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ABSTRACT 

 
 

SOLOMON ABEBE GUGSA. New Analysis Strategies for Micro Aspheric Lens 
Metrology. (Under the direction of Dr. ANGELA DAVIES)  

 
Effective characterization of an aspheric micro lens is critical for understanding and 

improving processing in micro-optic manufacturing. Since most microlenses are plano-

convex, where the convex geometry is a conic surface, current practice is often limited to 

obtaining an estimate of the lens conic constant, which average out the surface geometry 

that departs from an exact conic surface and any addition surface irregularities. We have 

developed a comprehensive approach of estimating the best fit conic and its uncertainty, 

and in addition propose an alternative analysis that focuses on surface errors rather than 

best-fit conic constant. We describe our new analysis strategy based on the two most 

dominant micro lens metrology methods in use today, namely, scanning white light 

interferometry (SWLI) and phase shifting interferometry (PSI). We estimate several 

parameters from the measurement. The major uncertainty contributors for SWLI are the 

estimates of base radius of curvature, the aperture of the lens, the sag of the lens, noise in 

the measurement, and the center of the lens. In the case of PSI the dominant uncertainty 

contributors are noise in the measurement, the radius of curvature, and the aperture. Our 

best-fit conic procedure uses least squares minimization to extract a best-fit conic value, 

which is then subjected to a Monte Carlo analysis to capture combined uncertainty. In our 

surface errors analysis procedure, we consider the surface errors as the difference 

between the measured geometry and the best-fit conic surface or as the difference 

between the measured geometry and the design specification for the lens. We focus on a 
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 Zernike polynomial description of the surface error, and again a Monte Carlo analysis 

is used to estimate a combined uncertainty, which in this case is an uncertainty for each 

Zernike coefficient. Our approach also allows us to investigate the effect of individual 

uncertainty parameters and measurement noise on both the best-fit conic constant 

analysis and the surface errors analysis, and compare the individual contributions to the 

overall uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v  
  

 
 

ACKNOWLEDGEMENTS 
 
 
I am grateful to many individuals who have contributions in various ways. First of all 

I would like to thank my thesis advisor Dr. Angela Davies for her inspirational guidance 

toward the advancement and completion of the research project. In addition I would like 

to thank Dr. Faramarz Farahi not only for his contribution as my co advisor and 

committee member but also for his unconditional assistance, and Dr. Michael A. Fiddy, 

Dr. Thomas J. Suleski, and Dr. Kent Curran for their thoughtful contributions.  

 I thank Dr. Terrill W. Mayes who provided me an opportunity to join UNCC and 

consistent help and encouragement during my stay at the university. Furthermore, I 

would like to express my gratitude towards Dr. M. Yasin Akhtar Raja, and Mr. Daniel 

Abebe (my brother) for their encouragement. Most important of all, I thank my wife, 

Kokebe Negash, and my children, Ruth, Nathnael, and Samuel for their constant smile, 

everlasting patience, and continuing encouragement.  

 Finally, I would like to thank the National Science Foundation (Grant # 0323505) 

for their financial support. I also would like to thank Erik Novak from Veeco Instruments 

and Chris Linnen from Digital Optics Corporation.  

 



 vi  
  

TABLE OF CONTENTS 
 
 

1. INTRODUCTION .......................................................................................................... 1 

2. AN ASPHERIC SURFACE ........................................................................................... 8 

2.1 The geometry of surfaces.................................................................................... 8 
2.1.1 Ellipsoid and ellipse.................................................................................... 8 
2.1.2 The hyperboloid of two sheets and hyperbola ............................................ 9 
2.1.3 Elliptic paraboloid and parabola ............................................................... 10 
2.1.4 Tangential radius of curvature .................................................................. 11 

2.2 A micro aspheric sag equation.......................................................................... 12 

3. APPROACHES TO MICRO ASPHERIC SURFACE PROFILE MEASUREMENTS
........................................................................................................................................... 19 

3.1 Phase Shifting Interferometry ........................................................................... 20 
3.1.1 Wave front phase detection and unwrapping............................................ 22 

3.2 Scanning white light interferometry measurement ........................................... 25 
3.2.1 Frequency domain analysis....................................................................... 28 

4. WAVE FRONT ABERRATION.................................................................................. 31 

4.1 Primary aberrations........................................................................................... 32 
4.2 Interferograms of primary aberrations .............................................................. 34 
4.3 Power series expansion of wavefront aberrations............................................. 37 
4.4 Zernike Polynomials ......................................................................................... 39 
4.5 Relationship between Zernike Polynomials and wave front aberrations.......... 40 

5. INTERFEROMETRIC MICRO-ASPHERIC LENS MEASUREMENT 
SIMULATION.................................................................................................................. 44 

5.1 Interferometric simulation code........................................................................ 44 
5.2 Simulation results for misalignment ................................................................. 47 
5.3 Misalignment in experiment versus simulation ................................................ 50 

6. EXTRACTING THE ASPHERIC MICRO LENS SURFACE PROFILE FROM 
THE MEASUREMENT ................................................................................................... 53 

6.1 SWLI measurement data and determination of uncertainty parameters ........... 54 
6.1.1 Estimating the conic surface parameters................................................... 56 

6.2 Phase shifting interferometry measurement...................................................... 60 
6.2.1 Extracting surface profile from OPD map ................................................ 61 
6.2.2. Estimating the conic surface parameters and uncertainty......................... 62 

7. EXTRACTING BEST FIT CONIC CONSTANT ................................................... 69 

7.1 Chi-square minimization based on SWLI measurement .................................. 69 
7.2  Chi square minimization based on PSI measurement...................................... 72 

7.2.1 Radius and lens aperture distributions ...................................................... 73 



 vii  
 7.2.3 OPD map due to misalignment ................................................................. 75 

7.2.4 Surface profile generation and extracting the best fit conic constant ....... 77 
7.3  Monte Carlo for best-fit conic constant ........................................................... 80 
7.4  Uncertainty parameters effect on the best-fit conic constant........................... 83 

8 SUBTRACTING INTENDED SHAPE.................................................................... 88 

8.1 Subtracting intended shape from the surface profile measurement .................. 89 
8.2  Subtracting intended shape from the OPD measurement ................................ 91 

9. RESIDUAL ERROR ANALYSIS............................................................................ 94 

9.1 Surface error analysis based on SWLI measurement ....................................... 94 
9.2  Surface error analysis based on PSI measurement .......................................... 99 

10. CONCLUSIONS................................................................................................. 103 

REFERENCES ............................................................................................................... 106 

APPENDIX A: A LEAST-SQUARES MINIMIZATION AND MONTE CARLO 
APPROACH TO ESTIMATING THE CONIC CONSTANT AND UNCERTAINTY 
FOR MICROLENS MEASUREMENTS....................................................................... 110 

APPENDIX B: A MONTE CARLO ANALYSIS OF SURFACE ERRORS FOR 
ASPHERIC MICROLENS MANUFACTURING......................................................... 119 

APPENDIX C: MISALIGNMENT SIMUATION CODE............................................. 129 

APPENDIX D: MONTE CARLO SIMULATION CODE ............................................ 133 

APPENDIX E: PSI MEASUREMENT ANALYSIS CODE ......................................... 137 

APPENDIX F: SURFACE PROFILE MEASUREMENT SIMULATION................... 149 

APPENDIX G: OPD MEASUREMENT SIMULATION ............................................. 151 

APPENDIX H:  ZERNIKES FROM RESIDUAL ERRORS BASED ON SWLI ......... 153 

APPENDIX I: ZERNIKES FROM RESIDUAL ERRORS BASED ON PSI................ 155 

 
 

 

 

 



 1  
 

1. INTRODUCTION 
 

Micro-lenses have become important components in many technologies such as 

optical switches, optical data storage, and detector arrays.  Basically, micro lenses are 

classified as refractive, diffractive and hybrid (refractive/diffractive) elements. Refractive 

elements have high efficiency and the performance is nearly independent of wavelength. 

On the other hand, diffractive elements are very versatile but can have limited diffraction 

efficiency and large wavelength-dependent aberrations. Refractive elements consist of 

continous surface relief geometries and are designed with the laws of geometrical optics. 

Since refractive elements depend relatively weakly on wavelength, the eikonal equation 

[1] can be used for the basis of a geometrical optics analysis. The design of refractive 

optics has been extensively discussed in the literature [2], and the design of diffractive 

optics is discussed in reference 3. Refractive elements are produced using different 

techniques and described in reference 4. For example, combining a thermal flow 

technique with lithography, refractive lens arrays containing millions of lenses can be 

produced at a time [5].  

Micro lenses are commonly used to couple light into and out of fibers and this is 

achieved with a plano-convex geometry with a single conic refracting surface. For 

example, a hyperboloid whose conic constant depends on the refractive index corrects 

spherical aberration and images collimated light perfectly on axis [6]. Thus, most design 

specifications call for a conic surface geometry with a specific conic constant.  Conic 

tolerances vary with application, but approach ± 0.3 in demanding applications [7].  New 

or improved applications will drive tolerances lower, particularly as manufacturers move 

to passive rather active alignment to reduce cost.  Ideally in-house metrology provides 
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 conic estimates with measurement uncertainties an order of magnitude lower than the 

tolerance.  The conic often is the key parameter considered, the lens however, is not 

likely to be a perfect conic. Therefore, the challenge is not only driving the tolerance of 

the conic constant down, but characterizing all the surface errors of the aspheric micro 

lens itself. This is needed to meet the metrology demand of the future and keep the 

metrology becoming a bottleneck in the manufacturing process.  

 There are two interferometry-based measurements are commonly used to 

characterize micro lens geometry, namely phase shifting interferometry [8,9] (PSI) and 

scanning white light interferometry [10,12] (SWLI). In some cases instrumentation 

software extracts the best fit conic constant, but the analysis is usually proprietary and it 

can be difficult for the lens manufacturer to estimate measurement uncertainty.  A 

method of extracting the conic value is discussed in the literature [13] but this method 

assumes the surface is an exact conic, therefore surface error contribution to the conic 

uncertainty and lens performance is not easily assessed.  Also the measurement methods 

proposed are not applicable to micro lenses and the analysis method not directly 

applicable to interferometric measurement techniques.  Often manufacturers develop their 

own in-house (and proprietary) data analysis methods. The current practice of estimating 

the best-fit conic constant of the manufactured lens does not reflect the surface errors in 

the manufactured part either compared to the best-fit conic surface or compared to the 

design specifications (design shape) and estimating a combined uncertainity for the 

measurement is not done to our knowledge.  

In our new analysis strategy, we present a non-proprietary, comprehensive, 

method of estimating the best fit conic and its uncertainty for micro lens measurements, 
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 and propose a analysis of surface errors and an uncertainty for aspheric micro lens 

using a Zernike polynomial description for both analysis methods, the uncertainty is 

estimated by estimating input measurement uncertainities and folding this information 

into a Monte Carlo simulation to look at statistical variation of the output. Both methods 

are applicable to PSI and SWLI measurements and provide a non-proprietary 

comprehensive approach that both micro lens suppliers and customers can follow. The 

analysis is somewhat time-consuming and therefore not recommended for high-volume 

routine inspection, but rather for less frequent more detailed assessments.  The analysis 

yields a realistic and comprehensive evaluation of measurement uncertainty and will 

validate in-house high-speed/high-volume measurements. Availability of such an 

approach will facilitate industry growth and the drive to improve device performance.  

Our proposed method of extracting the best fit conic constant is an integration of a 

traditional least squares minimization with a Monte Carlo simulation [14]. The least-

squares minimization is used to extract a best-fit conic value and the minimization is 

folded into a Monte Carlo simulation to allow the user to assess a final conic uncertainty.  

The analysis begins with the surface height profile extracted from a SWLI or PSI 

measurement.  The SWLI data directly reflects the height profile (although residual 

tip/tilt misalignment must be removed and the lens sag estimated), and a height profile 

can be generated for PSI measurements by combining the optical path difference PSI data 

with a radius of curvature measurement.  Next, a model of a conic surface is generated by 

estimating key parameters from the measurement, leaving only the conic constant as an 

unknown fit parameter.  The key model parameters required are the base radius of 

curvature, the lens aperture, and the lens center. A final uncertainty in the conic value 
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 must reflect all uncertainty contributions.  For most measurements the dominant 

contributions will be noise in the measurement (reflected in repeatability and 

reproducibility) and the uncertainities of the three model parameters.  The conic is a 

nonlinear function of these parameters and in such cases a Monte Carlo simulation is the 

best approach.  Therefore we integrate the chi-square minimization process with a Monte 

Carlo simulation where probability distributions are used to iterate with different model 

parameters (estimated from measurement uncertainty) and data is randomly sampled 

from a measurement set to capture the impact of measurement repeatability.  The result is 

a distribution of conic constants where the mean is an estimate of the best-fit conic and 

the width an estimate of the combined uncertainty.  The approach allows uncertainty 

contributors (e.g. base radius of curvature and lens aperture) to be varied one at a time to 

provide insight into conic sensitivity.  Because the conic is a nonlinear function of the 

measurement inputs, the sensitivity can be difficult to assess otherwise.  This allows the 

user to determine which measurement input uncertainties dominate the output conic 

uncertainty, thus providing guidance on aspects of the measurement to improve. 

Our proposal of describing the surface error of the micro lens uncertainty 

assessment is comprehensive, covering the major uncertainty contributors such as 

measurement noise (repeatability and reproducibility) and best-fit model uncertainty 

(when considering the surface error compared to a best-fit conic).  We describe the 

approach for both scanning white light interferometry (SWLI) and phase shifting 

interferometry (PSI) measurements.  A surface profile is first generated, and then the 

intended shape or the best-fit conic surface is subtracted, resulting in a residual surface 

error map.  We fit the error map to a set of Zernike polynomials and iterate this process 
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 through a Monte Carlo simulation to capture variation caused by measurement 

uncertainty.  The result are distributions of Zernike coefficients describing the surface 

error, the means of which are estimates of the Zernike polynomial fit to the surface error 

and the distribution widths are estimates of the combined uncertainty.  Individual 

uncertainty contributions can be varied one at a time to provide insight into measurement 

aspects that dominate the combined uncertainty and help establish a correlation with the 

manufacturing process and lens performance.  

Part characterization during the manufacturing process is certainly necessary to 

validate part performance and tolerance conformity.  Ideally it also provides information 

about the manufacturing process and can be used to monitor process variability and 

provide feedback to attain high yields.  Our analysis yields parameters that capture only 

the errors in the part (particularly where the intended shape is removed from the 

measurement) and the error is a more direct reflection of the manufacturing process than 

the best-fit conic value.   The surface error, combined with the best-fit conic surface or 

the intended shape, certainly can be used to assess part performance and validate 

tolerance conformity. Our approach strengthens the connection between the measurement 

output and the manufacturing process and is important to consider in the context of 

increasing yield. 

The background and details of the two approaches are described in the subsequent 

eight chapters.  It starts with mathematical expressions of geometrical models to describe 

the general aspheric micro lenses shape. Then the existing and predominantly used 

measurement techiniques (SWLI and PSI) for surface profile measurement analysis are 

discussed in Chapter 3. We introduce the measurement set-ups, namely the Twyman-
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 Green interferometer and the scanning white light interferometer, from which we get an 

optical path difference (OPD) map and a surface height profile, respectively. As is well 

known, an asphere is needed to eliminate the traditional monochromatic aberrations. 

Chapter 4 describes the fundamental aberrations:  spherical, coma, astigmatism, and 

distortion. The description of aberrations in terms of Zernike polynomials is also 

discussed. 

Our new analysis strategy is based on both SWLI and PSI measurement 

techniques, and the main focus is to estimate the best-fit conic constant and surface error 

(the best-fit or the intended surface as subtracted from the measured surface). Since PSI 

measurements are strongly affected by misalignment, we investigate the misalignment 

sensitivity through simulation and experiment, and this is discussed in Chapter 5. In order 

to subtract the design shape from the measurement, the data is first converted into a 

surface profile for both SWLI and PSI.  In order to assess a final uncertainty, certain 

parameters must be estimated from the measurement and the uncertainties in these 

parameters must be estimated.  The task of generating the surface profile and estimating 

the uncertainty parameters is discussed in Chapter 6.  Determining the best-fit conic 

surface by utilizing a chi-square minimization to optimize the best fit conic constant for 

both SWLI and PSI measurement techniques are rigorously described in Chapter 7.  The 

Monte Carlo approach to find the overall distribution of the best fit conic constant caused 

by the individual and combined uncertainty parameters are also described in Chapter 7. 

