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Abstract

We consider a continuous family of self-adjoint operators As in a

separable Hilbert space, the parameter s being a point of a complete

metric space S. It is well known that isolated simple eigenvalues

(assuming that the operators are bounded and the mapping s 7→ As is

continuous in the norm sense) behave “well”: under small changes of

the parameter they do not disappear and change continuously. Unlike

this, the eigenvalues embedded in the essential spectrum can display

a “very bad” behavior. It turns out, nevertheless, that if the set of

eigenvalues is non-empty for a topologically rich (e.g., open) set of

values of the parameter, then the (multi-valued) eigenvalue function

has continuous branches.

One application is as follows. Suppose a one-dimensional quasi-

periodic Schrödinger operator has Cantor spectrum; then a Baire

generic operator in its hull does not have eigenvalues.
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1 Introduction

Let {As}s∈S be a family of self-adjoint operators in a separable Hilbert

space H parametrized by a point s of a complete metric space S. We need

to assume some kind of continuity of the mapping s 7→ As. Let first the

operators As be of the form

As = A+Bs, s ∈ S, (1)

where A is a self-adjoint operator (bounded or not) and Bs is a bounded

self-adjoint operator that depends on s strongly continuously. Here are two

examples:

(a) Rank one perturbations:

As = A+ sP, s ∈ R, (2)

where A is a cyclic self-adjoint operator and P = (·, ϕ)ϕ is the orthogonal

projection onto a one-dimensional cyclic subspace Cϕ (‖ϕ‖ = 1) of A;

(b) Almost periodic Schrödinger operators in L2(R) or l2(Z):

As = −∆ + vs, s ∈ Ω, (3)

where ∆ is the one-dimensional Laplacian or lattice Laplacian, Ω is the Bohr

compact of an almost periodic real-valued function v(·), and vs(·) is the

element of its hull corresponding to s ∈ Ω; the second summand in (3) is the

operator of multiplication by the function vs(·).

In many cases the parameter space S is also endowed with a natural Borel

measure, µ. In the example (a), it is the Lebesgue measure on R; in (b), it

is the Haar measure on Ω. In the theory of random and almost periodic

operators (see [5], [19]) it often turns out that for µ-almost every s ∈ S the

spectrum of the operator (1) is pure point (i.e., there exists an orthonormal

basis consisting of eigenvectors). In the case of rank one perturbations (2), a

necessary and sufficient condition for the spectrum to be pure point for almost
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all s ∈ R is given in [22]. Applications of that result to random operators

include the one-dimensional Anderson model (see [22]), where, under mild

conditions, the spectrum turns out to be pure point for a.e. s ∈ R. The

almost periodic operator (3) in l2(Z), in the case of the celebrated almost

Mathieu potential (see [16])

vs(n) = λ cos(2παn+ s), s ∈ R/2πZ, (4)

has pure point spectrum for almost all s if the irrational α is Diophantine

and |λ| > 2 [14]. In both these examples the eigenvalues embedded in the

essential spectrum (which has the cardinality of the continuum) are dense

there. The same holds in a number of other cases, see [3] and references

therein.

Therefore, if by “small” sets we understand those subsets of S whose µ-

measure is zero, and remove a suitable one, then for the remaining “measure

typical” s in these examples the operator As has a pure point spectrum and

the eigenvalues embedded in the essential spectrum are dense in it.

On the other hand, since S is a complete metric space, there is another

notion of “smallness” for its subsets: we can consider as small the first cat-

egory sets (also called meager sets), i.e., countable unions of nowhere dense

sets. What structure of the spectrum (if any) is Baire generic, i.e., holds for

all s except those in some meager set (or equivalently, for all s in a dense Gδ

set)?

In the cases, where the answer is known, it is quite different from the above

one. In particular, it turns out in the examples (2) and (3), (4) that for a

Baire generic s there are no eigenvalues embedded in the essential spectrum.

(For the operator family (2), this is proved in [12] and independently in [7];

for the family (3), (4), this follows from the result of [15].)

Note that these results on absence of eigenvalues in the essential spectrum

for rank one perturbations (2) and for almost periodic operators (3), (4) are

of the same kind. Nevertheless, the proofs in these two cases are completely
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different and do not reveal any common mechanism behind these phenomena.

In the present work we find an obstruction that in many cases prevents

the existence of eigenvalues embedded in the essential spectrum for all values

of the parameter (even if they are dense there for almost all values of the

parameter with respect to a suitable measure). Now the results of [12] and

[7], on the one hand, and of [15], on the other, get a common explanation.

