (1)

2. The set Rk is closed in L.
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To show this, we should verify that if

Rk 3 ηj = 〈sj, Ej, yj〉 → η = 〈s, E, y〉 ∈ L as j →∞,

then η ∈ Rk. That (y, gk) = 3
4

is obvious, since yj
w→ y (by

w→ we denote

the weak convergence in H). To check that Asy = Ey, or equivalently,

(As − z0I)−1y = (E − z0)−1y, where z0 ∈ C \ R, we pass to the limit in the

equation (Asj−z0I)−1yj = (Ej−z0)−1yj, using the strong convergence of the

operator (Asj − z0I)−1 to (As − z0I)−1 and relations yj
w→ y and Ej → E.

3. Let

Zk := prS (Rk) (2)

(by prS, prS×Q, etc. we denote the corresponding projections of the product

L = S ×Q×H onto S, S ×Q, etc.).

The set Zk is closed in S.

This is a special case of the following statement.

Lemma 1 If X and Y are topological spaces, Y is compact, and C is a

closed subset of X × Y , then prX(C) is closed.

Denote by Fk the boundary of the set Zk. Since Fk is closed and nowhere

dense, the set

S0 := S \
∞⋃
k=1

Fk (3)

is a dense Gδ set.

4. If η = 〈s, E, y〉 ∈ Rk and η̃ = 〈s, Ẽ, ỹ〉 ∈ Rk, then E = Ẽ.

Proof. We have Asy = Ey and Asỹ = Ẽỹ, so that if E 6= Ẽ, then y and ỹ

are orthogonal. Putting z = y/‖y‖ and z̃ = ỹ/‖ỹ‖, we have ‖z‖ = ‖z̃‖ = 1,

(z, z̃) = 0 and |(z, gk)| ≥ 3
4
, |(z̃, gk)| ≥ 3

4
. By Bessel’s inequality ‖gk‖2 ≥(

3
4

)2
+
(
3
4

)2
> 1, which is impossible since ‖gk‖ = 1.
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The statement just proved implies that in the set

Gk := prS×Q(Rk)

the second component of each pair 〈s, E〉 is uniquely determined by its first

component; hence Gk is the graph of a function

s 7→ Ek(s) : Zk → Q (4)

(obviously, prS(Gk) = prS(Rk) = Zk).

Again by Lemma 1, the set Gk is closed. Therefore, in view of the following

lemma, the function Ek(·), having a closed graph, is continuous.

Lemma 2 If X and Y are topological spaces, Y is compact, and a mapping

f : X → Y has a closed graph, then f is continuous.

5. Suppose s∗ belongs to the set S0 defined by (3) and E∗ ∈ Q is an eigenvalue

of As∗ . Then there exists a vector y ∈ H with ‖y‖ = 1 such that As∗y = E∗y.

Pick an element gk of the sequence {gl}∞l=1 so close to y that |a| > 3
4

where

a := (y, gk). Let y∗ :=
(

3
4a

)
y. Then (y∗, gk) = 3

4
and ‖y∗‖ < 1 which implies

that 〈s∗, E∗, y∗〉 ∈ Rk.

It follows that s∗ ∈ Zk and 〈s∗, E∗〉 ∈ Gk. The latter inclusion means that

E∗ = Ek(s
∗), where the function Ek : Zk → Q is continuous. The inclusions

s∗ ∈ Zk and s∗ ∈ S0 imply that s∗ belongs to the set Uk = Zk \ Fk –

the interior of Zk. Putting U := Uk and defining the function E(·) as the

restriction of Ek(·) to U completes the proof of Theorem 1.

Corollary 1 [4] Let {As}s∈S be a family of operators which satisfies the

conditions of Theorem 1, and Q an Fσ subset of R. Let Z be the set of all

s ∈ S for which the operator As has at least one eigenvalue in Q.

An alternative takes place: either
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(i) Z is a meager set, or

(ii) there exist a nonempty open set U ⊂ Z and a continuous function

s 7→ E(s) : U → Q

such that for each s ∈ U , E(s) is an eigenvalue of As.

Proof. Suppose the set Z is not meager. Then its intersection with the dense

Gδ set S0 of Theorem 1 is nonempty. Let s∗ ∈ Z ∩ S0. Since s∗ ∈ Z, the

operator As∗ has at least one eigenvalue E∗ in the set Q; and since s∗ ∈ S0,

that eigenvalue is Q-extendable, which gives (ii).

3 The case of simple eigenvalues

In the case where all eigenvalues of the operators As are simple, the statement

of Theorem 1 can be strengthened by including eigenvectors.