The process of subtracting the intended (design) surface profile from the measurement is 

discussed in Chapter 8.   
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 Two types of residual error surfaces are defined.  The first is found by 

subtracting the intended shape from the profile generated from the measurement.  The 

second is found by subtracting the intended shape from the best-fit surface as determined 

through the chi-square minimization process. This is done for both the PSI and the SWLI 

measurements.  The residual surface error analysis and the estimation of the uncertainties 

based on Monte Carlo analysis using Zernike polynomials are discussed in Chapter 9. A 

summary on the comparison of the results of the two techniques is also given in the same 

chapter. Finally, conclusions and comments on the new analysis strategy are discussed. 

We use a representative micro lens provided by Digital Optics Corporation (DOC) to 

demonistrate our analysis approach. The SWLI measurements were taken on a 

NewViewTM 5000 and the PSI measurements on FISBA OPTIK µphase® interferometer. 

The detailed description of our analysis is summarized in two papers at the end of this 

dissertation (APPENDIX A and APPENDIX B), namely “A Least-Squares Minimization 

and Monte Carlo Approach to Estimating the Conic Constant and Uncertainty for 

Microlens Measurements” and “A Monte Carlo analysis of Surface Errors for Aspheric 

Micro lens Manufacturing”. These will be submitted for publication to applied optics, 

optical technologies. 
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2. AN ASPHERIC SURFACE 
 

Optical surfaces can be regarded as spherical or aspherical. Unlike aspherical surface, 

a spherical surface has a constant rate of change of slope (curvature). Since the rate of 

change of an aspheric surface slope varies over the surface, an asphere has the ability to 

correct aberrations (Chapter 4). For example, unavoidable spherical aberration (with a 

spherical lens) can be corrected using an aspheric lens. This will be discussed as a result 

of the basic geometry of optical surfaces in a later chapter. The following sections 

provide a basic understanding of the geometry relevant to our research and the new 

analysis strategy based on aspheric micro lens surface characterization. 

2.1 The geometry of surfaces 
 

Surfaces of the second order (quadrics) [15] for most applications are elliptical, 

hyperbolic or parabolic. The cross sections of these quadrics are second order [16].  

2.1.1 Ellipsoid and ellipse 
 
 
 
 
 
 
 

 

  

        
 

The ellipsoid equation is given by Equation 2.1,  
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Figure 2.1: (a) Ellipsoid. (b) Ellipse (cross section of 
ellipsoid) with its directrices at distances d1 and d2. 
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where a, b, and c are semi-axes along x, y, and z, respectively. Three special cases can be 

derived from the ellipsoid. If a=b > c we have an oblate ellipsoid of rotation, which is 

obtained by rotating the ellipse x2/b2 + z2/c2=1 with a > c.  If a=b < c, we have a prolate 

ellipsoid of rotation, which is obtained by rotating the ellipse x2/b2 + z2/c2=1 with a < c.  

If a=b=c, we have a sphere x2+y2+z2=a2.  Figure 2.1(b) is an ellipse (the cross section of 

the ellipsoid), defined as the set of all points M(y, z) for which the sum of the distances 

from two fixed foci (F1 and F2) is constant (eual to 2b). For any point M of the ellipse 

r1/d1= r2/d2=e, the eccentricity. Based on Figure 2.1(b), the distance between two foci of 

the ellipse is    22
21 cbfFF −== and consequently the eccentricity of an ellipse 

is )1(/ <= ebfe   .  

2.1.2 The hyperboloid of two sheets and hyperbola 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The ellipsoid equation is given by Equation 2.2, 

Figure 2.2: (a) Hyperboloid of two sheets. (b) A hyperbola (cross 
section of hyperboloid). 
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where a, b, and c are semi-axes along x, y, and z respectively.  If a=b, the hyperboloid 

can be obtained by rotating a hyperbola with semi-axes a and c about the axis 2c, which 

is the real axis along z.  Figure 2.2(b) is a hyperbola (the cross section of the hyperboloid), 

the set of all points M (z, y) for which the difference of the distances from two fixed foci 

(F1 and F2) is constant (equal to 2c). The imaginary axis is    222 cf − and consequently 

the eccentricity of an ellipse is )1(/ >= ecfe   . Therefore the normal form of the hyperbola 

is z2/c2 - y2/b2=1. 

2.1.3 Elliptic paraboloid and parabola 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The elliptic paraboloid equation is given by Equation 2.3 
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where a and b are semi-axes along x and y, respectively.  The cross sections parallels to 

the z-axis are parabolas, and those parallel to the x y plane are ellipses. If a=b we have a 

paraboloid of rotation formed by rotating the parabola z=x2/a2 about its axis.  A parabola 

is the set of all points M that are equally distant from a fixed point F = (p/2, 0) and a 
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Figure 2.3: (a) Paraboloid. (b) Parabola (cross section 
of paraboloid). 
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 fixed line (the directrix). Since 2/pxMNMF +== , the eccentricity of a parabola is one. 

The normal form of the parabola equation is y2=2pz. 

2.1.4 Tangential radius of curvature 
 

The curvature of a line is the reciprocal of its radius. The curvature of a circle is 

constant because the radius is constant. The radius of curvature of curves other than 

circles changes from point to point. The curvature of a curve is defined as the rate at 

which the tangent changes with respect to the arc length, s. starting from this basic 

definition, based on Figure 2.4, differentiating tanθ with respect to s and applying 

trigonometric relationships, the radius of curvature can be obtained as follows. 
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Therefore, the radius of curvature r is given by 

 

                                                                                                (2.4) 

 

Note that r is positive for a concave and negative for a convex. 

2.2 A micro aspheric sag equation 
 

Aspheric surfaces cannot be described with only one radius of curvature. Instead, 

additional parameters like eccentricity are needed. The well-known sag equation can be 

derived as follows based on the prolate ellipsoid shown in Figure 2.5. The equation of 

this prolate ellipsoid is given by 
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Using Equation 2.4,   
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and the definition of eccentricity (section 2.1.1), 
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After factorizing Equation 2.5 and using Equations 2.6 and 2.7, we get a quadratic 

equation for z, 
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Rotationally symmetric general aspheric surfaces have additional terms and can be 

defined by the following more general form: 
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where k=-e2 and the Ai s are referred to as the deformation constants. 

Equating the Ai s to zero leads us to the sag equation of conic convex surfaces.  The type 

of conic is determined by the value of conic constant k. The description of a general 
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 convex aspheric lens (defined by Equation (2.9)) depends on the base conic surface. For 

example, the general aspheric deviation from a parabola is shown in Figure 2.6. 

Mathematically the deviation can be expressed as ( ) ( )ρρ ,0,1, −− zAkz i .  Furthermore, the  

tangential radius of curvature given by Equation 2.4 can be simplified to give us its 

dependence on the radius of curvature of a sphere, the aperture radius ρ of the lens, and 

the conic constant K. This can be shown by substituting the first and second derivatives 

of z into Equation 2.9 (with the deformation constants set to zero). Hence, the tangential 

radius of curvature of a conic surface is given by Equation 2.10. The reciprocal of the  

( )
c

cK
r

−
−=

2/321 ρ
 (2.10) 

radius of curvature of a sphere is c. Based on this tangential radius of curvature equation, 

different conic surfaces can be appreciated. Figure 2.7(a) shows the profile of the 

tangential radius of curvature as the conic constant varies. The straight line shows the 

radius of curvature of a sphere (with k=0), which is constant for a sphere. As the conic  
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Figure 2.6 A general asphere with its base conic surface. 
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Figure 2.7: (a) Sag versus Radius of curvature dependence on conic 
constant. (b) Sag (based on aspheric equation with zero deformations) 
versus aperture coordinate, ρ, with fixed sag. (c) Sag versus aperture 
coordinate, ρ, with a fixed aperture radius. In all plots R=1375µm, ρo = 
1000 µm, and K=0,-2.4, -4.8, -7.2. These values are from bottom to top for 
(b), and from top to bottom for (a) and (c). 
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 16  
 constant increases, the curvature increases as well. Therefore, the curvature at the apex 

( ρ =0) is independent of the conic constant.  In the same way the sag for the different 

conic surfaces can be compared, as shown in Figure 2.7 (b) and (c). It is shown in two 

ways, with a fixed aperture radius and with fixed sag. This visual observation tells us 

how all the parameters (aperture radius, radius of curvature and sag) are dependent on 

one another. Later in our analysis of the best-fit conic constant, we discuss the variation 

in aperture radius, sag, and radius of curvature in the optimization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As described in Chapter 5, in a PSI measurement, the deviation of a general 

asphere from the best-fit sphere over the aperture is optical path difference (OPD). This 

Figure 2.8: The deviation of aspheres from the sphere of radius 
1375µm. the conic constants are -2.4, -4.8, and -7.2 from top to 
bottom for the top figure and from bottom to up for the bottom figure. 
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 17  
 can be appreciated in Figure 2.8, which shows the deviation of aspheres from a sphere. 

The base sphere is subtracted from all other aspheres shown in Figure 2.7.  

 

 

 

Figure 2.9:  Subtracting the sphere from an asphere of K=-2.4. (a) The base 
radius of the asphere is the same as the radius (R=1375um) of the sphere (K=0). 
(b) Plots namely, the difference between the two surfaces shown in (a) along Z 
direction versus the R direction, and the difference of these differences. 
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 18  
 Subtracting the two surfaces along the z-direction is actually an approximation to 

the OPD.  More rigorously, the OPD is the difference of these surfaces along the radial 

direction (Figure 2.9 (a)).  Figure 2.9 (b) illustrates the OPD calculated the two ways and 

the difference between them (using k = -2.4 and k = 0 shown in Figure 2.9 (a)).  A line 

passing through two points S and A is approximately perpendicular to the tangent of the 

sphere. Therefore, its slope is negative of the slope of the tangent using this 

approximation; the aperture radius of the asphere can be described by 
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The new ZA using ρA is the surface of the asphere along the radial direction. Therefore in 

addition to the difference in the Z direction the difference in the R direction is the 

difference of the asphere with new ZA and the sphere. As shown in the figure, the 

difference between the two OPD calculation methods approaches zero as the aperture 

coordinate approaches zero. For example (as shown in Figure 2.9), the error introduced 

by this approximation is less than 35 nm for an aperture of 200 µm.  Therefore this kind 

of illustration can help us to see how much additional error can be introduced due to 

approximations related to aperture size considered. 

 



3. APPROACHES TO MICRO ASPHERIC SURFACE PROFILE MEASUREMENTS 
 

To describe interferometry measurements, one can revise the interference effect 

of light. The phenomenon where the intensity variation (maxima and minima) observed 

due to superposition of two-beams or more is known as interference. In general, beams 

can be obtained from a single source based on two methods, division of wave front and 

division of amplitude [17]. In the case of division of amplitude, a beam left a source is 

divided by a beam splitter in to two segments, which travels different paths before 

interfering. The general theory of interference helps us to describe these types of 

interferometers and their applications. Figure 3.1 which can be considered as division of 

wave front type shows a schematic interference experiment with polychromatic light 

from an extended source. Coherence theory describes the correlation between the two 

pinholes P1 and P2 at point Q using the analysis of the two-beam interference. The 

intensity at point Q is given by equation 3.1 [18]. 
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Where the parameter τ and the phase difference δ have the values 
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and )(12 τγ  is known as complex degree of coherence. 
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Figure 3.1: An interference experiment with  
Polychromatic light from an extended source S 
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 The visibility of fringes at Q is given by  
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=  (3.2) 

with the assumption of monochromatic light (if it ever existed), )(12 τγ =1, we will get the 

maximum visibility of fringes. Furthermore, the phase shift occurs faster than the changes 

that are being monitored, for monochromatic waves we can ignore )(12 τα  and the 

expression of equation 3.1 is reduced to the simplified well-known interference equation 

for interferometers given by 

)cos(2 2121 δIIIII ++=   (3.3) 

where ϕ
λ
πδ ∆= 2   (3.4) 

ϕ∆  is the difference between the optical paths of the two waves 

In this chapter, we described how to measure the surface profile of a micro lens based on 

two techniques, PSI and SWLI. 

3.1 Phase Shifting Interferometry 

 Phase shifting interferometry (PSI) is a data collection and analysis method that 

can be applied to different types of interferometry setups used for optical testing. Here we 

are going to focus on a Twyman-Green setup. In this dissertation PSI will refer to phase 

shifting methods implemented with a Twyman-Green interferometer.  Figure 3.2 shows 

Twyman-Green configuration as it is used to measure spherical or flat surfaces, 

depending on the wave front configured to reflect from the test surface. If the surface 

under test is flat a collimated beam exits the interfereometer to reflect from the ideally 

flat test surface. If the surface is spherical, a focusing element is used, such as an 
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 objective. For example, in the case of a convex surface test, an objective is used that 

has a focal length larger than the radius of curvature of the convex surface.  The 

numerical aperture must also be large enough to the entire surface of the lens is measured.  

A “null” fringe condition is used to measure surfaces, which leads to the lowest 

measurement uncertainty. But perfect alignment that leads to a null condition is never 

possible.  When measuring aspheric surfaces, a spherical wavefront is usually reflected 

from the aspheric test surface, in which case even optimal alignment will not lead to a 

null condition.  This necessarily compromises measurement uncertainty.   

 

 

 

 

 

 

 

 

 The PSI technique introduces a time varying phase shift to the reference beam, 

usually by moving the mirror at which this meab reflects using a piezoelectric transducer 

(lead-zinc-titanate (PZT)). The PZT expands or contract with an externally applied 

voltage. The induced phase shift varies through a series of steps. Interferograms are 

collected at each step and analyzed using PSI algorithms [19] to find the phase difference 

between the two interfering beams. Assuming the reference beam is perfect, the measured 

phase difference between the two beams can be attributed to the test beam and therefore 

Figure 3.2 Twyman Green Interferometer setup 
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 22  
 form errors on the test surface.  Based on wavefront phase analysis, the optical path 

difference (OPD) is related to the phase by Equation 3.4. If the surface is tested in 

reflection (Twyman Green setup) it is going to be  

),(
4

)),(2(
2

yxhyxh
λ
π

λ
πδ ==   (3.5) 

 The OPD in the expression represents the difference between surface profile 

under test and reference surface profile. Therefore, the phase measurement using PSI 

technique leads us to find out the OPD at each point from which the surface profile of our 

micro aspheric lens can be extracted. Note that phase unwrapping [20] must be performed 

to correct for phase discontinuity to the calculated phase.  

3.1.1 Wave front phase detection and unwrapping 

 The phase can be calculated from the intensity distribution of Equation 3.6, which 

is derived by combining Equations 3.2 and 3.3 for a monochromatic wave. Where I0(x,y) 

[ ])cos(),(1),(0 φδ −+= yxVyxII  (3.6) 

is the background intensity given by I1 + I2, V is the fringe visibility and φ is the reference 

phase (zero in equation 3.3). PSI detection schemes are different in the way the reference 

phase is varied and the number of times and the rate at which the interference pattern is 

measured. Among the different PSI algorithms, the four-step algorithm and the fifth-step 

(extended four-step) algorithms are most frequently used.  

 The four-step algorithm calculates the phase distribution from four separate 

interferograms with reference phase values of 2/3,,2/,0 πππφ = . This is done by solving 

four equations from equation 3.6 at each reference phase values and solve forδ . 
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 The fifth-step algorithm is an extended four-step algorithm. In addition we need 

the fifth measurement at πφ 2= . The value of  δ  in this case is given by  
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Furthermore, the phase is not immune from errors in the phase step calibration.  

Hariharan showed that the 5-step algorithm, using a phase step of π/2 minimizes the 

sensitivity to calibration errors [21].  He solved for the phase difference using a general 

phase step, α   (i.e. ααααφ 2,,0,,2 −−= ) between frames. The same mathematical derivation 

shows that 
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If we choose 2/πα =  we will get back to the five-step algorithm. Nevertheless, the 

actual phase shift may be επ +2/  instead. Then the corresponding measured phase will 
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Figure 3.3: A plot of Equation 3.9 as a function of phase shift [21] 
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 be φφφ ∆+=' . Therefore, the new phase φφ ∆and'  can be approximated as follows. 

Assuming ε  is small can be approximated using equation 3.9. 
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For example, the maximum error is about 0.04o for a maximum of 3.1o change in the 

phase shift.  To have a good picture of how this method tolerates relatively large 

calibration errors, consider the plot of 1/sin (2α) versus α, shown in Figure 3.3.  The plot 

shows a broad minimum centered at π/2.  

 One more correction has to be considered before the phase determination is 

complete. Based on the PSI algorithms, the phase calculations are sufficient for modulo π 

calculation only.  In other words, phase discontinuity occurs because of the limited range 

of angles (-π/2 to π/2) where arctangent is defined. To correct this and produce the 

wavefront phase modulo 2π, we can extend the calculated phase range from 0 to 2π. 