The families of self-adjoint operators that we consider in this work do not

necessarily have the form (1). The only requirement is that As depend on

s continuously in the strong resolvent sense. In the rest of the paper, the

term “Baire generic” is abbreviated to “generic”. A property of an element

of a complete metric space S is, therefore, generic if there exists a dense Gδ

subset of S all of whose elements have that property.

The remaining part of the paper is organized as follows. In Section 2 we

state the main result – Theorem 1. It is proved in Section 3, which also con-

tains some generalizations of the main result. Section 4 provides additional

information (Theorem 2) about eigenvectors in the case where the eigenval-

ues are simple. Section 5 contains a sufficient condition for genericity of

purely continuous spectrum (Theorem 3). In Section 6 some applications are

considered. First we prove the genericity of absence of eigenvalues for cer-

tain ergodic families of one-dimensional Schrödinger operators with Cantor

spectrum. Then we show how results obtained in [12], [7] and in [15] can be

derived from the results of this work.

2 The main result

Theorem 1 Let S be a complete metric space and {As}s∈S be a family of

self-adjoint operators in a separable Hilbert space H such that the mapping

s 7→ As is continuous in the strong resolvent sense (that is, the mapping

S 3 s 7→ (As − z0I)−1x ∈ H is continuous for any z0 ∈ C \ R and any

x ∈ H). Let F be a closed subset of the real line R. Denote by Z the set of
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all s ∈ S such that the operator As has at least one eigenvalue in F .

An alternative takes place: either

(i) Z is a meager set, or

(ii) Z has a non-empty interior; in this case there exist a non-empty open

set U ⊂ Z and a continuous function

s 7→ Es : U → F

such that for all s ∈ U, Es is an eigenvalue of As.

Remarks. 1. The first part of this theorem (stating that either Z is

meager, or it contains an open set) can also be derived from [21, Theorem 1.1].

What we emphasize is the existence, in the latter case, of an eigenvalue that

depends continuously on the parameter (on some smaller open set).

2. Let the operator As be bounded for all s and depend on s continuously

in the norm sense. Assume that, for some s = s0, As has a simple isolated

eigenvalue E0. Then, as is well known, for all s close enough to s0, As also

has a simple isolated eigenvalue E(s) close to E0; it is continuous in s and

satisfies E(s0) = E0. (The corresponding eigenspace may be determined as

the range of a suitable Riesz projection.) So in this case our statement is

obvious. But if the eigenvalues are not isolated – e.g., if they are dense in

some interval, – we do not have such a natural way to identify individual

eigenvalues for different values of s, and it is not clear whether it is possible

to pick a point E(s) in this dense set (depending on s) that will be continuous

in s on some open subset of S. Of course, such a selection is impossible if

for all s in some dense subset of S the operator As has no eigenvalues at all.

The theorem implies that this is the only case where continuous selection of

an eigenvalue is impossible.
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3 The proof

1. Consider the topological product

T := S × F ×H,

where the Hilbert space H is endowed with the weak topology. Furthermore,

for any m ∈ N define a topological subspace of T :

Tm := S × Fm ×B1,

where Fm = F ∩ [−m,m] and B1 = {y ∈ H | ‖y‖ ≤ 1} . Note that Tm en-

dowed with the induced topology is a product of two completely metrizable

spaces S and Fm ×B1, the latter being compact.

Also consider a subset of T

Sol := {η = (s, E, y) ∈ T | Asy = Ey, y 6= 0} .

Clearly,

prS (Sol) = Z

(by prS, prS×F , etc. we denote the corresponding projections of the product

T = S × F × H onto S, S × F, etc.). Furthermore, fix a sequence {gk}∞k=1

that is dense in the unit sphere of H; let

Solkm :=

{
η = (s, E, y) ∈ T | Asy = Ey, (y, gk) =

3

4
, y ∈ B1, E ∈ Fm

}
,

(5)

or equivalently,

Solkm := Sol ∩
{
η = (s, E, y) ∈ Tm | (y, gk) =

3

4

}
. (6)

2. We will need the following simple fact.

Lemma 1 Solkm is closed in Tm.
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Proof. Suppose

Solkm 3 ηj = (sj, Ej, yj)→ η = (s, E, y) ∈ Tm as j →∞.

We should verify that η ∈ Solkm. That (y, gk) = 3
4

is obvious, since yj
w→ y as

j →∞ (by
w→ we denote the weak convergence in H).