Theorem 2 Let {As}s∈S be a family of operators that satisfies the conditions

of Theorem 1, and Q an Fσ subset of R. Assume, in addition, that all

eigenvalues of the operators As are simple. Then there is a dense Gδ set

S1 ⊂ S such that for any triple 〈s∗, E∗, y∗〉 ∈ S1 × Q × (H \ {0}) with

As∗y
∗ = E∗y∗ there exist an open neighborhood U of s∗ and a mapping s 7→

〈E(s), y(s)〉 : U → Q× (H \ {0}) with the following properties:

(a) Asy(s) = E(s)y(s) for all s ∈ U ;

(b) the mapping s 7→ E(s) is continuous;

(c) the mapping s 7→ y(s) is weakly continuous;

(d) E(s∗) = E∗;

(e) y(s∗) = y∗;

(f) ‖y(s)− y(s∗)‖ → 0 as U 3 s→ s∗.

Proof. In what follows, we use the objects and notation introduced in the

proof of Theorem 1. We can assume again that the set Q is compact.
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1. Suppose s∗ belongs to the set S0 defined by (3) and As∗y
∗ = E∗y∗, where

E∗ ∈ Q and y∗ 6= 0. We can select k and scale y∗ (like we did before) so that

〈s∗, E∗, y∗〉 ∈ Rk.

For each point s of Zk = prS(Rk), there is only one triple 〈s, E, y〉 ∈ Rk

with the given s. (The uniqueness of E was established in the proof of

Theorem 1; the uniqueness of y follows from the simplicity of the eigenvalue

E of As and the equality (y, gk) = 3
4

(see (1)).)

Consequently, the set Rk is the graph of a mapping s 7→ 〈Ek(s), yk(s)〉 :
Zk → Q×B, which is continuous by Lemmas 1 and 2. This means that the

functions Ek(·) and yk(·) on Zk are continuous and weakly continuous, respec-

tively. Therefore, the restriction of the mapping Zk 3 s 7→ 〈Ek(s), yk(s)〉 ∈
Q×B to the open set Uk = intZk has properties (a) – (e).

2. Fix an orthonormal basis e1, e2, . . . of the Hilbert space H. The function

qk(s) := ‖yk(s)‖2 (s ∈ Zk) is the pointwise limit of a sequence of continuous

functions: qk(s) = limn→∞ q
(n)
k (s), where

q
(n)
k (s) =

n∑
j=1

|(yk(s), ej)|2.

Consequently, there is a dense Gδ set Xk ⊂ Zk such that the function qk(·)
is continuous at all points of Xk (see [6, Theorem 7.3]).

Let Yk := Zk \ Xk. This set is meager. Therefore, the set S0 \ ∪∞k=1Yk

contains a dense Gδ set, S1.

If s∗ ∈ Zk belongs to S1, then s∗ ∈ Xk ∩ Uk. Therefore, as Uk 3 s → s∗,

yk(s)
w→ yk(s

∗) and ‖yk(s)‖ → ‖yk(s∗)‖ hence ‖yk(s) − yk(s
∗)‖ → 0. This

completes the proof of Theorem 2.

Corollary 2 Let {As}s∈S be a family of operators that satisfies the condi-

tions of Theorem 1, and Q an Fσ subset of R. Also assume that all eigenval-

ues of the operators As are simple. Then an alternative takes place: either
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(i) for all Baire typical s, the operator As has no eigenvalues in Q, or

(ii) there is a non-empty open set U ⊂ Z and a mapping U 3 s 7→ 〈E(s), y(s)〉 ∈
Q× (H \ {0}) such that

(a) Asy(s) = E(s)y(s) for all s ∈ U ;

(b) the function E(·) is continuous;

(c) the function y(s) is weakly continuous;

(d) for all points s∗ in a dense Gδ subset of U we have ‖y(s)−y(s∗)‖ → 0

as U 3 s→ s∗.

This result was used in [4] to derive (in a very different way than their

original proof) the following theorem of Jitomirskaya and Simon [5]. Let

v0(·) be a real-valued almost periodic function on R, and H(v0) its hull (i.e.,

the set of uniform limits of its shifts endowed with the topology of uniform

convergence). If the function v0(·) is even, then for a Baire typical element

v of H(v0) the Schrödinger operator Av = −d2/dx2 + v(x) acting in L2(R)

has no eigenvalues. The l2(Z) version of this result was also proved in [5].

The question whether the same is true for any real-valued almost periodic

function v0(·) on R (or Z) remains open.
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