Returning the calculated phase to 0 whenever the actual phase is a multiple of 2π gives us 

the raw phase data. Then the wavefront reconstruction process is carried on by removing 

the 2π discontinuity introduced in the raw phase data. This can be done by adding 

multiples of 2π to the adjacent regions, which is known as phase unwrapping. From the 

point of view of spatial sampling, the phase unwrapping is straight forward as long as the 

recorded interferograms satisfy the Nyquist criteria (at least two pixels per fringe) and the 

phase map can be assumed to be smooth. In other words, fringe density larger than the 

Nyquist frequency (half the sample frequency) can not be resolved to reconstruct the 
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 wave front phase. One can find extensive and rigorous discussions on phase 

measurements and phase unwrapping in references 22 and 23. 

3.2 Scanning white light interferometry measurement 

 Scanning white light interferometry (SWLI) is a powerful technique to estimate 

surface profiles without the ambiguity in the fringe order number. The method is also 

referred to as optical interferometric profilometry.  Since the coherence length of white 

light is short, good contrast fringes are achieved only when the two paths of an 

interferometer are equal. Therefore, an object’s height information can be retrieved by 

having one beam reflect from the surface and detecting a coherence peak. 

  

 

 

 

 

 

 

 

 

 

 

One of the optical interferometric profiling instruments is the traditional Mirau 

interferometer shown in Figure 3.4. It is based on standard microscope where the 

objective has been replaced by an interferometric objective (Mirau).  Since extended  

Figure 3.4: Optical schematics of SWLI  
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 26  
 source is used; it can be referred as SWLI microscope. Mirau interferometers contain 

two small plates between the objective and the test surface. One of the two plates 

contains a small reflective spot that acts as the reference surface, and the other plate is 

coated on one side to act as a beam splitter. 

 Light from the illuminator is incident on the microscope objective. Part of the 

light goes to the test surface and the rest of the light is reflected by the reference surface.  

The beams combined again at the beam splitter. The two light beams interfere and are 

recorded on the CCD array. The Mirau interferometer is mounted on a piezoelectric 

transducer (PZT).  During vertical motion of the interferometer relative to the test surface 

a phase shift is introduced only in one arm because the distance from the lens to the 

reference surface is fixed. Since a phase shift is introduced while interference fringes are 

recorded, it is possible to perform either phase shifting interferometry or vertical 

scanning coherence peak sensing interferometry [24].  

  

 

 

 

 

 

 

 

The intensity recorded for a single point on the surface as the surface is translated 

through focus looks like the plot shown in Figure 3.5.  The plot shows light intensity as a 

Figure 3.5: Intensity profile as a function of position 



 27  
 function of the test surface position.  Such a plot is called a correlogram [25].  

According to the Wiener-Khintchine theorem [26], the correlogram width is proportional 

to the coherence length and inversely proportional to the spectral width of the source. The 

relationship between correlogram length and the spectral width can be understood as 

follows. Based on the Wiener-Khintchine theorem, the normalized coherence function is 

the Fourier transform of the power spectral density of the source, 

νντγ πντ deg i� −= 2)()(  (3.12) 

If we assume the power spectral density (g (ν)) of the source by Gaussian 

distribution, the normalized spectral density has the form 
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Therefore, the normalized coherence function with this spectral density becomes 

( ) ( )τπνντπτγ 0
222 2exp4exp)( i−∆−=  (3.14) 

where 
c

zz )(2 0−
=τ , (c is the speed of light). Assuming the intensity in both arms of the 

interferometer is about the same, Equation 3.1 can be rewritten as 
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substituting the effective bandwidth ν∆  by Lc π4/  (where L is the coherence length) the 

intensity recorded is given by 
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 Therefore, the correlogram width is directly proportional to the source coherence 

length and therefore inversely proportional to the spectral bandwidth. 

 Once we understand the characteristics of intensity recorded using white light as 

our source we need to be able to transform this information to our surface under test 

surface profile. As in reference 27, two families of white light profilometry methods are 

described. One family is based on the detection of the peak of the coherence envelope, 

which modulates the interference fringes [28-31]. The second family is based on the 

analysis of the white light interference phase [32-35]. Since we used New ViewTM5000, 

scanning white light interferometry instrument, its data processing is accomplished by 

frequency domain analysis (FDA) [34].   

3.2.1 Frequency domain analysis 
  

Frequency domain analysis (FDA) is a method of processing interferograms to extract 

surface profiles. FDA can be visualized as shown in Figure 3.6 [36]. The transformation 

from fringes to phases is accomplished with an algorithm such as the five-bucket 

algorithm discussed in Section 3.1.1. In an ideal dispersion-corrected interferometer with 

a monochromatic source, the phase is related to height as described by Equation 3.5. The 

phase can be redefined as kz=δ  by defining k as the wave number of the source light 

( equal to 2π/λ). The variable z is the round trip (2h) optical path difference. Defining the 

Fringe 
Patterns 

Phases & 
Frequencies 

Surface 
Height Map 

Figure 3.6: FDA methodology. Data are transformed to the frequency 
domain to calculate surface height. 



 29  
 rate of change of wave number by Equation 3.16 has some advantages over 

conventional phase shifting interferometry such as the reduction or elimination of 2π 

phase ambiguities, 

z
dk
d =δ  (3.16) 

 Therefore, this equation tells us the familiar linear equation, which can be given by 

0. δδ += kz  (3.17) 

The graphical representation of single wavelength interference in the spatial 

frequency (wave number) domain using Equation 3.17 leads us directly to the test surface 

height from the slope. As discussed in Section 3.1.1, the result still suffers from phase 

ambiguity as long as we use only a single wavelength (laser source). To use Equation 

3.17 to our advantage, we have to change our source to white light. In a simplified way, 

each frequency of a broadband source is governed by Equation 3.17. Therefore, the single 

wavelength FDA can be extended to white light FDA. Individual frequencies contributing 

to the interference pattern (Figure 3.5) have their own phase information to estimate the 

height at each point. The phase information from individual contributors can be found by  
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 30  
 a Fourier transform. The phase information in the Fourier-transformed data can be 

plotted as shown in Figure 3.7. This is the principle of FDA in the New ViewTM5000. 

The data consists of an array of correlograms, one for each pixel, representing the 

variation in intensity as a function of position. With the FDA, individual correlograms are 

processed and the final surface profile is generated. Extensive discussions on FDA in 

relation to scanning position can be found in reference 37.  
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4. WAVE FRONT ABERRATION 
 

 The form error on micro-lense degrades the optical performance. The reflected 

wave from the lens or transmitted wave through the lens altered due to this form error. 

Hence the wavefront has errors known as the wavefront aberrations. A wave front can be 

conveniently described as a linear combination of Zernike polynomials, which separate 

out the primary aberrations.  Geometric form errors in the lens are the primary cause of 

these aberrations.  One can also describe the geometric form errors in terms of 

aberrations and a Zernike polynomial description.  For example, an astigmatic form error 

on a lens will lead to astigmatism in the transmitted wave front.  These two perspectives 

come together in an interferometric measurement where the geometric form error on a 

lens surface is directly imprinted into the reflected wave front used to test the lens.  The 

aberrations in this wave front are measured and used to infer the lens geometry.  This 

chapter provides a review of low-order aberration theory to provide the necessary 

background. 

There are different approaches to studying aberrations. Ideal image formation, based 

on Gaussian optics, requires that all rays from each object point (field point) pass through 

the paraxial conjugate image point, with all rays having the same optical path length. 

Deviations from this perfect condition coincide with errors or deviations in the spherical 

wave front exiting the optical system.  These deviations are known as wave front 

aberrations. The phenomenon can be studied using ray tracing or algebraic analysis [38]. 

As an introduction, this chapter reviews the well-known primary aberrations and their 

interferometric patterns as observed in an interferometer (interferograms).  
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 There are five primary monochromatic aberrations that deteriorate the image, 

spherical aberration, coma, astigmatism, field curvature, and distortion.  Field curvature 

and distortion do not affect the definition of the image but rather its location. Here we 

describe the first three that actually affecting the sharpness of the image.  

4.1 Primary aberrations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 shows refraction of parallel rays as they travel through a spherical lens toward 

the paraxial focal plane. The paraxial rays meet as expected at the paraxial focus. The 

rays farther from the optical axis cross the axis to the left of the paraxial focus, and the 

marginal rays cross the axis the farthest to the left.  Rotating this diagram about the 

Marginal 
focus 

Paraxial 
focus 

Plane 
smallest spot 
focus 

Figure 4.1: Spherical aberration at the paraxial focus. 
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Figure 9.6: (a) Bias corrected OPD measurement (b) 
reproduced OPD map from Zernikes (c) randomly 
generated OPD map after misalignment correction. 
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 optical axis produces a blurry circular image in the paraxial plane. This kind of blurring 

is caused by spherical aberration. 

An aberration due to skew rays is coma. In a very simplified picture, assume Figure 

4.2(a) shows a set of rays on a cylinder that is centered about the axis of a lens so that all 

the rays are meridional. Now tilt this cylinder of rays adisplacement an angle to the 

optical axis while holding fixed the intersection point of each ray with the dotted circle 

on the front of the lens. Let the top and bottom meridional rays meet at a point P in image 

space and consider it to define the location of the image plane (see Figure 4.2(b)). The 

skew ray just below the uppermost ray will pass through this plane very close to the point 

P and let’s say to the right. In the same way the lower rays pass through the plane close to 

the point P and to the left. Rays in between form a series of points that are close the curve 

giving the circle of coma. In the same way, a series of image planes are created by 

maridional rays and a series of circles by the skew rays to create a complex structure 

which is called just coma.  

 When an object point lies an appreciable distance from the optical axis, the 

incident cone of rays will strike the lens asymmetrically, giving rise to astigmatism. In 

other words, the failure of sagittal and tangential rays to produce a single image in a lens 

corrected for both spherical aberration and coma is known as astigmatism. As it is shown 

in Figure 4.3, sagittal line and tangential line due to the tangential fan and sagital fan are 

on two different image planes. If we consider an image plane half way between the two, 

we will get an ideal case of a circle. Other positions produce ellipses.  
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4.2 Interferograms of primary aberrations 
 

Ideally as parallel rays passing through a lens (Figure 4.4) should meet at the 

Petzval surface. Instead, they meet at different surfaces such as point P due to the optical 

path difference. The optical path difference (path via O – path via Q) is given  

 

 

 

 

 

 

 

 
 

 

by [39] where  g1 is a measure of spherical aberration, g2 is of coma, and g3 is for 
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Figure 4.3: Astigmatism: a failure of sagittal and tangential to produce a 
single image in a lens corrected for both spherical al aberration and coma 
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 (4.1) 

astigmatism and l is the distance of the image from the back surface of the lens. The other 

two aberrations, curvature and distortion are related to δl and δh of equation 4.1. In most 

literatures equation 4.1 is rewritten as equation 4.2 for convenience. Where A, B, C, D, E,  

FxEyyxDyxCyxByxAOPD +++++++++= )()3()()( 222222222   (4.2) 

and F are respectively measures spherical aberration, coma, astigmatism, longitudinal, 

vertical, and lateral displacements of the center of curvature of the convex lens from the 

ideal paraxial image-point.  

 

 

 

 

 

  

 
 

 

 

 

 

 

 

δh=0 

δh=18µm 

δl          -0.2cm        -0.1cm           0cm            1cm           2cm 

Figure 4.5: Spherical aberration with and without vertical 
displacement of 18µm in relation to longitudinal displacement 

δl            -2mm         -1.5mm       -1.0mm         -0.5mm         0mm 

δh=10µm 

δh=0 

Figure 4.6: Astigmatism with out and with vertical 
displacement of 10µm in relation to longitudinal displacement 
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The characteristic patterns of primary aberrations are very helpful in optical 

testing. To illustrate this patterns let’s assume a lens with 30cm focal length supposed to 

be viewed with He Ne laser (λ=0.6328um), the direction of the incident beam being 

inclined at 5o to the axis of the lens. We also assuming the lens have g1=2 µm, g2=25 µm, 

and g3=70 µm. Based on these assumptions we relate Equation 4.1 and Equation 4.2 to 

find the coefficients A, B, and C related to spherical, coma, and astigmatism respectively. 

it can easily be found that 0.5 µm , 2.2 µm, and 3 µm are the values of A, B, and C.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. Once we know these values others (longitudinal, vertical, and lateral) can be 

varied to see the effects of aberrations. Therefore, those calculated values are at about the 

δl=0 

δh         -40µm           20 µm          0µm            20 µm        40µm 

δt=20µm 

δt=0 

δl=1.4m

δh           -40µm         20 µm          0µm            20 µm        40µm 

δt=20µm 

δt=0 

Figure 4.7: (a) Coma with out longitudinal displacement: with out and 
with 20um lateral displacement. (b) Coma with 1.4m longitudinal 
displacement: with out and with 20um lateral displacement 

 (a) 

  (b) 
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 best focus of the lens. The effect of pure spherical, pure astigmatism, and pure coma as 

a function of longitudinal, vertical, and lateral displacements are shown in Figures 4.5, 

4.6, and 4.7. As it is shown in all Figures, each pure aberration of the lens is distorted as 

the displacement values vary. Even though the discussion here is based on the lens under 

test through transmission, it helps us to enhance our visual perception of interferograms 

representations of wave front aberrations. 

4.3 Power series expansion of wavefront aberrations 
 

 Here we present a theoretical treatment of geometric aberrations based on the 

wave phenomenon of light. Consider a collimated wave striking a perfect lens (Fig. 4.8 

(a)). The wave front perpendicular to the emerging ray can be considered a reference 

wave front, which is a subaperture of a sphere. If the lens has aberrations, the emerging 

wwave front is not perfectly spherical (Fig. 4.8 (b)). The deviation of the wave front from 

the reference is known as wave front aberration. As an example, we can derive the first  

 

 

 

 

 

        
  

order aberrations as follows, based on the reference 40. As shown in Figure 4.9, a 

reference sphere of radius R (P’O’) is centered at P’. Consider the point P in line with O’. 

In the x y plane the wave front error W is given by 

(a) (b) 

Figure 4.8: (a) Perfect spherical wave front (W1) is 
perpendicular to the emerging rays. (b) Distorted 
wave front (W2) 

W1 
W2 
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 (4.3) 

Assuming that z’ is much larger than x’ and y’, the equation can be expanded by the 

binomial theorem of the form 

( ) ...
128
5

48
3

82
11

532
2/1 +−+−+=+ bbbb

b     (4.4) 

 

 

 

 

 

 

 

 

To derive the first order, consider the first two terms of the binomial expansion and apply 

it to Equation 4.3.  Setting x’ = 0, letting the image height y’= h, and changing to polar 

coordinates (y = ρcosϕ, x = ρsinϕ) the wave front error becomes 

2

2

2

cos2

z

h
W

ρϕρ −=   (4.5) 

In power series form it can be rewritten as 

ϕρρϕρ cos),,( 111
2

020 hwwhW +=  (4.6) 

Figure 4.9 Wave aberration (O’P): Radius of a 
sphere R minus PP’ 

P’ (x’, y’, z’) 

P (x’, y’) 

O 

O’ 

x 

y 

z 
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 In the same way we can derive the third order aberration in power expansion form if 

we consider the first three terms of Equation 4.4, and so on for the fourth, the fifth, etc. A 

few terms of the power expansion form of the wave aberration are given in Table I [41]. 

In general, with l, m, and n as positive integers or zero, the power series expansion has 

the form ϕρ mmnml
mmnml hw cos,,

++
++  provided that n = m = 0 or l = m = 0 and n = 2, or l 

= n = 0 and m = 1 is omitted. 

4.4 Zernike Polynomials 
 

Wave front aberrations can be represented by the well-known Zernike polynomial 

set.  The set is orthogonal and defined on a unit circle [42-45]. The Zernike polynomials 

of the form 

θρθρθρ ill
n

l
n

l
n eRZyxZ )()cos,sin(),( ==  . (4.7) 

where 0,0 <≥ ll  , 0≥n  are integers, and ln ≥  is even.  Based on the orthogonality 

normalizing properties, the radial component of the Zernike polynomial is given by [46] 
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Instead of the complex representation of Equation 4.7, the real Zernike polynomials can 

be written as  

.sin)(

cos)(

θρ
θρ

mRZ

mRZ
m
n

m
n

m
n

m
n

=

=
−  (4.9) 

Therefore, the wave front function W(ρ,θ) of degree g can be expressed as a linear 

combination of Zernike polynomials as  
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where m takes only values with the same parity as n. 

The ordering of the polynomials is not universally agreed upon, and therefore varies 

in literature. Two ordering schemes are common, the ISO nomenclature [47] and another 

one described in references 46 and 48. Both ordering can be visualized (based on 

equation 4.10) as in Figure 4.11. The ISO nomenclature follows V shaped dotted lines 

and Born and Wolf and others kind of nomenclature is the one with black arrow indicated.  

Table II summarizes the two ways orderingschemes For example, order 4 (No. 8) of ISO 

representation and order 5 (No. 12) of Born & Wolf representation are the same spherical 

aberration polynomial (with θ = 0 from the graphical representation of Figure 4.10).  