According to (6), it remains to check that η ∈ Sol, i.e., Asy = Ey, or

equivalently, (As − z0I)−1y = (E − z0)−1y, where z0 ∈ C \ R is fixed. We

have Asjyj = Ejyj, hence

(Asj − z0I)−1yj = (Ej − z0)−1yj. (7)

The left-hand side converges weakly to (As − z0I)−1y. (Indeed, if ϕ is an

arbitrary vector in H, then ((Asj − z0I)−1yj, ϕ) = (yj, (Asj − z0I)−1ϕ) con-

verges to (y, (As− z0I)−1ϕ), in view of the strong continuity of the resolvent

of As in s.) At the same time, the right-hand side of (7) converges weakly

to (E − z0)−1y. Thus (As − z0I)−1y = (E − z0)−1y.

3. Let

Zk
m := prS

(
Solkm

)
. (8)

The set Zk
m is closed in S.

Proof. This is a special case of the following general statement.

Lemma 2 If M and N are topological spaces, N is compact and B is a

closed subset of M ×N , then the projection of B to M is closed.

Assume that the case (i) of the theorem does not take place, i.e., the set

Z is not a countable union of nowhere dense sets. Since

Z =
∞⋃

m, k=1

Zk
m,

there is a pair (k,m) ∈ N2 such that Zk
m is not nowhere dense in S. Being

closed, Zk
m contains some open set U ; this implies the first part of (ii).

4. Now we are going to derive the existence of an eigenvalue Es ∈ F of As

depending continuously on s ∈ Zk
m.
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Lemma 3 If η = (s, E, y) ∈ Solkm and η̃ = (s, Ẽ, ỹ) ∈ Solkm, then E = Ẽ.

Proof. We have Asy = Ey and Asỹ = Ẽỹ, so that if E 6= Ẽ, then y and

ỹ are orthogonal. It follows then from the Bessel inequality and relations

(y, gk) = (ỹ, gk) = 3
4
, ‖y‖ ≤ 1 and ‖ỹ‖ ≤ 1 that

‖gk‖2 ≥
∣∣∣∣(gk, y

‖y‖

)∣∣∣∣2 +

∣∣∣∣(gk, ỹ

‖ỹ‖

)∣∣∣∣2 ≥ (3

4

)2

+

(
3

4

)2

> 1,

which is impossible because ‖gk‖ = 1.

Lemma 3 implies that on the set

Gk
m := prS×Fm(Solkm)

the second component of a pair (s, E) is uniquely determined by its first

component. In other words, Gk
m is the graph of a function

s 7→ Es : Zk
m → Fm (9)

(we use the fact that prS(Gk
m) = prS(Solkm) = Zk

m).

The set Gk
m is closed, again by Lemma 2, so that the function (9) has a

closed graph; consequently, it is continuous, in view of the following lemma.

Lemma 4 If M and N are topological spaces, N is compact and a mapping

f : M → N has a closed graph, then f is continuous.

As was shown, if the case (i) of Theorem 1 does not take place, then the

set Zk
m (for some m and k) contains a non-empty open set U . The restriction

of the continuous function (9) to U is continuous as well. This completes the

proof of Theorem 1.1

Remarks. 1. The closed set F in the formulation of Theorem 1 can be

replaced by an arbitrary Fσ set, in particular, by any open set. This is an

immediate consequence of the theorem.

1 The proof presented here is a simplified version of the original proof; the simplification
is due to Artur Avila.
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2. The set F in Theorem 1 does not need to be fixed. The following

generalization of Theorem 1 is true.

Theorem 1*. Let {As}s∈S be a family of self-adjoint operators satisfying

the conditions of Theorem 1. Let F be a closed subset of the product S × R;

denote by Fs (s ∈ S) its (closed) cross-section

Fs := {E ∈ R | (s, E) ∈ F}

and by Z the set of all s ∈ S for which the operator As has at least one

eigenvalue in Fs. Then either

(i) Z is a meager set, or

(ii) there exist a non-empty open set U ⊂ Z and a continuous function

s 7→ Es : U → R

such that for all s ∈ U we have: Es is an eigenvalue of As and Es ∈ Fs.

The proof differs from that of Theorem 1 only in that now we define

the topological space T by T := F × H and then define Tm as follows:

Tm := Fm ×B1, where Fm = {(s, E) ∈ F | | E |≤ m} .

Corollary 1 Let As = A+Bs, where A is a self-adjoint operator in a separa-

ble Hilbert space H and Bs is a bounded self-adjoint operator in H depending

on the point s of a complete metric space S continuously in the norm sense.

Denote by σess (As) the essential spectrum of As (which in general depends

on s). Then either

(i) for a generic s ∈ S there are no eigenvalues of As in σess (As), or

(ii) there is a non-empty open set U ⊂ S and an eigenvalue Es of As (s ∈ U)

that belongs to σess (As) and depends continuously on s ∈ U .

Proof. In order to apply Theorem 1∗, we need to verify that the set

F := {(s, E) ∈ S×R |E ∈ σess(As)} is closed. This follows immediately from

the following characterization of the essential spectrum [8]: E ∈ σess(As) if

and only if for any ε > 0 there exists an infinitely-dimensional linear set

D ⊂ D(As) such that ‖Asx− Ex‖ ≤ ε‖x‖ for all x ∈ D.
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4 The case of simple eigenvalues

Theorem 2 Let {As}s∈S be a family of operators that satisfies the conditions

of Theorem 1, and F a closed subset of R. Assume, in addition, that all

eigenvalues of the operators As are simple. Then an alternative takes place:

either

(i) for all s in some dense Gδ set, the operator As has no eigenvalues in F ,

or

(ii) there exist a non-empty open set U ⊂Z and two mappings U 3 s 7→ Es ∈
F and U 3 s 7→ Ys ∈ H \ {0} such that

(a) AsYs = EsYs for all s ∈ U ;

(b) the mapping s 7→ Es is continuous;

(c) the mapping s 7→ Ys is weakly continuous;

(d) there is a dense Gδ set Q in U such that for any s∗ ∈ Q we have

‖Ys − Ys∗‖ → 0 as U 3 s→ s∗.

Proof. Assume that the case (ii) of Theorem 1 takes place. In what fol-

lows, we use the objects and notation introduced in the proof of that theorem.

For each point s of Zk
m = prS(Solkm), there is only one triple (s, E, y) ∈ Solkm

with the given s. (The uniqueness of E = Es was established in the proof

of Theorem 1; the uniqueness of y, denoted below by Ys, follows from the

equality (y, gk) = 3
4

(see (5)) and the assumed simplicity of the eigenvalue Es
of As.)

Consequently, the set Solkm is the graph of a mapping Zk
m 3 s 7→ (Es,Ys) ∈

Fm×B1, which is continuous by Lemmas 1 and 4. In particular, the mapping

Zk
m 3 s 7→ Ys ∈ B1 is weakly continuous, so that its restriction to the

open subset U of Zk
m is weakly continuous as well. Therefore, the mapping

U 3 s 7→ (Es,Ys) ∈ Fm × B1 has properties (a), (b) and (c). Obviously,

Ys 6= 0. It remains to prove (d).

Fix an orthonormal basis e1, e2, . . . of the Hilbert space H. The function

h(s) := ‖Ys‖2, s ∈ Zk
m, is the pointwise limit of a sequence of continuous
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functions: h(s) = limn→∞ hn(s), where

hn(s) =
n∑
j=1

|(Ys, ej)|2.

Consequently, there is a dense Gδ set in Zk
m, say X, such that the function

h(·) is continuous at all points of X [18, Theorem 7.3].

If s∗ ∈ X, then, as Zk
m 3 s → s∗, we have Ys

w→ Ys∗ and ‖Ys‖ → ‖Ys∗‖,
which implies ‖Ys − Ys∗‖ → 0. Setting Q := X ∩ U completes the proof.

5 A sufficient condition for genericity of purely

continuous spectrum

Theorem 3 Let {As}s∈S be an operator family satisfying the conditions of

Theorem 1. Let F be a closed subset of R. Denote by D the set of all

eigenvalues of all the operators As : D := ∪s∈S σp(As). Suppose that

(a) S is locally connected;

(b) the subset F ∩D of R has no interior points;

(c) for any E ∈ F , the set

NE := {s ∈ S : E is an eigenvalue of As} (10)

has no interior points.

Then for all s in some dense Gδ set S0 ⊂ S, the operator As has no eigen-

values in F .

Proof. Assume the converse. Then the case (ii) of Theorem 1 takes place, so

that there exist an open set U ⊂ S and a continuous function s 7→ Es : U → F

such that Es is an eigenvalue of As for all s ∈ U . Let U0 be a connected

component of U . By (a), it is open. Thus, we have a continuous function

U0 3 s 7→ Es ∈ D∩F and, since U0 is connected, the set {Es : s ∈ U0} ⊂ D∩F
is connected as well, being, therefore, an interval. By the assumption (b),
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this interval consists of a single point, say E0. This implies that the set (10)

with E = E0 contains an open set, U0. However, this contradicts (c).