4.5 Relationship between Zernike Polynomials and wave front aberrations  
 

The wave front aberration as any function can be expressed in terms of the 

combination of Polynomials (Zernikes). This is indicated in equation 4.11. For example, 

the third order aberrations can be related to Zernikes as described in reference 47. Here 

we are extending this to the fifth order aberrations.  
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 n m =0 m=1 m=2 m=3 m=4 m=5 

Third order aberrations 

0  ϕρ cos3
311hw  ϕρ 222

222 coshw     

2 22
220 ρhw  ϕρ cos3

131hw      

4 4
040 ρw       

Fifth-Order aberrations 
0  ϕρ cos5

511hw  ϕρ 224
422 coshw  ϕρ 333

333 coshw    

2 24
420 ρhw  ϕρ cos33

331hw  ϕρ 242
242 coshw     

4 42
240 ρhw  ϕρ cos5

151hw      

6 6
060 ρw       

Seventh-Order aberrations 
0  ϕρ cos7

711hw  ϕρ 226
622 coshw  ϕρ 335

533 coshw  ϕρ 444
444 coshw   

2 26
620 ρhw  ϕρ cos35

531hw  ϕρ 244
442 coshw  ϕρ 353

353 coshw    

4 44
440 ρhw  ϕρ cos53

351hw  ϕρ 262
262 coshw     

6 62
260 ρhw  ϕρ cos7

171hw      

8 8
080 ρw       

Ninth-Order aberrations 
0  ϕρ cos9

911hw  ϕρ 228
822 coshw  ϕρ 337

733 coshw  ϕρ 446
644 coshw  ϕρ 555

555 coshw  

2 28
820 ρhw  ϕρ cos37

731hw  ϕρ 246
642 coshw  ϕρ 355

553 coshw  ϕρ 464
464 coshw   

4 46
640 ρhw  ϕρ cos55

551hw  ϕρ 264
462 coshw  ϕρ 373

373 coshw    

6 64
460 ρhw  ϕρ cos73

371hw  ϕρ 282
282 coshw     

8 82
280 ρhw  ϕρ cos9

191hw      

10 10
0100 ρw       

Table I: Power series expansion of wavefront aberration [41] 
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ORDER Zernikes No. 

Born &Wolf ISO Born &Wolf ISO 

0 0 0 Z0
0 Z0

0 

1 1 2 Z1
-1 Z1

1 

2 1 2 Z1
1 Z1

-1 

3 2 2 Z2
-2 Z2

0 

4 2 4 Z2
0 Z2

2 

5 2 4 Z2
2 Z2

-2 

6 3 4 Z3
-3 Z3

1 

7 3 4 Z3
-1 Z3

-1 

8 3 4 Z3
1 Z4

0 

… 3 … Z3
3 … 

 …  …  

 

Grouping like terms of Zernikes, which are contributing, for the tilt can be equated to the 

fifth order field independent wave aberration is given by Equation 4.11. Using the 

trigonometric relation given by equation 4.12, we can rewrite 

[ ] [ ] θρθρϕρ sin32cos32cos 14721361511 ZZZZZZW +−++−=  (4.11) 
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Equation 4.11 as 
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Table II: ISO versus Born & Wolf nomenclature 
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 Furthermore, the relation between Zernike aberration coefficients to power series 

aberration coefficients is discussed in reference 49. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 The Zernike polynomials. ISO represents the V shaped dotted 
line. Born & wolf represents the horizontal as indicated by an arrow. 
Numbering follows Table II 

…10θ  9θ 8θ  7θ  6θ  5θ  4θ  3θ  2θ   θ     0     θ   2θ  3θ  4θ  5θ  6θ   7θ  8θ  9θ  10θ … 
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 5. INTERFEROMETRIC MICRO-ASPHERIC LENS MEASUREMENT 

SIMULATION 
 

In order to subtract the intended shape from a micro-lens measurement and assess 

the uncertainty, we have to understand the consequences of misalignment during the 

measurement.  Misalignment errors can be significant and difficult to assess in an 

interferometric PSI measurement of a micro aspheric surface.  We have developed a 

simulation package [50] in Matlab® which allows us to input an arbitrary surface, 

misalign the surface relative to a fixed coordinate system, and then calculate the optical 

path difference (OPD) that results.  The OPD is the wavefront distortion (section 4.3) that 

results when a spherical optical wave reflects from the surface.  The simulation shows 

that aberrations appear in the measurement that does not capture the shape of the lens 

surface if the part is misaligned. Thus, these are a systematic bias in the measurement. 

Further, these aberrations depend significantly on the aspheric details of the surface. 

We have compared our simulation with experiment. Systematic misalignment 

biases are clearly present in the measurement, but in this case, misalignment also leads to 

retrace errors, which add additional biases to the measurement [51, 52]. The return beams 

passing through the optical system do not follow the same path leads to the retrace errors. 

Therefore, retrace errors are specific to an instrument’s optical design (much of which is 

proprietary) and are not easily incorporated into simulation.   

5.1 Interferometric simulation code 
 

 An interferometric measurement of a spherical test lens consists of focusing a 

coherent spherical wavefront toward the center of curvature of the test lens.  If the test 

lens is perfect and its center coincides with the focus of the beam, the wavefront reflects 
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 back on itself, interferes with an internal reference wavefront, and is said to be ‘null’. 

‘Null’ means that the detector array will record a uniform intensity over the aperture of 

the test lens.  The map of the phase difference between the reflected wave and the 

reference wave is called the OPD map.  If the test lens is imperfect, the reflected 

wavefront will be advanced or delayed in different regions and the resulting OPD map 

will not be constant and will capture the test lens errors.  If the test lens is intentionally 

aspheric (nonspherical), then it is not possible to ‘null’ the cavity. 

 The simulation code (APPENDIX C) we have developed models the generation 

of an optical path difference as twice the difference between a spherical reference surface 

and the test lens surface.   The basic geometry is shown in Figure 5.1.  The OPD is 

always calculated as the radial difference between a reference sphere and the surface of  

 

 

 

 

 

 
 

 

the test lens.  The reference sphere is chosen to have a radius such that the apex of the test 

lens is tangent to the reference sphere on axis without misalignments.  No misalignment 

means that the reference sphere radius matches the base radius of curvature of the test 

lens.  The reference sphere defines the global coordinate system.  For every coordinate ρ, 

the OPD (ρ) is taken to be two times the distance between the reference sphere and the 

z 

ρ 

Test  
Surface 

z (ρ) 
o 

Reference 
Sphere 
Radius 

Reference 
Sphere ½ Optical Path 

Difference, 
OPD(ρ) 

ρ 

Figure 5.1:  Schematic of the geometry used to simulate 
the calculation of the OPD (ρ).  See text for details. 
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 test surface along the reference sphere radius at the coordinate ρ, as shown.  Rather 

than consider the detailed OPD resulting from specular reflection, we use the 

approximation that a ray in the wavefront will reflect exactly back on itself after 

reflecting from the surface.  This approximation is valid for mild aspheric surfaces and 

small misalignments.  Our simulation is very general and allows us to input an arbitrary 

shape for the test lens.  We start with the well-known rotationally symmetric equation for 

a general convex lens, which is defined by equation 2.9. This equation is commonly used 

to define aspheric lenses, because pure conic surfaces are easily described (defined by a 

particular conic value, K, with all Ai terms set to zero), or arbitrary aspheres can be 

defined by using the Ai terms. Additionally, we can add arbitrary surface errors to a 

nominal starting surface.  

 Misalignment means that the test lens center of curvature does not coincide with 

the center of the reference sphere.  In a realistic interferometric test it is mechanically 

impossible to perfectly position the test lens and perfectly ‘null’ the cavity, therefore 

misalignment is always present.  This is particularly the case in high-speed automated 

testing of micro-lenses, where time spent repositioning the test lens to improve the cavity 

null can be a significant contribution to the test time of an entire wafer which can consist 

of thousands of micro-aspheric lenses. 

 The OPD map in the presence of misalignment is calculated by first determining 

the appropriate reference sphere.  The misalignment along the z-axis is added first, and a 

new reference sphere is chosen to maintain the condition that the test lens surface and 

reference sphere are tangent on axis.  Next, a general three dimension coordinate 

transformation is performed to simulate an arbitrary x/y translation and/or rotation.  In 
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 practice, only translation misalignment is significant in an interferometer therefore we 

have accordingly restricted our analysis.   The geometry used to calculate the OPD with 

misalignment is illustrating in Figure 5.2. 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

5.2 Simulation results for misalignment 
 

 Simulation results for an interferometric measurement of a micro-aspheric lens 

are shown in Figure 5.3.  The OPD maps have been converted to interferograms, so the 

fringe pattern can be appreciated.  The series of interferograms shows the results for 

various translation misalignment conditions.  The micro-lens was taken to have a base 

radius of curvature of 650 µm, a geometric numerical aperture of 0.707, a conic constant 

of zero, and an aspheric deformation constant, A1, of -3x10-9 m.  Each OPD map is also 

fit the set of Zernike polynomials shown in Figure 4.10.  Misalignment primarily leads to 

tip, tilt and defocus in the OPD map ( Z1
-1, Z1

1 and the Z2
0 ), and these terms can be easily 

removed from the OPD map.  Because the exact misalignment cannot be known from the 

experiment, these low order Zernike coefficients are the only thing that can be used to 
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z’ (ρ’) 
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Sphere 
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½ Optical Path 
Difference 

OPD(ρ) 

Coordinate 
Transformation, T 

Figure 5.2:  Schematic of the geometry used to simulate 
the calculation of the OPD(ρ) when the test lens is 
allowed to be misaligned.  
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 assess the degree of misalignment. These terms are responsible for the prominent 

straight fringes and bulls-eye fringes observed in the interferograms in Figure 5.3.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beyond these first order effects however, misalignment also impacts the higher order 

aberrations.  This means that when the measurement result is fit with the set of Zernike 

polynomials (see Figure 4.10), the Zernike coefficients of the higher order polynomials 

change with misalignment.  This is a pure geometric effect – the simple consequence of 

subtracting an aspheric surface from a spherical surface with misalignment.  For a 

rotationally symmetric aspheric lens, the dominant misalignment aberrations are coma 

with XY translation and spherical aberration with Z translation.    

 As the part is misaligned, these aberrations increase approximately linearly with 

misalignment, and the slope is sensitive to the aspheric nature of the lens.  Simulated 

misalignment sensitivity data is shown in Figure 5.4. The part is misaligned 

independently in the X, Y, and Z directions to avoid cross-correlations.  Part (a) shows 

XY XZ YZ 

-X-Z -X-Y -Y-Z 

-X-Y-Z 

X Y Z 

-X -Z -Y 

XYZ 

Figure 5.3: Simulated interferograms of an interferometric 
measurement of a 480µm diameter and 650µm radius of curvature 
micro-lens.  Various XYZ misalignment conditions are shown.   
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 the dependence of coma with X-axis misalignment, and part (b) shows the dependence 

of low-order spherical aberration with Z-axis misalignment.  The offset for these curves 

has been set to zero so the slopes can be easily compared. In general the offset is very 
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Figure 5.4:  (a) Coma dependence on X misalignment.  (b) Spherical aberration 
dependence on Z misalignment.  Misalignment sensitivity simulations were run 
for the XZ misalignment of a micro lens with a 480µm diameter and 650µm 
radius of curvature.  The X and Z positions of the test lens are systematically and 
independently varied, and the Zernike coefficients correlating the misalignment 
coefficients to the low order aberration coefficients are plotted.  Similar 
experimental misalignment data was taken on a FISBA µphase interferometer on 
a lens with a similar geometry and this is shown in the plots. 
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 sensitive to imperfections in the interferometer and will not be zero.  The offset for 

spherical aberration vs. Z-misalignment will certainly be non-zero for an aspheric test 

lens. As shown in both plots of Figure 5.4, the slope is very sensitive to the value of the 

conic constant.  The misalignment for a spherical part is shown in both plots.  To the 

level of approximation in our simulation, the coma dependence of XY translation 

misalignment for a sphere has a slope of zero, but the slope is non-zero for any aspheric 

surface. All surfaces (spheres and aspheric) show a misalignment sensitivity of spherical 

aberration with defocus misalignment (Z-axis misalignment).  Since it is not possible to 

completely null an interferometer, the misalignment will add errors to the measurement.  

It may be possible to correct these errors in the experiment with knowledge of the 

alignment sensitivity characteristics of the interferometer.  The deviation of spherical 

aberration of aspheric from the sphere is the actual spherical aberration contributed by 

asphericity of the lens. At the very least, the simulation shows that the misalignment will 

certainly impact the uncertainty of the measurement. 

5.3   Misalignment in experiment versus simulation 
 

We preformed an alignment sensitivity test on a commercial micro-interferometer to 

compare to our simulation results.   In an alignment sensitivity test, we acquire a series of 

interferometric measurements as we systematically misalign the test lens in the X, Y, and 

Z directions.  The interferometer has the ability to measure the radius of curvature of the 

lens and this was found to be 650 µm. The numerical aperture condition of the 

measurement, once a software mask had been defined was 0.707.  Note that these 

parameters match the parameters used for the simulation.  However, the aspheric details 

of the test lens are unknown; therefore a deformation constant, A1, of -3x10-9m was 
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 chosen for the simulation as an illustration.  Sample interferograms from the 

measurements are shown in Figure 5.5. As is done in the simulation, the part is 

misaligned independently in the X, Y, and Z directions to avoid cross-correlations.   

 

 

 

 

 

 

 

 

 

 

 

We have generated alignment sensitivity curves similar to the curves in Figure 5.4 by 

fitting the experimental measurements to the set of Zernike polynomials.  This data is 

plotted in Figure 5.4, as well.  Since we focus on the slope comparison, we subtracted the 

offset from the experimental curves.   

The experiment shows a very strong increase in aberration with misalignment a 

dependence that is quite different from the simulation.  Similar effects have been 

observed in misalignment studies of a spherical part measured in a large aperture 

commercial interferometer [51]. In this case, the departure from the expected dependence 

was attributed to retrace errors in the optics in the imaging path of the interferometer.  

XY XZ YZ 

-X-Z -X-Y -Y-Z 

-X-Y-Z 

X Y Z 

-X -Z -Y 

XYZ 

Figure 5.5:  Measured interferograms of an interferometric measurement 
of a 480 µm diameter and 650 µm radius of curvature micro-lens.  
Various XYZ misalignment conditions are shown. 
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 These authors found that the experimental slope of spherical aberration versus defocus 

curve was more than 100 times greater than predicted by a simple calculation (similar to 

our simulation).   

In our experiment, the difference between experimental slope and simulation slope is 

significant, but much less than the factor of 100 previously reported. Undoubtedly retrace 

errors are contributing to our measurement and impacting the slope of the alignment 

sensitivity curves, as well, but our simulation shows that the asphericity has a comparable 

contribution.   

In a real measurement, the asphericity is not known, therefore one does not 

rigorously know which slope to use to correct for the misalignment and estimate a 

measurement uncertainty.  As a part of our new analysis strategy, we developed an 

approximate way of solving this, which will be described in the next three chapters.  
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 6. EXTRACTING THE ASPHERIC MICRO LENS SURFACE PROFILE FROM 

THE MEASUREMENT 
  
In order to extract the best-fit conic constant (Chapter 7) or analyze the surface errors 

(Chapter 9), we need to generate the surface profile from the measurement data. The first 

task is to obtain as much information as we can to generate the “actual” surface profile of 

a micro lens from our measurement. The techniques we applied are the phase shifting 

interferometery (PSI) technique, and the scanning white light interferometry (SWLI) 

technique. These techniques are described in Chapter 3. We are going to start with SWLI 

technique to describe how to get the surface measurement data and the determination of 

uncertainty parameters. Then we will describe how to obtain surface measurement data 

based on PSI technique and its uncertainty parameter determination. We also describe the 

basic idea to generate surface profiles from OPD measurements. All we discussed in this 

chapter is a base for subsequent chapters that deals with extracting best fits, subtracting 

design shapes and residual analysis. In revisiting section 2.2, we relate the parameters of 

a general aspheric to our aspheric micro lens measurement. Equation 6.1 describes a 

rotationally symmetric convex aspheric lens [53]. Where Z is the surface height, ρ is the 

aperture radius, the Ai s are deformation constants, R is the base radius of curvature, and 

K is the conic constant.  The conic constant determines the base conic surface of the 

aspheric surface. For example, if K=0 the base conic surface is a sphere (see Figure 6.1). 