6 Applications

6.1 Ergodic one-dimensional Schrödinger operators with
Cantor spectrum

6.1.1 Continuum operators

Let S be a complete metric space; {Gt}t∈R a group of its homeomorphisms

such that Gt(s) is continuous in t for any s; V (·) a bounded continuous

real-valued function on S; and µ a Borel measure on S such that µ(S) = 1.

For s ∈ S, define a self-adjoint operator Hs on L2(R) by

Hs = − d2

dt2
+ vs, (11)

where vs is the operator of multiplication by the function

vs(t) = V (Gt(s)). (12)

Suppose that

(A) the group {Gt}t∈R preserves the measure µ and is µ-ergodic;

(B) the group is minimal, that is, the trajectory {Gt(s)}t∈R of any point

s ∈ S is dense in S;

(C) µ(U) > 0 for any non-empty open set U ⊂ S.

The operators Hs and HGτ (s) are unitarily equivalent: HGτ (s) = U−1τ HsUτ ,

where (Uτy)(t) = y(t − τ); hence their spectra σ(Hs) and σ(HGτ (s)) are

identical. Furthermore, the multiplication operator vs depends on s strongly

continuously, so that the operator family (11) satisfies the strong resolvent

continuity condition: if sk → s, then Hsk converges to Hs in the strong

resolvent sense [20, Theorem VIII.25]. Consequently, for any E ∈ σ(Hs)

there exist Ek ∈ σ(Hsk) such that Ek → E [20, Theorem VIII.24]. The
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assumption (B), therefore, implies that the spectrum of Hs does not depend

on s. Denote this closed set by Σ. It does not contain isolated points [19,

Theorem 2.11].

Theorem 4 Suppose that the group {Gt}t∈R, the measure µ and the function

V satisfy the above assumptions. If S is locally connected and Σ is nowhere

dense in R, then there is a dense Gδ set S0 ∈ S such that for any s ∈ S0 the

operator Hs defined by the equations (11), (12) has no eigenvalues.

Proof. We use Theorem 3, putting F := Σ. As was said, the operator family

(11) satisfies the strong resolvent continuity condition. The conditions (a)

and (b) of Theorem 3 are fulfilled due to the assumptions of Theorem 4.

The condition (c) is satisfied, because the operators (11) cannot have eigen-

values of infinite multiplicity, so that the set (10) has µ-measure zero [19,

Theorem 2.12] and, in view of (C), cannot contain an open set.

Corollary 2 Let Hs, where s = (s1, . . . , sd) ∈ Td = Rd/Zd (d ≥ 2), be the

operator (11) in L2(R) with the potential

vs(t) = V (s1 + α1t, . . . , sd + αdt), t ∈ R;

here V is a continuous real-valued function on Td, and the numbers α1, . . . , αd

are rationally independent. If the spectrum of the operator Hs is nowhere

dense (for some s and hence for all s ∈ Td), then for all s in some dense Gδ

set S0 ⊂ Td the operator Hs has no eigenvalues.

Proof. Apply Theorem 4, setting S = Td and defining the homeomor-

phism Gt : Td → Td (t ∈ R) by Gt(s1, . . . , sd) = (s1 + α1t, . . . , sd + αdt), µ

being the Lebesgue measure on Td.

6.1.2 Discrete operators

1. Let S be a complete metric space, G its homeomorphism, V (·) a bounded

continuous real-valued function on S, and µ a Borel measure on S such that
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µ(S) = 1. For s ∈ S, define a self-adjoint operator Hs on l2(Z) by

(Hsy)(n) = y(n− 1) + y(n+ 1) + vs(n)y(n), n ∈ Z, (13)

where

vs(n) = V (Gn(s)). (14)

Suppose that

(A) the homeomorphism G preserves the measure µ and is µ-ergodic;

(B) G is minimal, that is, the trajectory {Gn(s)}n∈Z of any point s ∈ S is

dense in S;

(C) µ(U) > 0 for any non-empty open set U ⊂ S.

All the operators Hs (s ∈ S) have the same spectrum, from now on

denoted by Σ (with interior Int(Σ)). Furthermore, this closed set does not

have isolated points. These statements, as well as the following theorem, can

be proved in the same way as in the continuum case.

Theorem 5 Suppose that the homeomorphism G, the measure µ and the

function V satisfy the above assumptions. If S is locally connected and Σ is

nowhere dense in R, then there is a dense Gδ set S0 ∈ S such that for all s ∈
S0 the operator Hs defined by the equations (13), (14) has no eigenvalues.