Most micro lenses are designed to be exact conic surfaces, where the Ai deformation 

constants are zero. This is because perfect collimating functionality is possible with a 

single refractive surface that is a conic of revolution with a conic constant that is equal to 

the difference in the refractive index on either side of the interface. In a SWLI 

measurement, Z represents the measured surface height profile, and in PSI measurement, 



 54  
 it represents extracted surface profile. Based on Equation 6.1, the origin of the xyz 

coordinate is at the apex of the lens. We translate this point in z down to the substrate of a 

lens to define it as the center of the lens (see Figure 6.1). Therefore, we define sag as the 

distance measured from the origin (center) along the z-axis as a function of ρ where 

22 yx +=ρ  
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6.1 SWLI measurement data and determination of uncertainty parameters 
 

 Data is taken in two ways, a single measurement at the apex of the lens and a 

measurement using the stitching capability of the instrument.  A SWLI instrument is 

limited in the surface slopes that can be measured.  If the slope is too high, light does not 

reflect back into the objective.  A stitching procedure is usually available on the 

instrument whereby a higher NA objective can be used which captures steeper slopes, 

and smaller area images are then taken as the lens is translated under the objective.  The 

sub-images are stitched together, resulting in the measurement of a larger fraction of the 

lens surface. We refer to the measurements as not stitched and stitched data. In our case, 

 Base Conic 
(e.g. K= 0 for a 

sphere) 

z(ρ) 

ρ 

Aspheric 
Lens 

General 
Asphere, z(ρ) 

Figure 6.1: A general aspheric surface with its base conic. 
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 we used the same objective for both the stitched and not stitched measurements to 

avoid additional bias differences between the two from the aberrations introduced by the 

objective. We took eleven measurement of each type. We place the lens at different 

 

 

 

 

 

 

 
 

orientations during measurements. An example of two different orientations of the 

stitched data is shown in Figure 6.2. Orientation change between measurements will 

introduce reproducibility errors and allow this contribution to the uncertainty to be 

assessed. At the beginning of each measurement, we “null” the substrate to align the 

optical axis of the lens (defined as the normal to the plane of the substrate) to the axis of 

the SWLI. We further correct for the residual tip and tilt using Vision® 32. First, we open 

the measurement data in Vision, and then mask it so that we can only see the substrate 

data. Fitting the substrate data to Zernike polynomials, we get the tip and tilt Zernike 

coefficients. Then we generate an OPD map from the tip and tilt information. Finally, 

subtract the generated map from the raw data to get the final corrected measurement data 

used for analysis. This general procedure of correcting the measurement data is shown in 

Figure 6.3.  

Figure 6.2: Stitched data at different orientations of the aspheric 
micro-refractive lens. 
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  The lens is measured with a NewViewTM 5000 (Zygo Corporation) using a 10x 

Mirau interferometric objective. We used a spatial sampling of 2.2 µm (320X240) for 

stitched measurement, and a spatial sampling of 1.1µm (640x480) for not stitched  

 

 

 

 

 

 

 

 

 

 

 

 

 
measurement. We used a system magnification of two for both stitched and not stitched 

measurements. Since the spatial sampling is related to the camera resolution, the apparent  

pixel size of the measurements as read from the calibrated instrument, are 1.103 µm and 

0.551 µm for stitched and not stitched, respectively. 

6.1.1 Estimating the conic surface parameters 
 

In order to carry out the least-square minimization process to determine the best-

fit conic value, we estimate four parameters from the measurement.  These parameters, 

Figure 6.3: Preparing the data for analysis: (a) raw data (b) substrate data only 
(c) corrected map from tip/tilt information of substrate (d) data 

(a) 

(c) 

(b) 

(d) 
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 along with a conic value, uniquely define a conic surface.  The four parameters are a 

base radius of curvature, the sag of the lens, the lens aperture, and the lens center position.  

Only the conic value is varied in the chi-square minimization.  The uncertainty for each  

of the four parameters is also estimated so that the Monte Carlo analysis can be carried 

out to assess a combined uncertainty for the best-fit conic value. The values of these 

parameters and their uncertainties are estimated as follows.  

 

 

 

 

 

 

 

 

 

The first value to be determined is the base radius of curvature of the lens. 

Mathematically, the base radius of the conic surface is the same as the radius of curvature 

at the vertex of the lens (this is the sphere for K=0). To translate this definition to our 

case, we masked down our corrected measurement data incrementally to a level of 5% of 

the lens surface about the apex. For example, the stitched data was masked down starting 

from 100% to 5% at a step of 5%. Each of the masked images is fit to the best-fit sphere 

using Vision® 32 to get the radius. The base radius should be the radius fit to the  
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Figure 6.4: Best sphere fit radius versus aperture (unmasked data). 
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 data, in the limit that aperture size goes to zero.  The masking and fitting procedure was 

done for all eleven measurements. The mean and standard deviation (one sigma) of all 

the measurements at each masked condition is also calculated. By doing this we can see 

the spread in the radius values. This is summarized in the radius versus aperture graph 

shown in Figure 6.4. The analysis shows that the radius increases below an aperture size 

of approximately 300 µm.  The definition of the base radius would lead one to estimate a 

base radius of perhaps 1.5 mm from this analysis.  However, by generating simulated 

measurement data and carrying out the same procedure, we found that the radius values 

for small apertures are extremely sensitive to noise in the data.  From this analysis, we 

determined that radius values below an aperture size of approximately 300 µm are 

suspect.  Therefore, we took the base radius values at an aperture of 300 µm, giving us a 

radius of 1.36 mm for the stitched measurements and 1.37 mm for the not stitched 

measurements. We estimate an uncertainty in the base radius of approximately 20 µm, 

which is the standard deviation value from the group of eleven measurements. Likely the 

uncertainty should be larger than this to include the uncertainty in our choice of the 

appropriate aperture size to use for the estimate.  This will be considered in future work.  

The second step is to determine the sag from the measurement. We take only the data 

from the lens part of the image to generate our height profile.  Because the SWLI cannot 

measure the steepest part of the lens surface, the data is not continuous from the apex to 

the aperture edge (see Figure 6.2).  We therefore must estimate the height of the lens 

above the substrate.  This is the sag of the lens. This height is directly estimated from the 

measurement data. Variations in sag are due to noise in the measurement and the choice 

of the number of data points at the lens apex used for the estimation.  We estimate an 
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 average value of 57.7 µm for both the stitched and the not stitched, and an uncertainty 

of 0.7µm for stitched and 0.6µm for not stitched.  

The aperture of the micro lens is the third parameter to be estimated. This is also 

estimated directly from the measurements. Because data is not present around the edge of 

the lens, we cannot directly see the lens aperture.  We must therefore make an assumption 

about the lens edge location.  We assume that the lens surface meets the substrate plane 

where the data drop out occurs in the measurements (see Figure 6.3). We choose a 

circular mask to fit the aperture and use the diameter of this mask as our estimate. In 

doing this for all measurements, we find a mean aperture diameter value of 800µm for 

both stitched and not stitched and uncertainties of 2.42 µm and 2.86 µm for stitched and 

not stitched data, respectively. 

The fourth parameter is the x/y location of the lens, which we define as the lens 

center. This depends directly on the method we choose to find the aperture diameter. We 

define the center as the mid point of the circular mask used to estimate the aperture 

diameter. Since we assign the center of the circular aperture to be zero, the mean value of 

the center from the measurement data is zero with uncertainty estimates of 0.63 µm and 

0.59 µm for stitched and not stitched data, respectively. Uncertainties in the aperture 

diameter and the center location are dominated by the discreteness from the finite pixel 

size. 

 The instrument calibration for the x, y (in the plane of the lens’ substrate), and z 

coordinates (normal to the lens’ substrate) is also a potential source of uncertainty.  The 

calibration uncertainties however are a small contribution to those that we consider.  For 

example, the calibration uncertainty for the z values is ± 0.26%.  Therefore, for an 
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 estimated 57.7 µm sag value, the uncertainty due to calibration is 0.1 µm.  We estimate 

an uncertainty in the sag due to the noise in the measurements of 0.7 µm.  Therefore, the 

calibration uncertainty can be ignored. 

6.2 Phase shifting interferometry measurement 
 

The second approach to get the surface profile of aspheric micro-refractive lens is 

based on OPD measurement of the phase shifting interferometry (PSI) technique, which 

is explained in section 3.2. We used FISBA OPTIK µphase® interferometer shown in  

 

 

 

 

 

 

 

 

 

 

Figure 6.5. This interferometer uses a He Ne laser source with a Twyman Green set up. 

In order to measure our aspheric micro lens, we used an objective with a numerical 

aperture of 0.34. At the beginning of each measurement, we “null” at the confocal 

(discussed in section 6.2.2) position.  Normally it does not give us the surface profile 

measurement directly as New ViewTM 5000 (SWLI). Instead, it gives us the OPD map, 

which can be converted to height (surface) profile. We also used this same interferometer 

x

y

z 

Figure 6.5: FISBA OPTIK µphase® interferometer. It is used to 
measure an aspheric micro lens to get an OPD map. Misalignment 
sensitivity measurements (Chapter 5) are also done as an aspheric 
micro lens is translated to X Y and Z (shown to the right)  
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 for misalignment measurements discussed in chapter 5. As shown in the right side of 

Figure 6.5, the x, y, and z axis as the coordinate of the translation motion of a part (micro 

lens). In this section, we focused on how to extract surface profile from OPD 

measurement, and estimate the conic surface parameters of our aspheric micro lens. 

6.2.1 Extracting surface profile from OPD map 
 

 Based on our assumption of OPD analysis, the difference between the reference 

sphere with the test surface along the radius of the reference sphere is an OPD (See    

 

 

 

 

 

 

 
Figure 6.6). Mathematically, it can be expressed as equation 6.2. ZRef and Zsag are the 

surface height of the reference sphere and the test surface respectively. X, Y, and Z are the  
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global coordinates which are used to define the reference sphere. To simplify the 

expression let’s assume there is no misalignment (δx = 0, δy = 0, and δz = 0). In this case, 

the expression is simplified and easily solved to give the surface profile of equation 6.3.   

OPDRZ sag −=  (6.3) 
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Figure 6.6: the optical path difference 
along the radial direction, ρ2=X2 + Y2 
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This Equation can be visualized as shown in Figure 6.7. It shows the extracted surface 

(right), the sphere (left) of radius 1366 µm, and OPD map (middle). This simple example 

shows us that all we need is the radius of curvature of our lens to reproduce its surface 

profile since we have our OPD map from the measurement. This is the general idea we 

followed to generate our surface profile. However, the details on how to measure the 

radius of curvature and how to deal with the misalignment issues will be addressed in the 

coming sections. 

6.2.2. Estimating the conic surface parameters and uncertainty 
 

 In order to generate the surface height profile of our aspheric micro lens, we need 

to estimate the best-fit radius and the aperture of the lens. In estimating these parameters, 

we discussed the associated uncertainties and the misalignment uncertainty. The first 

value to be determined is the best-fit radius of the lens. We used FISBA OPTIK µphase® 

interferometer for the measurement of the best-fit radius of our aspheric micro lens. As 

Figure 6.7 Extracting a surface profile based on an OPD map with no 
misalignment and the radius of curvature of the lens. A sphere, an OPD, and 
extracted surface are shown from left to right. All units are in µm 
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 63  
 shown in Figure 6.8, we can determine the radius of curvature of the aspheric micro-

refractive lens by placing it at confocal and cat’s eye positions. First, we set the encoder 

 

 

 

 

 

 

 

to zero at the confocal position. As the micro lens is moved along the optical axis to the 

cat’s eye position, the encoder records the vertical (z) distance. Note that as the Figure 

6.8 tells us that the objective is moving relative to the micro lens to find the two positions. 

The difference between the two positions is normally the best-fit radius of curvature of 

the aspheric micro lens.  Since we cannot perfectly null at confocal and not knowing the 

exact position of cat’s eye, we had to follow additional methods to determine these exact 

positions (or minimize errors). The method we followed to minimize position errors is 

what we called misalignment sensitivity measurement. We applied misalignment 

sensitivity measurement method on both confocal and cat’s eye positions. We measured 

our aspheric micro lens at confocal position to get the OPD map from which we fit to 

Zernike polynomials and get all Zernike coefficients. At the same time, we record the z 

position. Then we did the same thing on additional eight Z positions (four on ether side of 

the confocal position). We repeat the same procedure for the cat’s eye position.  

 

R

(a) (b) 

Z = 0 

Z  

R 

Figure 6.8: (a) Confocal and (b) Cat’s eye positions to 
measure radius of curvature R. 
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Finally, we collect all the power terms from each measurements and 

corresponding Z positions and plot them. The plot is Z positions versus power term of the 

Zernike coefficient as shown in Figure 6.9. After linear fit, the difference between the Z 

intercepts (a20 = 0) of the two graphs gives us the best-fit radius of curvature of our 

aspheric micro lens. As it can be calculated from the graphs shown in Figure 6.9, the 

radius measured is 1366.1µm. Note that the best-fit radius we found (by equating Zernike 

power term zero from the plot) is different from the base radius of the aspheric microlens. 

The base radius can be calculated after find out the relationship between Zernikes and 

Siedel (primary) aberration. We described this relation in Chapter 4 and used it to find the 

Measurement around Cat's eye

Rcat = -0.1309(a20) + 1366
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Figure 6.9: Heidenhain gauge reading around the Confocal and Cat’s eye 
positions.The displacement readings (Z positions) at Confocal and Cat’s 
eye s are refered as Rcon and Rcat respectively. In both cases, the power 
Zernike coefficient is a20. All the units are in µms.  
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 base radius of curvature in the best-fit conic constant anlysis of Chapter 7. We found 

out that the base radius can be approximated by best-fit radius since the correction value 

is very small as compared to uncertainty of the best-fit radius. Now we can extract our 

aspheric micro lens surface profile since we have both R and OPD using simple equation 

of 6.3. However, there are associated uncertainties in determining the best-fit radius and 

getting the OPD. For example, there is a misalignment issue in getting all these 

measurement.  

 There are two ways to find the uncertainty in the best-fit radius measurement. One 

of them is ofcourse the spread (standard deviation,σ) from number of measurements. 

Another way is by extrapolating a measurement into number of measurements assuming 

a probability distribution. We followed the later. From our measurement, we found the 

uncertainty in slope and offset by a linear square fit method. As we described, the power 

Zernike terms were recorded in conjunction with the z positions to determine the best-fit 

radius of curvature. The linear equation of Z position as a function of power term is given 

by Equation 6.4.  

0ZmaZ +=  (6.4) 

Where m is the slope and Z0 is the offset. Since numbers of readings were needed on 

and either side of the “null” position at cat’s eye and confocal positions, chi-square 

minimization is needed to use the linear square fit. The linear Equation 6.4 can be 

rewritten in the matrix form of Equation 6.5 [54]. Where the bar signs indicates average. 

The solution of m and Z0 as it is solved directly from the matrix is given by equation 6.6. 
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To get an estimate of the uncertainties in m and Z0, we use the relationship between the 

standard deviation of a function f(m,Z), and the standard deviation of its variables m and  
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Zi  given by equation 6.6. In this case, errors in both m and Z0 are caused by errors in Zi. 

Therefore, equation 6.7 can be rewritten as in equation 6.8.   
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After solving the partial derivatives and substitute them back to equation 6.8, the 

uncertainties in the slope and offset of the best-fit straight line is given by equation 6.9.  
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Since the best-fit radius of curvature is calculated from the difference of offsets of the 

two positions (cat’s eye and confocal), one can use only the offset uncertainty. We used 

both parts of Equation 6.9, with Gaussian distribution equation to get values due to 

uncertainty. Therefore, the new slope and offset are found by adding these values to the 

slope and offset of the original values (see Equation 6.4). Based on this linear square fit 

method we extrapolated 100 radii measurements. 
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 The second type of parameter, which causes uncertainty in the measurement, is 

the aperture. At “null” position of the measurement of confocal position, the aperture is 

related to the radius of curvature of the micro lens and the numerical aperture (NA). This 

 

 

 

 

 

 

 

relationship can easily be observed from Figure 6.10 and is given by Equation 6.10.  

θρ sinR=  (6.10) 

As it can be seen from the equation, the aperture is the function of θ and R. Therefore 

the uncertainty in the aperture can be rewritten as a form of Equation 6.7. The uncertainty 

in the aperture is given by equation 6.11[55].   
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 The third type of uncertainty is caused by the misalignment during the 

measurement. All the 15 measurements on our aspheric micro lens are carried out at only 

approximate “null” positions.  As explained in Chapter 5 misalignment error is 

unavoidable. Misalignment introduces wave front aberrations, which can be described 

with the set of Zernike polynomials.  

R 
θ 

ρ 

σ

Figure: 6.10 Aperture radius ρ has uncertainty σ due 
to uncertainy in the radius (R) measurement and 
numerical aperture (= sinθ) used in the set up 
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 For a very small misalignment, aberrations can be approximated by linear equations. 

In extracting aspheric micro lens surface profile from OPD map requires misalignment 

corrections. In order to do corrections, uncertainties in the linear fit should be examined 

as it was described for radius and aperture.  If we consider Equation 6.5 for our 

misalignment treatment, Z represents higher order aberrations, a represents the lowest 

order aberrations [tip (a11), tilt (a1-1) and power (a20)]. Therefore, the linear equation is 

higher order aberration as a function of lowest order aberrations. The same way as we did 

for other parameters, uncertainties due to misalignment will be evaluated using equation 

6.9. Its process in the program we developed in relation to Zernikes will be discussed in 

chapter 9. 
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 7. EXTRACTING BEST FIT CONIC CONSTANT 

 

The surface profile of our aspheric microlens can be retrived directly from the 

SWLI measurement technique, and can be generated from PSI by combining the optical 

path difference (OPD) with a base radius of curvature. Processing the surface profile data 

and best estimation of conic parameters and their uncertainties are needed to generate the 

best conic fit to the measurement. The four conic parameters that are estimated from the 

SWLI measurement are the base radius of curvature, the aperture of the lens, the sag of 

the lens, and the lens center. The three conic parameters that are estimated from the 

generated surface profile of PSI measurement are the base radius of curvature, the 

aperture of the lens and the sag of the lens. Our procedure employs least squares 

minimization to extract a best-fit conic value, which is then subjected to a Monte Carlo 

analysis to obtain the combined uncertainty of the best-fit conic constant.  

7.1 Chi-square minimization based on SWLI measurement 
 

As described in chapter 6 of equation 6.1, our surface (Z) is a function of the base 

radius R, aperture radius ρ, and the conic constant K. Since all other parameters except K 

are estimated from the measurement with uncertainties, the optimization process to find 

the best-fit is relatively easy. To obtain an optimum best-fit we use a least squares 

analysis, known as chi-square minimization. Equation 7.1 is the mathematical description 

of chi-square. In the expression, Zm is the measured surface height at each pixel; Zs 

represents the model surface height profile. Since Zs is the model, it is the simulated 

surface height profile, which is a function of R, ρ and K given by Equation 2.9. To 

understand how the chi-square minimization works see the 2D measurement profile, in 
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 Figure 7.1. Our model is simulated from the pixel size information of the estimate for ρ 

and the best-fit radius of curvature estimate for R from the measurements. The  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
measurement profile is generated from the estimate of the lens center and the sag.  This is 

easily visualized from Figure 7.1(b). We fix the best estimated parameters and vary K to 

find the best-fit of our measured surface profile. As K varies, the model varies, as 

illustrated by the dotted lines in Figure 7.1(b). At the K that corresponds to the minimum 

chi-square, we get the bold line profile, which is very close to the measured line profile. 

At the chi-square minimum condition, the derivative of chi-square with respect to conic 

Figure 7.1:  (a) Aspheric micro lens surface with its substrate as measured 
by a scanning white light interferometer using a stitching method. (b) 2D 
profile of the measurement (red line) as schematically fit with trial models 
(dotted lines) and the best fit (bold line). The four parameters with 
uncertainties used to find the best-fit conic constant are shown. 

X Profile

-20
-10

0
10
20
30
40
50

0 0.2 0.4 0.6 0.8 1 1.2

Aperture (mm)

Z 
(u

m
)

ρ0 ± σ 

ρ ± σρ 

Substrate 

Best-fit trial 



 71  
 constant is zero. Based on the method of finding the four uncertainty parameters 

described in Section 6.1, the best estimates of sag, aperture diameter, and center are 

57.7µm, 800µm, and 0µm, respectively for both stitched and not stitched. The radii are 

1360µm and 1370µm for stitched and not stitched, respectively. Using these four best 

estimate values and varying the conic constant at a step of 0.03, we find the best-fit conic 

constant. The Matlab code we developed for chi-square minimization is shown in 

APPENDIX D as a part of Monte Carlo analysis. Figure 7.2 shows the result of a chi-

square minimization, where -2.4 and –2 are the best-fit conic constants for the stitched 

and not stitched, respectively.  
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Figure 7.2: Chi-square versus conic constant K. The minimum 
value of chi-square is at a slope equal to zero.  K = -2.4 for the 
stitched data and K = -2 for the not stitched data. 
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 7.2  Chi square minimization based on PSI measurement  

 

In PSI measurement, 15 OPD measurement data were taken at “null” position of 

the aspheric micro lens. The best-fit radius of the micro lens was measured as the 

difference of recorded positions of confocal and cat’s eye positions.  Two spherical micro 

lenses were measured at ‘null’ position 55 times in order to determine the interferometric 

bias. We discussed about the three major sources of uncertainty. Here we are going to 

integrate them in the main program (APPENDIX E) used for our analysis of PSI 

measurement.  

The program we developed for PSI measurement analysis involves the following 

key procedures, and uses Monte Carlo analysis whenever it is needed. Average 55 

measurements of each spherical ball lenses and find their respective Zernike coefficients. 

Extrapolate Zernike coefficient of the spherical ball lens of the same best-fit radius of our 

aspheric micro lens. Reconstruct surface map from these Zernikes give us the 

interferometric bias. Then each of the 15 OPD measurements of our aspheric micro lens 

is corrected for bias, subtract the interferometric bias from it. The next step is to generate 

an OPD map from misalignment information of the bias corrected data. This OPD map is 

subtracted from the sphere radius (same as best fit radius of the aspheric micro lens) to 

extract the surface profile of the aspheric micro lens. Once the surface profile is 

determined we use estimates of the base radius of curvature and the lens aperture to 

generate a model conic surface for which only the conic constant remains an unknown fit 

parameter. Therefore, we extract the bes-fit conic constant using the least squares 

minimization process, and then we apply the Monte Carlo analysis to find the combined 

uncertainty of the best-fit conic constant.  
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 7.2.1 Radius and lens aperture distributions 

 
 As we described in section 6.2.2, the measurement of the best fit radius is 

calculated from the difference between the “null” positions of confocal and cat’s eye. 

Since it is not possible to null the micro lens, we measured the power terms and z 

positions in either side of the confocal and cat’s eye “null” positions and plot z versus 

power term from which the difference between the z intercepts of the two plots give us 

the radius value. The best-fit radius distribution is found using linear square fit as 

described in section 6.2.2. We extrapolated 100 measurements with Gaussian distribution 

in which the mean is the best-fit radius of our aspheric micro lens. Note that the best 

estimate of the best-fit radius of curvature (calculated from the least square minimization  

 

 

 

 

 

 

 

 

of z versus power term plots) is 1366.1 µm.  Since we estimate a cone angle of 10.60 ± 1 

and an aperture is related to the best-fit radius as described in Equation 6.10, we found 

out that the best estimate of the aperture radius is 251.4 µm. In our Monte Carlo analysis 

during the extraction of surface profile of our aspheric micro lens, the distributions of 

radius and aperture after repeating the process 200 times is shown in Figure 7.3. Based on 

Figure 7.3: Radius and aperture distribution used in the analysis.  
(a) R=1366µm ± σR, σR =17.2µm (b) ρ=251.4µm ± σρ,  
σρ=3.4µm 
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 theses distributions, the mean value (with mean uncertainty) of the radius and aperture 

radius are (1366 ± 1.22) um and (251.4 ± 3.4) um, which are about the same as our best 

estimates. 

7.2.2 Interferometric bias 
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(c) (d) 

(e) 

Figure 7.4: Interferometric bias extrapolated from the measurement of 
two spherical micro lenses. (a) and (b) are the raw bias (after averaging 
55 measurement) from 0.99mm and 1.985mm radius balls respectively. 
(c) and (d) are bias maps from the same balls based on 36 Zernike 
coefficients. (e) the extrapolated bias from the ball of radius 1366.1µm. 
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 In the bias analysis, we measured two spherical ball lenses of radius 0.99mm and 

1.985mm. Since the best fit radius measurement of the aspheric micro lens is between 

these radius values we decided to measure these balls 55 times and extrapolate the bias 

for the best-fit radius equal to the mean value of the radius distribution. The main concept 

behind the method of finding the interferometric bias is that, after the repeated 

measurement of a ball randomly, the random errors of the measurement can be eliminated 

by averaging, and the only error left is the interferometric bias error.  

All the 55 measurements are averaged after subtracting tip, tilt and power from each 

measurement and Zernike coefficients of this averaged measurement is found. Since we 

did it for the two spherical balls, we extrapolate the Zernike coefficients to the radius of 

curvature equal to the best-fit radius of our aspheric micro lens. These coefficients are 

multiplied by the corresponding Zernike polynomials to obtain the bias map. Figure 7.4 

shows the interferometric bias due to the three spheres from which Figure 7.4 (e) used in 

the analysis.  

7.2.3 OPD map due to misalignment 
  
 The OPD measurement is done at confocal “null” position of the aspheric micro 

lens. It is obvious and explained in Chapter 5 that there is always misalignment error in 

the measurement. This OPD measurement is corrected and reproduced as we call it using 

misalignment correction as follows. We subtract interferometric bias map from a 

randomly picked measurement of the 15 raw OPD measurements. Then we find the 

Zernike coefficients of this bias corrected OPD measurement data after subtracting tip/tilt 

and power. Plot all the higher order Zernikes versus the lowest order Zernkes to apply the 

linear square fit to find uncertainties in the slope and offset using Equation 6.8. The new 
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 slope and offset can be rewritten as the sum of the linear square fit slope or offset plus 

the Gaussian distribution (will be discussed in section 7.3) of slope or offset. Therefore 

the new slope or offset is given by Equation 7.2. 
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Since the uncertainty can be approximated by one sigma of a Gausssian distribution 

of mean zero, we use them in finding the new values of these higher order Zernikes. The 

new higher order Zernikes is found using Equation 6.3 by replacing the slope and offset 

by the new slopes and offsets of equation 7.2. In this analysis, we use the first 16 Zernike 

terms out of 36 Zernike terms, which we consider the biggest contributors for OPD 

surface map. Finally, the OPD map is plotted so that it is ready to be added to surface 

RMS=13.62 nm 
PV=71.55 nm 

RMS=13.39 nm 
PV=67.52 nm 

RMS=12.63 nm 
PV=64.59 nm 

(a) 

(b) 

(c) 

Figure 7.5: (a) Bias corrected OPD measurement (b) 
reproduced OPD map from Zernikes (c) randomly 
generated OPD map after misalignment correction. 
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 map of a sphere of radius equal to the base radius of the aspheric micro lens. Figure 7.5 

shows an example of randomly generated OPD map in the course of the analysis. As it is 

shown in the Figure, the most part of the corrected measured OPD map is about the same 

as the generated OPD map. This is true not only by the observed picture but also by the 

values of RMS and PV values. The generated OPD map differs by RMS value of 0.76 nm 

(~6%) and by PV value of 2.93 nm (~4.5%) from the measured OPD map. This is just 

randomly picked example. We compared the averages and found out that differences in 

RMS and PV between the measured and generated OPD are smaller than 4% and 2% 

respectively. Note that we get different OPD maps from misalignment corrections. Since 

the generated OPD maps are based on the measured OPD, theier differences due to 

misalignment correction analysis directly contribute to the measurement noise. Therefore, 

when we do the Monte Carlo later in Section 7.3, we consider the measurement noise as 

one of the parameters to vary.  

7.2.4 Surface profile generation and extracting the best fit conic constant 
 

In order to facilitate the method of extracting the best-fit conic constant, our aspheric 

micro lens surface profile had to be generated. The two essential parameters needed to 

generate the surface profile are the OPD map and the base radius of curvature (approximated 

by best fit radius) of our aspheric micro lens. The best-fit radius of curvature distribution 

and misalignment corrected OPD maps are found based in previous sections. Now, the 

surface profile is generated by subtracting OPD from the base radius of curvature as 

described in section 6.2.1. Figure 7.6 shows an example of generated surface profile. 

The next step is to find the best-fit conic constant by least squares minimization 

method. In order to find the best-fit, we simulate our surface using the general sag equation 
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 described in Equation 2.9. As the equation, we should use the base radius of curvature, 

which we do not have from the PSI measurement. The base radius of curvature can be 

calculated by adding correction due to OPD in the direction of the optic axis to the best fit 

radius of sphere calculated from the z versus power plot as described in section 6.2.2. 

The OPD in the optics axis direction is nothing but it is the difference between aspheric 

and sphere for a fixed aperture as discussed in section 2.2. But the idea of adding OPD from 

Zernike coefficient results is not straightforward. The Zernike coefficient we obtained from 

the OPD measurement involves aberration balancing, mixed of low and high order 

aberrations. Therefore, we need to find the relation ship between Zernikes and the power 

series wavefront aberrations.  

Figure 7.6: (a) Misalignment corrected OPD map (b) 
sphere profile of radius 1371.48 µm (c) Generated 
surface profile of the micro aspheric lens Profile.  

RMS = 13.39 nm 
PV = 67.52 nm 

RMS = 4.38 µm 
PV = 15.12 µm 

RMS = 4.26 µm 
PV = 14.72 µm 

(a) (b) 

(c) 
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 The relation ship between Zernikes and the power series wavefront aberrations are 

described in references 47 and 49, and described at the end of chapter 4 of this dissertation. 

Since we need the focus term for correction, the primary Seidel with Zernike relation ship is 

enough. The focus term of this relation ship as stated in reference 47 is given by  
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Where Z3, Z8, Z4, and Z5 are the measured Zernike coefficients for power, low order 

spherical aberration, 0o astigmatism and 45o astigmatism, respectively. 

The Zernike coefficients follow the ISO representation described in Section 4.4. Using 

Equation 7.3, we plugged the Zernike terms from the PSI analysis and found 0.2 µm. This 

represents curvature in the wavefront in the paraxial limit (in the region near the optical 

axis).  This is the curvature information of interest to determine the radius of the lens near 

the apex.  We can convert the 0.2 µm curvature to an approximate distance the microlens 

would have to be moved to null out this curvature.  This is the radius correction value we are 

after.  We can determine this distance with the interpolation information used to determine 

the two null positions for cat’s eye and confocal in the radius measurement.  The correction 

value is ~0.7 µm. In order to correct and find the base radius, we have to add 0.7 µm to the 

best-fit radius of 1366.1 µm. However, the uncertainty of the best-fit radius found from 

Section 7.2.1 is 17 µm. The correction as compared to uncertainty is really small which can 

be ignored, and use the best-fit radius as the base radius. In addition to the base radius, we 

used the best estimate of aperture radius of 251.4 µm. another important parameter we need 

is the sag. Since we cannot directly get the information as we have done for SWLI, here we 

approximated by the average sag values of the 200 generated surface profiles. Using this 

approach, the best estimated sag is about 22.9 µm.  
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 As we have done for SWLI, we used the base radius and aperture radius information 

to generate the simulated surface profile and the sag is to regenerate our extracted surface 

profile (same as measured surface profile). Then we fix the best estimated parameters and 

vary conic constant K to find the best-fit conic constant. This is done based on the chi-

square minimization formula given by equation 7.1. Using the best estimate values (base 

radius, aperture radius, and sag) and varying the conic constant at a step of 0.03, we find 

the best-fit conic constant. Figure 7.7 shows the chi-square and its derivative (slope) plots, 

which indicate the best-fit conic constant. 

7.3  Monte Carlo for best-fit conic constant 
  

 Our Monte Carlo simulation code (APPENDIX D) is used to determine the 

combined uncertainty in the best-fit conic constant.  The estimates of the four parameters  

discussed above are assumed to follow Gaussian distributions. The well known Guassian 

distribution curve is given by the expression 7.4 and shown in Figure 7.8. The probability, 

P(x) of one sigma (σ) is the integration of Gaussian curve bounded by µ ± σ. In Figure 

7.8, the shaded region is the probability of one sigma for zero mean is about 68.27%. 

Based on the Gaussian assumption, the uncertainty u is approximated by one sigma. In 
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Figure 7.7 Chi-square versus conic constant K. the minimum 
value of chi-square is at a slope equal to zero. K=-2.3 
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 our analysis, each of the four parameters has its own mean (µ) and sigma (σ). These are 

taken to be the best estimate for the parameter and its uncertainty. 

 

                                                                                                                               (7.4) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

In the case of SWLI measurement, our Monte Carlo code randomly picks radius, aperture, 

sag, and center location from these Gaussian distributions.  The radius and aperture 

values are used to generate the model of the surface profile, while the sag and the center 
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Figure 7.8: Probability distribution. G is the Gaussian 
curve, σ represents the spread and the shaded region is 
its probability which is equal to 68.27% 

Figure 7.9: The probability distributions of the best-fit conic constant 
of stitched and not stitched measurement data. The best-fit conic 
constants are –2.4 ±0.72 and –2 ± 0.68 for stitched and not stitched 
respectively 
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 location are used to generate the surface profile from the data.  In addition to these 

parameters, it randomly picks a measurement among the set of eleven measurements to 

capture the uncertainty due to noise between measurements. This process is repeated 200 

times to find 200 different combinations of the four input parameters.  The result is a 

distribution of best-fit conic constant values. The distributions for the stitched and not 

stitched measurements are shown in Figure 7.9. 