Corollary 3 Let Hs, where s = (s1, . . . , sd) ∈ Td = Rd/Zd (d ≥ 1), be the

operator (13), (14) in l2(Z), where G is a shift on Td:

G(s1, . . . , sd) = (s1 + α1, . . . , sd + αd), (15)

the numbers 1, α1, . . . , αd being rationally independent. If Int(Σ) = ∅, then

for all s in some dense Gδ set S0 ⊂ Td the operator Hs has no eigenvalues.

Corollary 4 Let Hs, where s = (s1, s2) ∈ T2, be the operator (13), (14) in

l2(Z), where G is a skew-shift on T2:

G(s1, s2) = (s1 + α, s2 + s1) (16)
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with an irrational α. If Int(Σ) = ∅, then for all s in a dense Gδ set S0 ⊂ T2

the operator Hs has no eigenvalues.

2. Some ergodic Schrödinger operators having Cantor spectrum for generic

values of the functional parameter are studied in [1]. These are operators

over a strictly ergodic homeomorphism that fibers over an almost periodic

dynamical system.

Proposition 1 [1] Let S be a compact metric space and G : S → S a

strictly ergodic homeomorphism (that is, G is minimal and uniquely ergodic).

Suppose that there exist an infinite compact Abelian group K and an onto

continuous mapping p : S → K such that p(G(s)) = p(s)+α for some α ∈ K
and all s ∈ S. Then for a generic V ∈ C(S,R) the operator HV

s in l2(Z)

defined by

(HV
s y)(n) = y(n− 1) + y(n+ 1) + V (Gn(s))y(n), n ∈ Z, (17)

has Cantor spectrum.

Proposition 1 and Theorem 5 imply the following statement.

Corollary 5 Let S, G, K, and p be such as in Proposition 1. Assume, in

addition, that S is locally connected. Then for a generic V ∈ C(S,R) there

exists a dense Gδ set SV ⊂ S such that for all s ∈ SV the operator (17) does

not have eigenvalues.

Examples of particular interest include those where G is a shift or a skew-

shift on the torus (see the above Corollaries 3 and 4).

Corollary 6 Let HV
s , where V ∈ C(Td,R) and s ∈ Td (d ≥ 1), be the

operator in l2(Z) given by

(HV
s y)(n) = y(n−1)+y(n+1)+V (s1+nα1, . . . , sd+nαd) y(n), n ∈ Z, (18)
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the numbers 1, α1, . . . , αd being rationally independent. Then for a generic

V ∈ C(Td,R) and all s in some dense Gδ set SV ⊂ Td (which may depend

on V ) the operator HV
s has no eigenvalues.

Remark. For a different way to obtain this result, see [13].2

Corollary 7 Let HV
s , where V ∈ C(T2,R) and s = (s1, s2) ∈ T2, be the

following operator in l2(Z):

(HV
s y)(n) = y(n− 1) + y(n+ 1) + V (Gn(s))y(n), n ∈ Z,

where G(s1, s2) = (s1 + α, s2 + s1) with an irrational α. Then for a generic

V ∈ C(T2,R) and all s in some dense Gδ set SV ⊂ T2 (which may depend

on V ) the operator HV
s has no eigenvalues.

3. Recently Goldstein and Schlag [11] proved that the spectrum is a

Cantor set for quasi-periodic operators with one-frequency analytic potentials

for almost all values of the frequency in the regime of positive Lyapunov

exponent. Their main result (Theorem 1.1) implies the following statement.

Proposition 2 (Corollary to [11, Theorem 1.1]). Suppose the operator fam-

ily Aαω (ω ∈ T = R/Z) is given by the equation

(Aαωy)(j) = y(j − 1) + y(j + 1) + V (jα + ω) y(j), j ∈ Z, (19)

where α ∈ R and V (·) is a 1-periodic real-analytic function on R. Suppose

α0 ∈ R satisfies the Diophantine condition

‖kα0‖ ≥
c

k(1 + log k)a
, k = 1, 2, . . . , (20)

2 Note that the proof of one of lemmas in [13] (Lemma 2) is incomplete: it contains
a statement about sequences of Schrödinger operators with convergent potentials and
weakly convergent eigenfunctions that is not actually proved. To correct that, the end of
the proof of the lemma should be replaced by an argument similar to that used in the
proof of Lemma 1 above.
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with some a > 1, c > 0. Here ‖ · ‖ denotes the distance from the nearest

integer. Suppose, furthermore, that the Lyapunov exponent L(E,α0) of the

operator Aα0
ω satisfies the inequality

L(E,α0) ≥ γ0 > 0, E ′ ≤ E ≤ E ′′. (21)

Then there exists δ > 0 such that for almost all α ∈ (α0 − δ, α0 + δ) the

spectrum of Aαω (which, for irrational α, does not depend on ω) is nowhere

dense in [E ′, E ′′].