The widths of these distributions are good estimates of the combined uncertainties.  

Although the means at first glance are quite different, they are within one sigma of each 

other.  However, given that the estimates of the base radius are different between stitched 

and not stitched and that more of the surface is measured with the stitching procedure, a 

difference in the best-fit conics is expected. 

The Monte Carlo simulation code (APPENDIX D) used for SWLI measurement 

analysis is also used for PSI measurement with a slight modification. Estimates of the 

three parameters (base radius, aperture radius and sag) discussed in Section 7.2.4 are 

assumed to follow Gaussian distribution. The base radius (approximated by best fit radius) 

and aperture radius distributions are shown in section 7.2.1. In the same way, the sag 

Figure 7.10: Sag distribution (22.9 ± 0.50) 
µ
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 distribution found from the 200 generated surface profiles is shown in Figure 7.10. As 

we saw from the distribution, the sag is (22.9 ± 0.5) µm. 

As we have done for SWLI, the Monte Carlo analysis is used to determine the 

combined uncertainty in the best-fit conic constant. The Monte Carlo code randomly 

picks base radius, aperture radius, and sag from their respective distributions. In addition 

to these parameters, the code randomly picks a measurement among the set of 200 

extracted surfaces (same as measurement data). The result is the distribution of best-fit 

conic values where the mean value is about the same as the best estimate of the best-fit 

conic constant. It is summarized in Figure 7.11. 

7.4  Uncertainty parameters effect on the best-fit conic constant 
 

As described in our Monte Carlo analysis of section 7.3, each of the uncertainty 

parameters is randomly picked from their respective distributions and one of the 

measurements at a time to find the best-fit conic constant through chi-square 

minimization process. This tells us the combined effect of uncertainty parameters on 

Figure 7.11: The probability distribution of the best fit 
conic constant of of the the generated surface profiles 
of OPD measurement. K=-2.27 ± 0.91 
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 finding the best-fit conic constant. This is good to get the best-fit conic constant value 

and the overall broadness of the distribution but it doesn’t tell us the individual 

contributions directly. 

 To assess the contribution of each parameter’s uncertainty, we carry out the 

Monte Carlo analysis where only a single parameter is varied at a time. The other 

parameters are set at their best estimate values. In the case of SWLI measurement, the 

average of the eleven measurements is used for the surface height data as each of the 

parameters is allowed to vary.  To estimate the impact of the noise only, we fix the four 

parameters to their best estimate values and randomly pick a measurement from the 

group of eleven.  Fifty iterations were used for this analysis.  The mean and sigma values 

of the resulting conic distributions are summarized in Table III and shown in Figure 7.12.  

 

 
 
 
 
 
 
 
 
 

For a given stitched or not stitched condition, we expect the mean conic values shown 

in Table III to be the same.  Taking the uncertainty in the mean as the standard deviation 

of the values divided by the square root of N (N=50 here) [11], we see that the observed 

variation is not statistically significant. For example, the mean conic value for the 

stitched case when all parameters are varied (All) is –2.44 ± 0.1 and the mean conic 

values for the individual parameter investigations are within this uncertainty.  The same 

SWLI (best fit conic constant) 

 Stitched Not stitched 
 µ σ µ σ 
ALL -2.44 0.72 -1.98 0.68 
RADIUS -2.44 0.55 -2.00 0.62 
SAG -2.36 0.47 -1.92 0.39 
NOISE -2.49 0.29 -1.93 0.36 
APERTURE -2.35 0.26 -1.98 0.25 
CENTER -2.37 0.00 -1.95 0.00 

Table III: The best-fit conic constants due to individual parameters, 
measurement noise, and combined (All). 
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 is true for the not stitched case where the mean for the full Monte Carlo is –1.98 ± 0.1.  

The relative importance of the individual contributions to the overall uncertainty can be 

appreciated from plots of these distributions, as shown in Figure 7.12.  The data in Table 

III is used to generate Gaussian profiles.  The mean of each distribution is shifted to zero 

so the widths can be clearly compared. 

The full Monte Carlo analysis, where all parameters and noise are varied, leads to the 

broadest distribution for both stitched and not stitched, as expected.  The listing order of  

 

 

 

 

 

 

 

 

the parameters in the figures convey their relative significance.  The uncertainty in the 

radius is the dominant contribution but uncertainty in the center is the least contribution 

for both stitched and not stitched measurements. From this analysis, one can determine 

what aspect of the measurement must be improved to reduce (optimize) the final conic 

uncertainty. Note that the best-fit conic is very sensitive to the base radius value.  

Uncertainties for both the stitched and not stitched R values are 20 µm (~1.5%) and this 

small uncertainty broadens the K distributions to a sigma of ~0.7 (~30% for stitched and 

~36% for not stitched).  Consequently, part of the difference in the mean conic between 

Figure 7.12:  (a) The distribution of uncertainty parameters versus 
conic constant for stitched data. (b) The distribution of uncertainty 
parameters versus conic constant for not stitched data. 

(a) (b) 
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 stitched and not stitched is due to the 10µm difference in the best estimate R values (R 

= 1.36 mm and 1.37 mm for stitched and not stitched, respectively).  Setting the mean R 

to 1.37 mm rather than 1.36 mm for the stitched analysis and repeating the Monte Carlo 

process confirmed this. The best-fit conic constant for the stitched drops to –2.1, which is 

closer to the not stitched best-fit conic constant.  The presence of more surface data in the 

stitched measurements also contributes to the difference between stitched and not stitched 

conic means.  Repeating the Monte Carlo procedure with the stitched data, but masking it 

down to the same diameter as the not stitched data, in addition to setting the base radius 

estimate to 1.37 mm, investigated this.  The result of the conic distribution has a mean of 

-2.05, which again is closer to the not stitched mean of –1.98.  

Individual parameters and measurement noise can also be evaluated using Monte 

Carlo analysis in the case of PSI measurements. Varying each parameter at a time 

keeping the rest at their mean positions can do this. The three parameters (base radius, 

aperture radius, and sag) mean positions are their best estimate values described in 

Section 7.2.2. The mean of measurement data is the average value of the 200 generated 

surface profiles. The mean and sigma values of the resulting distributions are summarized 

in Table VI and shown in Figure 7.13. 

 
 
 

 PSI (best fit conic constant) 
 µ σ 
ALL -2.27 0.91 
RADIUS -2.39 0.71 
SAG -2.29 0.70 
NOISE -2.35 0.68 
APERTURE -2.21 0.38 

 
 

Table VI: The best-fit conic constants due to individual 
parameters, generated surface noise, and combined (All) 
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  Even though the means shown in Table VI is expected to be the same, 

statistically speaking, the variations of the means are insignificant. This can easily be 

seen by calculating the uncertainty in the mean of “All”. Since we iterated 50 times in the 

code, the uncertainty in the mean is about 0.13µm. Therefore, all the means are within (–

2.27± 0.13) µm. the relative importance of the individual contributions to the over all 

uncertainty (combined, All) can be appreciated from plots shown in Figure 7.13. The data 

in VI is used to generate these distributions, where the mean of each distribution is 

shifted to zero. The combined effect of all the parameters is the broadest distribution as 

expected. Even though the radius leads to the broadest distribution next to “All”, the 

relative significant of the contributions from the base radius, noise, and sag are 

comparable. In our PSI technique, we described that the OPD measurement data is 

related to misalignment. We generated OPD maps from the misalignment correction as 

described in Section 7.2.3. Because the OPD data and the base radius information are 

used to generate surface profiles, the noise is directly related to the misalignment 

information. 

 

 

 

 

 

 

 

 

Figure 7.13: The probability distribution 
functions for the individual parameters versus 
conic constant  
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 8 SUBTRACTING INTENDED SHAPE 

 

Intended shapes (surfaces) of an aspheric micro lens can easily be simulated using the 

general mathematical expression for general aspheres given by Equation 2.9. Since the 

design shape of this particular aspheric micro lens has a conic surface of base radius 

1.375 mm and conic constant of –2.1, we used the special case of general asphere 

expression which assumes all deformation constants to be zero for conic surfaces. Prior 

knowledge of the micro lens is necessary so that our measurement data can be subtracted 

from it. We obtain the design information from Digital Optics Corporation (DOC). 

 

 

 

 

 

 

 

 

 

 

In order to validate our analysis we should be able to verify our measurement 

simulation code. In general, from an array of micro lenses, one of them can be picked up 

and measured for its surface profile directly using SWLI technique or its OPD 

measurement using PSI technique. Both techniques applied on the measurement of an 

aspheric micro lens can be simulated as shown in Figure 8.1.   

Surface 
 profile 

OPD 
map 

Figure 8.1: A simulated micro lens arrays and simulated 
measurements of a refractive micro lens based on SWLI 
technique (surface profile) and PSI technique (OPD map).   
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 The intended aspheric micro lens measured in different setup of interferometer can 

be simulated and analyzed. APPENDIX F is the matlab code we developed for simulated 

measurement of intended shape. Since we used two interferometer set ups, which follow 

two different techniques, SWLI and PSI, we need crucial information that is required for 

simulation. Knowing the objective used in the interferometer and pixel information we 

can simulate the measurement. In the next two sections of this chapter, we described 

simulated measurements of intended aspheric micro lens on two different setups, SWLI 

and PSI. 

8.1 Subtracting intended shape from the surface profile measurement 
 
 An aspheric micro lens measurement on a SWLI can easily be simulated based on the 

information of our intended shape conic parameters, numerical aperture (NA), and pixel size 

information from the interferometer. The NA of New View 5000 with a Mirau objective of 

10X is 0.3 and the pixel size is 1.1µm (640 X 480) with system magnification of one. In 

addition to these, we can incorporate like misalignment and noise to make it look like the 

real measurement. To simplify things we added just noise in our code, APPENDIX F, which 

simulates the measurement of our intended aspheric micro lens. Now we have two surface 

profiles, the intended shape and the measurement of the intended shape (our aspheric micro 

lens). Figure 8.2 shows two types of measurements (with or with out noise) based on SWLI 

technique. Subtracting the intended shape from the measured surface profile of the intended 

gives us the residual surface error profile. Since our reference (intended) surface is the same 

as measured (by simulation), ideally we expect zero for the difference between intended and 

simulated measurement data (with out noise). As shown in Figure 8.2 it is 0.05 nm, close to 

zero. In the second part of the simulated measurement ,we added a Gaussian noise with zero 
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 mean and 0.3µm sigma, we get ~ 20 nm as the difference between Intended shape the 

simulated measurement data (with noise), As it can easily be assessed, the 20 nm RMS is 

 

 

 

 

 

 

 

 

 

 

because of the added Gaussian noise but the 0.05 nm may be from the approximations used 

in the simulated measurement code (APPENDIX F) and the conversion of data files between 

two different programs (Matlab and Vision).These results explained how good our 

simulation is. In addition to this the optimum conic constant is –2.1 (same as intended) for 

simulated measurement without noise but -2.17 for simulated measurement with noise. It is 

important to notice here is that the noise affects the best-fit conic constant measurement. 

Other parameters can be changed to show the effects on the best-fit conic constant values. 

But this is just enough to show that measurement can be simulated. Since the actual effects 

of parameters on our measurement are explained in Chapter 9, we do not need to simulate 

the measurement. 

Figure 8.2: The simulated measurements of the intended shape without 
noise and with noise are shown at the top left and right respectively. 
The measurement covers 220 µm aperture radius. Intended subtracted 
from measurement data (with out noise) and Intended subtracted from 
measurement data (with noise) are shown at the bottom left and right 
respectively. 

RMS=3.2 µm 
PV=11.12 µm 

RMS=3.2 µm 
PV=11.15 µm 

RMS=0.05nm 
PV=0.18 nm 

RMS=19.8 nm 
PV= 162.2 nm 



 91  
 8.2  Subtracting intended shape from the OPD measurement 

  
As we have simulated measurements of SWLI, we can also simulate the 

measurements of our intended aspheric micro lens based on PSI technique. The Twyamn 

Green set up of Fisba Optik follows the PSI technique to give us the OPD measurement 

data. The NA of spherical objective used is 0.34 and the pixel size of 2.285µm. In 

addition to this, the conic parameters of our intended aspheric micro lens are needed to 

simulate the OPD measurement of Fisba Optik.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We developed a Matlab code (APPENDIX G), which simulates the OPD 

measurement of our intended aspheric micro lens. To discuss about subtracting the design 

Figure 8.3: (a) The surface of an aspheric micro lens is generated by 
subtracting simulated OPD measurement data from a sphere with radius 
equal to the base radius of the lens.  (b) The deviation of generated 
from the intended is found by subtracting intended from the generated 
surface profile of the micro lens. Aperture radius is 251 µm 

OPD map 

Intended from Generated 

Sphere 

Intended 

Generated profile 

Generated profile 

- 

- = 

= 

RMS = 4.18 µm 
PV= 14.41 µm 

RMS = 18.51 nm 
PV= 65.79 nm 

RMS = 4.18 µm 
PV= 14.46 µm 

RMS = 0.60 nm 
PV= 2.34 nm 

RMS = 4.11 µm 
PV= 14.16 µm 

RMS = 4.18 µm 
PV = 14.46 µm 

(a) 

(b) 
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 shape in this type of measurements, we need to go further in extracting the surface 

profile from OPD maps.  We already derived an equation to extract the surface from the 

OPD map in Section 6.2. The simulated OPD measurement should be subtracted from the  

sphere of radius R according to Equation 6.2. As an example, we simulated the OPD map 

of an aspheric micro lens of base radius 1375 µm with conic constant of –2.1 as measured 

by Fisba Optik and shown in Figure 8.3. The first part of the figure shows how to 

generate the surface profile of an aspheric micro lens. To get our OPD map we assumed 

the null position of our micro lens coincides with the reference sphere wavefront of 

radius equal to the base radius of the micro lens. As we know from the discussion of 

general aspheres, these two radii are the same only at the apex point. Because of this, our 

OPD map at “null” position cannot be zero. Since the OPD map simulated is the 

deviation of the micro lens surface from the sphere wave front, we simply subtract the 

OPD map from the sphere in order to generate the surface profile of the lens. Finally, to 

understand how good the surface is generated, we compared it to the intended shape as 

shown in Figure 8.3(b). The RMS is not zero as expected. This is because of the fact that 

the OPD is calculated along the radius but the surfaces are subtracted along z-direction.  

Therefore, the surface error results for both SWLI and PSI are small. As it was indicated 

in the above two Figures, the residual surface error after subtracting intended shape from 

the simulated data (without noise) are about 0.05 nm and 0.6 nm in RMS for SWLI and 

PSI techniques respectively. This tells us that the difference in residual error analysis may 

be different by a maximum of about 0.6 nm RMS (for 502 µm aperture diameter) which 

comes from approximations and the program itself. We will see how this error compared 

to overall residual surface error to be discussed in Chapter 9. If the surface error is more 
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 than 100 nm, the contribution from 0.6 nm errors is less than 0.6%. Depending on 

demanding applications, this kind of error can be ignored. 
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 9. RESIDUAL ERROR ANALYSIS 

 

We discussed on how to get surface measurement data of an aspheric micro lens 

based on two techniques, SWLI and PSI. In the case of SWLI technique, we described 

how to correct the surface profile measurement and estimate four major parameters (base 

radius, aperture radius, sag, and center of the lens) to find the best fit on the bases of chi-

square minimization and optimize the best-fit conic constant. In the case of PSI 

measurement, we described the three main sources of uncertainty parameters namely, the 

best-fit radius, aperture of the lens, and misalignment. We discussed how to correct for 

misalignment in Section 7.2.3. We also discussed in detail how to extract the aspheric 

micro lens surface from its OPD measurement in Chapters 6 and Section 7.2.4. For both 

techniques, we subtract the design shape and the best-fit surfaces from the surface profile 

of the measured (or generated surface from OPD measurement in the case of PSI) 

aspheric micro lens. In doing this we obtain the remaining profiles, which are called the 

residual surface error maps. We then fit each of the surface error maps to a set of Zernike 

polynomials to capture the dominant aberrations and their variations. The result is a 

distribution of a Zernike coefficient (aberration) describing the surface error. Therfore, as 

we have done for the best-fit conic constant based on Monte Carlo analysis, we are going 

to obtain the combined uncertainty of an aberration. Furthermore we will investigate the 

individual aberration contributions.  