Proposition 2 and Corollary 3 lead to the following statement.

Theorem 6 Suppose the operator (19), where V (·) is a 1-periodic real-

analytic function on R, has strictly positive Lyapunov exponent L(E,α0) > 0

for some α0 satisfying the Diophantine condition (20) and all E in a compact

interval ∆ = [E ′, E ′′].

Then for almost all α in a small enough neighborhood of α0, the operator

Aαω has singular continuous spectrum in ∆ for a dense Gδ set of ω ∈ T.

Proof. According to the result of Bourgain – Jitomirskaya [4], the real-

analyticity of V and the irrationality of α0 imply that the Lyapunov exponent

L(E, α) is jointly continuous in E and α at all points (E, α0), E ∈ R. (Note

that L(E,α), for rational α, is understood here as the Lyapunov exponent

averaged over ω ∈ T.) It follows that (21) holds for some small γ0 > 0;

moreover, for all α ∈ (α0 − β, α0 + β) with small enough β > 0 we have

L(E,α) ≥ γ0/2 > 0, E ′ ≤ E ≤ E ′′. (22)

By Proposition 2, the operator Aαω has Cantor spectrum for almost all

α ∈ (α0 − δ, α0 + δ), where δ ∈ (0, β] is sufficiently small. By Corollary 3,

for any such α and all ω in a dense Gδ set Tα ∈ T, the operator Aαω does not

have eigenvalues in ∆.
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The singularity of the spectrum of Aαω in the interval ∆ is implied by

inequality (22); this follows from the Ishii – Pastur – Kotani theorem (see,

e.g., [6]) for almost all ω and from the result of Last and Simon [17] for

all ω.

Corollary 8 Suppose the operator (19) with a 1-periodic real-analytic func-

tion V has positive Lyapunov exponent L(E,α) > 0 for almost all (α, E) ∈
[α′, α′′] × [E ′, E ′′]. Then for almost every α ∈ [α′, α′′] the operator Aαω has

singular continuous spectrum in [E ′, E ′′] for a dense Gδ set of ω ∈ T.

Proof. Let I = [α′, α′′], ∆ = [E ′, E ′′] and R = I × ∆. Let Y be the

union of all rectangles Q = [α′Q, α
′′
Q] × [E ′Q, E

′′
Q] = IQ × ∆Q with rational

vertices, such that for all α ∈ IQ \ NQ, where |NQ| = 0 (| · | denotes the

Lebesgue measure), the operator Aαω has Cantor spectrum on ∆Q and a pos-

itive Lyapunov exponent a.e. on ∆Q. It follows from the proof of Theorem 6

(and the fact that almost all α are Diophantine in the sense of (20)) that

|R \ Y | = 0. In addition, |
⋃
Q NQ| = 0. This implies that for a.e. α ∈ I the

interval ∆ is almost entirely covered with countably many intervals on each

of which the operator Aαω has Cantor spectrum and a.e. positive Lyapunov

exponent; therefore, the same is true for the whole interval ∆. Consequently,

for a.e. α ∈ I the spectrum of Aαω on ∆ is singular for all ω and, for generic

ω, singular continuous.

Remark. Another sufficient condition for the operator (19) to have Cantor

spectrum was given by Sinai [23].

6.2 Rank one perturbations

Consider an operator family

At = A+ tP, t ∈ R,

where A is a cyclic self-adjoint operator and P is an orthogonal projection

onto its one-dimensional cyclic subspace Cϕ (‖ϕ‖ = 1): Py = (y, ϕ)ϕ. All

18



the operators At have the same essential spectrum, which we denote by Σess.

It was proved in [12] and [7] (in different ways) that for a generic t there are

no eigenvalues of At in Σess.

The first and easiest step in both proofs (especially in [7]) was to show

that the set

{E ∈ Σ | E is an eigenvalue of At for some t} (23)

is meager. Now we will show how to replace the rest of the proof by a

reference to Theorem 3.

We apply Theorem 3 with S = R and F = Σess. Assumptions (a) and (b)

of Theorem 3 are fulfilled; to prove (c), assume first that E and Ẽ are eigen-

values of the operators At and At̃, respectively, with nonzero eigenvectors y

and ỹ. Since the vector ϕ is cyclic for A, it is easy to see that (y, ϕ) 6= 0 and

(ỹ, ϕ) 6= 0, so we may assume that (y, ϕ) = (ỹ, ϕ) = 1. Then the obvious

identity

(Ẽ − E)(ỹ, y) = (t̃− t)(ỹ, Py)

takes the form

(Ẽ − E)(ỹ, y) = t̃− t,

so that t̃ = t if Ẽ = E. Therefore, for any E ∈ R the set

NE := {t ∈ R : E is an eigenvalue of At}

contains at most one point, which proves (c).

6.3 Even almost periodic potentials

Let v(t) be a real-valued almost periodic function on R, S its Bohr compact,

and As = −d2/dt2 + vs(t) (s ∈ S) the corresponding family of Schrödinger

operators in L2(R). It was proved in [15] that if v(t) is even, then for a

generic s ∈ S the operator As has no eigenvalues. (The l2(Z) version of this

result was also proved in [15].)
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Now we will show how a somewhat more general statement can be derived

from the results of the present work.

Let S be a complete metric space; {Gt}t∈R a group of its homeomorphisms

such that Gt(s) is continuous in t for any s; and V (·) a bounded continuous

real-valued function on S. For s ∈ S, define a self-adjoint operator As on

L2(R) by

As = − d2

dt2
+ vs, (24)

where vs is the operator of multiplication by the function

vs(t) = V (Gt(s)). (25)

Theorem 7 Suppose that for some s0 ∈ S, setting γ(t) := Gt(s0), we have:

(a) V (γ(−t)) = V (γ(t)) for all t ∈ R;

(b) the trajectory {γ(t)}t∈R of s0 is dense in S;

(c) there exists a sequence tk (|tk| → ∞) for which γ(tk)→ s0.

Then there is a dense Gδ set S0 ⊂ S such that for all s ∈ S0 the operator

(24), (25) has no eigenvalues.

Proof. Apply Theorem 2 with F = R. Assume that the case (ii) of the

theorem takes place. Pick a point s∗ ∈ Q; denoting Ys∗ by y∗, we have:

for any δ > 0 there exists a neighborhood U ′ of s∗ (U ′ ⊂ U) such that

‖Ys − y∗‖ ≤ δ for any s ∈ U ′.

In view of (b) and (c), we can choose a sequence uk ∈ R so that |uk| → ∞
and sk := γ(uk) ∈ U ′ for all k. Then we have

‖Ysk − y∗‖ ≤ δ, k = 1, 2, . . . (26)

The function Ysk(t) is a solution of the equation −y′′ + vsk(t) y = Esky,

or equivalently, since vsk(t) = V (Gt(sk)) = V (γ(t+ uk)), the equation

−y′′ + v(t+ uk) y = Esky, (27)
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where v(t) = V (γ(t)). It follows that the function Ysk(−t) solves the “re-

flected” equation −y′′ + v(−t+ uk)y = Esky, or

−y′′ + v(t− uk) y = Esky (28)

(here we use the evenness of the function v(·), which follows from (a)).

Since the equation (28) is the (−2uk)-shift of (27) and the L2-solution of

each of these equations is uniquely determined up to a constant factor, we

have

Ysk(−t) = ckYsk(t− 2uk), (29)

where |ck| = 1.

It follows from (29) and (26) that

‖y∗(−t)− ck y∗(t− 2uk)‖ ≤ 2δ, k = 1, 2, . . .

But for large k, |2uk| is large, so the functions y∗(t − 2uk) and y∗(−t) are

almost orthogonal, and hence passing to the limit we have 2 ‖y∗‖2 ≤ 4δ2.

Since δ > 0 can be chosen arbitrarily small, we obtain: y∗ = 0. We have

arrived at a contradiction, which shows that the case (ii) of Theorem 2 is

impossible.

Corollary 9 Let v : R → R be a bounded uniformly continuous function,

and S be the set of all pointwise limits of its shifts vu(t) = v(t + u) (u ∈ R)

endowed with the topology of pointwise convergence (so that S is a compact

metrizable topological space). Suppose that v(−t) = v(t) for all t ∈ R and

v(t + un) → v(t) for some sequence un ∈ R (|un| → ∞) and all t ∈ R.

Then for a generic s ∈ S the operator −d2/dt2 + s(t) in L2(R) does not have

eigenvalues.

Proof. Define homeomorphisms Gt (t ∈ R) of S by (Gt(s))(u) = s(u+ t)

and the function V on S by V (s) = s(0). Then the function (25) is vs(t) =

V (Gt(s)) = (Gt(s))(0) = s(t), and it remains to apply Theorem 7.
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In the particular case, where v(t) is an even almost periodic function, we

obtain the result [15].

The l2(Z) versions of these results can be proved similarly.
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