9.1 Surface error analysis based on SWLI measurement  
 

In the SWLI measurements, the surface height profile from the NewViewTM 5000 is 

corrected for tip and tilt using Vision® 32 software. The corrected surface data, the best-
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 fit surface profile, and the intended surface height profile are used in the analysis 

discussed below. As described in Sections 7.1 and 7.2, our least squares minimization 

and Monte Carlo analysis are used to find the best-fit conic value and associated 

combined uncertainty. Since we have the best-fit conic constant, we have the best-fit 

conic surface.  The intended surface is generated from the design parameters provided by 

the micro-lens manufacturer, Digital Optics Corporation. The residual surface error is  

 

 

 

 

 

 

 

 

 

found by subtracting the intended surface from the data. We can also regard the residual 

surface error as the deviation of the best fit from the measured data. As an example, the 

residual surface error maps are shown to the right in Figure 9.1. The error maps are 

masked to a circular aperture and only piston has been removed since the tip and tilt of 

the data is corrected based on the substrate tip and tilt information as described in Section 

6.1. We choose a circular aperture in order to accommodate a Zernike polynomial fit to 

the residual error [56]. The difference between the two residual error maps appears small. 

The difference in RMS values is 15.2 nm. This suggests that even though the difference 

Figure 9.1 Residual surface error map of stitched data. The surface error 
as best fit subtracted from data is shown at the top right. The surface error 
as intended subtracted from the data is shown at the bottom right  
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 96  
 between the intended surface profile and the best-fit surface profile is small, the best-fit 

method byitself is not comprehensive for the characterization of microlenses.  In the same 

way the residual surface error maps for the not stitched measurement is shown to the 

right in Figure 9.2. The difference in RMS values is also small, about 6 nm, indicates 

again the difference shows the best-fit method byitself is not enough to know all about 

the microlens. 

 

 

 

 

 

 

 

 

 

 

In general, both stitched and not stitched measurements give us about λ agreement with 

the intended lens shape and the best-fit conic shape. In addition to the best fit conic 

surface, the residual surface errors, described as aberrations give us a lot of information 

about our aspheric micro aspheric lens. These aberrations are useful for describing the 

lens performance and in providing feedback to the manufacturing so that process can be 

monitored.  

Figure 9.2 Residual surface error maps of not stitched data. The surface error 
as best fit subtracted from data is shown at the top right. The surface error as 
intended subtracted from the data is shown at the bottom right.  
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 Therefore, the final step in our analysis is to fit the residual surface error maps to 

Zernike polynomials to get the 36 Zernike coefficients. The mean (µ) and sigma (σ) values 

of the 36 Zernike coefficients from the full Monte Carlo analysis of 200 iterations are 

summarized in APPENDIX H. The dominant aberrations we found in our analysis are 

a11(tip), a1-1(tilt), a20 (defocus), and a40 (third order spherical aberrations), for both 

stitched and not stitched. Let us focus on the rotationally invariant components (a20, a40, 

and a60) as it is summarized in Table IV.  With the Zernike polynomials, a higher order 

radial term (e.g. the a60 polynomial) includes lower order radial terms. For example, the 

a60  Zernike coefficient corresponds to the polynomial 20ρ6 - 30ρ4 + 12ρ2-1 [47]. In the 

same way, the a40 and a20 are related to the 4th power and 2nd power of ρ, respectively. 

Therefore, our aspheric micro lens surface shape is related to these polynomials. It is very 

clear that an approximate profile of the aspheric micro lens is related to a ρ2 surface 

profile. This can be seen from Table IV of “Intended from best fit” column, since the a20 

coefficient is dominant.   

 

 Intended from data Best fit from data Intended from best fit 
Zernike     Stitched   Not stitched   Stitched  Not stitched    Stitched Not stitched 

 µ σ µ σ µ σ µ σ µ σ µ σ 
a20 -87 52 -178 91 -37 77 -147 110 50 55 31 60 

a40 -148 8 -114 14 -147 8 -114 14 -2 2 -0.07 3 

a60 15 7 40 12 15 7 40 12 0.01 0.01 0.0 0.01 

 

As was done for the best-fit conic analysis, we can ascertain the contribution of the 

individual parameters to the final uncertainty in these Zernike coefficients by allowing 

only one parameter to vary at a time. The uncertainty in these coefficients is related to the  

Table IV: Mean (µ) and sigma (σ) values of the dominant 
aberrations. All units are in nanometers (nm). 
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 uncertainty of the input parameters. These parameters are discussed in Sections 7.1 and 

7.2. As an example, consider the impact of the input uncertainties on the third order  

spherical aberration.  Table V summarizes the spherical aberration distributions due 

 

 

SWLI (spherical aberration) 
 Stitched Not stitched 
 µ (nm) σ (nm) µ(nm) σ(nm) 

ALL -147.4 8.4 -112.5 13 
NOISE -148.7 7.9 -114.4 12 
RADIUS -148.3 1.9 -111.9 2.1 
APERTURE -147.8 1.8 -111.5 0.4 
SAG -147.9 1.5 -111.5 1.3 
CENTER -148.1 0.2 -110.6 0.9 

 

to the four uncertainty parameters, measurement noise, and combined (ALL). Based on 

Table V, their respective contributions are shown in Figure 9.3. As we have done in the 

case of conic constant distribution, the mean values are shifted to zero so that the widths 

of the distributions can be clearly compared. Measurement noise is the largest contributor 

Table V:  Mean and sigma values of the spherical 
aberration Zernike coefficients.   

Figure 9.3:  (a) The probability distribution functions for the individual 
parameters versus spherical aberration, a40, for the stitched data (b) The 
probability distribution functions for the individual parameters versus 
spherical aberration, a40, for not stitched data 
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 to the overall a40 residual error uncertainty. Again, the mean a40 values should be the 

same when only single parameters are allowed to vary.  As it is done in Section 7.3, we 

check the statistical significance of the mean values by calculating the uncertainty in the 

mean.  We find that the mean a40 value for the full Monte Carlo analysis (ALL) is 147.4 

± 1.2 and 112.5±1.8 for stitched and not stitched data, respectively. Even if the noise is 

the dominant contributor, all the means are within the acceptable mean uncertainty. 

Therefore, the uncertainty in the means is statistically insignificant.  

  It is interesting to note that the order of importance of each parameter is different for 

the a40 analysis than was the case for the best-fit conic analysis.  In the case of the best-fit 

conic constant distributions shown in Figure 7.12, the measurement noise was not a 

dominant contributor to the overall conic constant uncertainty.  The best-fit conic 

constant apparently is not as sensitive to the measurement noise as the spherical 

aberration term. 

9.2  Surface error analysis based on PSI measurement 
 

 The last step in PSI analysis is to get the residual error map. It is found by subtracting 

the intended surface profile of an aspheric micro lens from its generated surface profile, 

which is derived from the base radius and OPD measurement. The method of subtracting 

intended shape is followed the same approach explained in Chapter 8. Figure 9.4 shows 

an example of subtracting intended surface profile from generated surface profile, and 

subtracting best surface profile from the generated surface profile. In this illustration, we 

used the mean generated surface profile, averaged from the 200 generated surface 

profiles. Since the best fit conic constant of the averaged generated surface profile is 
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 about –2.27 but the intended surface profile has a conic constant of –2.1, the difference 

in the two error surface maps (shown in Figure 9.4) is expected. However, the difference 

between these error maps is very small. Quantitatively, the difference in RMS value is 

~12 nm. 

 

 

 

 

 

 

 

 

 

 

 The final step in our analysis is to fit the residual error maps to Zernike polynomials. 

Since the first sixteen Zernike coefficient terms were responsible for the generation of 

OPD maps from misalignment correction analysis as described in Section 7.2.3, we 

obtain the first sixteen Zernike coefficients after the fit to the Zernike polynomials. The 

result it summarized in APPENDIX I. here for our analysis we summarized only the 

rotationally invariant aberrations in Table VII. 

The dominant aberrations among the rotationally invariant terms are defocus (a20) 

and spherical aberration (a40). This result is comparable with SWLI technique. The a20 

term in the “intended from best fit” column is about 49 nm as compared to 50 nm in 

Figure 9.4 Residual surface error map of averaged generated surface profile 
of aspheric micro lens. The surface error as best fit subtracted from generated 
surface is shown at the top right. The surface error as intended subtracted 
from the generated surface is shown at the bottom right 
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 SWLI technique of the stitched data. However, this result is from the combined effect 

of all the parameters and generated surface noise. To access the individual contribution to  

 

 

Zernike Intended from data Best fit from data Intended from best fit 
 Mean σ Mean σ Mean σ 
a20 -130.4 115.9 -118.9 106.9 48.8 60.3 

a40 -111.6 5.3 -110.5 30.1 0.4 30.1 

a60 0.5 2.9 -0.6 2.9 0.1 0.4 

 

 

 

PSI (spherical aberration) 
 Best fit from data 
 Mean (nm) σ (nm) 

ALL -110.5 30.1 
RADIUS -114.2 22.6 
NOISE -109.7 22.2 
SAG -111.5 20.1 
APERTURE -107.3 11.8 

 

the over all effect of the distribution, we need to vary each parameter while keeping 

others at their mean values. This can be done using Monte Carlo analysis method we used 

in previous sections. As an example, Table VIII summarizes the spherical aberration 

distributions due to the three uncertainty parameters, generated surface data noise, and 

combined (All).   

Based on Table VIII, their respective contributions can be compared as shown in 

Figure 9.5. As we saw it in Table VIII, the mean values seems different but as we have 

checked by calculating the mean uncertainty for previous analysis, we check it here and 

Table VII: Mean and sigma values of the dominant aberrations. All 
units are in nanometers (nm). 

Table VIII: Mean and sigma values of spherical 
aberrations due to individual parameters, and 
combined (All) 
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 found that all the means are within (110.5 ± 4.1) nm. It indicates that the mean value 

differences are statistically insignificant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5: The probability distributions of spherical 
aberration due to individual parameters and combined (All) 



 103  
 10. CONCLUSIONS 

 
We have developed a new analysis strategy with major components of determining 

the best-fit conic constant using chi-square minimization; estimate the uncertainty in the 

best-fit conic constant, and determining the aspects of the measurement that have the 

dominant effect on the best-fit conic constant. We used a Monte Carlo simulation to 

estimate a measurement uncertainty for the best-fit conic constant and to determine the 

dominant uncertainty contributors for the best-fit conic constant.  Our new analysis 

strategy can be applied to any type of micro lens measurement. We illustrate the 

approach by obtaining data from the two major micro lens metrology techniques, SWLI 

and PSI. An aspheric micro lens was measured on a scanning white light interferometer 

using both a stitched and not stitched measurement mode, and on phase shifting 

interferometry. We applied our new analysis strategy procedures to the data. We 

extracted the surface measurement data from OPD measurement data in the case of PSI 

technique. We found the best-fit conic constant values –2.4 ± 0.72 and –2.0 ± 0.68 for the 

stitched and not stitched data, respectively. We also found –2.27 ± 0.91 for the case of 

PSI technique. To have a sense what we found in our analysis, the intended conic value 

based on the lens designer is –2.1. In addition to a full Monte Carlo analysis where all 

input parameter uncertainty is considered, input parameters were individually varied to 

assess individual contributions to the overall uncertainty.  For both the stitched and not 

stitched data of SWLI technique, the estimate of the base radius from the measurements 

has the largest impact on the overall conic constant uncertainty. In PSI technique, even 

though the base radius has the largest impact as SWLI technique, the noise and sag have 

almost comparable effect.   
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 We also presented an alternative analysis approach to characterizing surface 

geometry for microlens manufacturing. Current practice focuses on determining the best-

fit conic constant and we propose to alternatively look at the surface error on the lens 

only. The residual surface error is the difference between either the intended shape and 

the measured surface geometry or the best-fit conic surface and the measured surface 

geometry. We focused on a Zernike polynomial description of the residual surface error. 

Focusing on the surface error will provide stronger feedback to the manufacturing 

process. The analysis in both SWLI and PSI techniques shows that the residual surface 

error is dominated by power and spherical aberration terms, indicating that the actual lens 

shape is not a perfect conic, but rather a general aspheric. The Monte Carlo analysis 

yields uncertainties for the Zernike coefficients of the residual error map.  Interestingly in 

SWLI technique, the relative contributions of each input uncertainty to the final 

uncertainty for the Zernike coefficients does not follow what we find for the 

contributions in the best-fit conic constant analysis. As an example, the uncertainty in the 

a40 is dominated by the measurement noise, unlike the uncertainty in the best-fit conic 

constant that was dominated by the base radius uncertainty.  The residual spherical 

aberration appears to be very sensitive to the measurement noise. In PSI technique, the 

individual contributions in both best-fit conic constant and residual analysis follow the 

same trend.  

As a tool to our new analysis strategy, we developed a comprehensive 

misalignment simulation code, which allows as generating the OPD map for aspheric 

surfaces misaligned in both transnational and rotational during the measurement. We also 

developed a code, which does the PSI analysis to extract the aspheric surface profile 
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 measurement. Furthermore, we wrote a code that used for Monte Carlo analysis. All the 

main codes are found in the appendices.  

In general, our new analysis shows that all results are comparable and overlaps 

within the combined uncertainty found in both techniques. This will assure that with 

proper analysis, different techniques of measurement should give the same result for the 

same micro lens. In addition to these the difference of the best fit conic constant from the 

intended and the Zernike coefficients of residual surface error are indications of the 

aspheric micro lens performance and process variations in the manufacturing. Since we 

have a lot of information from our new analysis strategy, feedback to the manufacturing 

process can be investigated. 
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Abstract:  The ability to accurately characterize 
physical attributes of an aspheric microlens is 
crucial to understanding and improving 
processing in micro-optic manufacturing. Since 
most microlenses are plano-convex, where the 
convex geometry is a conic surface, current 
procedure is limited to obtaining an estimate of 
the lens’ conic constant, averaging out the 
surface irregularities to get a best-fit conic 
surface.  The results are later used to evaluate 
processing output. A standardized process of 
determining the best-fit conic is lacking in 
addition to a method of estimating the 
uncertainty. We have developed an approach for 
determining the conic constant plus associated 
uncertainty that is both reliable and applicable to 
the two most dominant microlens metrology 
methods in use today, namely, scanning white 
light interferometry (SWLI) and phase shifting 
interferometry (PSI). Our procedure uses least 
squares minimization to extract a best-fit conic 
value, which is then subjected to a Monte Carlo 
analysis to capture combined uncertainty. 
 
1.  Introduction:  While microlenses in general 
have become important components in many 
technologies such as tele- and data-
communication devices, optical data storage, and 
detector arrays, microlenses with a conic surface 
geometry are especially useful in today's micro-
optic applications. A single refracting conic 
surface such as a hyperboloid with a specific 
conic constant whose value depends on the 
refractive index, corrects on-axis spherical 
aberration and perfectly images collimated light 
on axis [1].  This functionality is commonly used 
to couple light into and out of optical fibers. 
Thus many microlens design specifications 
require a conic surface geometry with a specific 
conic constant.  While conic tolerances do vary 

with application, they can approach ± 0.3 in 
demanding applications [2].  Further, one must 
expect that new or improved applications will 
drive tolerances lower, particularly as 
manufacturers move to passive rather than active 
alignment processes in an effort to reduce cost.  
Ideally, in-house metrology should provide a 
conic measurement of a microlens and an 
associated measurement uncertainty that is an 
order of magnitude lower than the tolerance.  
This would assure compliance of the end product, 
while reducing the number of situations where 
the characterization of the microlens itself 
becomes a bottleneck in the manufacturing 
process. 
 
There are two interferometry-based technologies 
which are commonly used to characterize 
microlens geometry, namely phase shifting 
interferometry (PSI) [3] and scanning white light 
interferometry (SWLI) [4-6]. In some cases, 
instrument software can extract a best fit conic 
constant, but the analysis is usually proprietary, 
making it difficult for the lens manufacturer to 
assess measurement uncertainty.  An alternative 
for extracting the conic is discussed in the 
literature [7], but the proposed method is not 
applicable to microlenses, nor is it applicable to 
interferometric measurements. As a consequence, 
manufacturers are obliged to spend capital 
developing their own proprietary data analysis 
methods.  Our goal is a non-proprietary, 
comprehensive, procedure for estimating best-fit 
conic and uncertainty that can be utilized by both 
microlens manufacturers and customers alike.  
While the analysis is somewhat time-consuming 
and not recommended for high-volume routine 
inspection, it is valuable for less frequent 
detailed assessments for quality control. Our 
analysis yields a comprehensive estimate of 
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 uncertainty and can be used to validate in-house 

high-speed/high volume conic estimate methods.   
 
Our procedure employs least squares 
minimization to extract a best-fit conic value, 
which is then subjected to a Monte Carlo 
analysis to capture combined uncertainty. First 
we obtain the surface height profile data which is 
directly captured in SWLI, and can be generated 
from PSI by combining measures of the optical 
path difference (OPD) with a radius of curvature. 
Once the profile data is determined, we use 
estimates of the base radius of curvature and the 
lens aperture to generate a model conic surface 
for which only the conic constant remains an 
unknown fit parameter. Based on measurement 
uncertainties, appropriate probability 
distributions are selected for the model 
parameters, and a Monte Carlo process is used to 
iterate the minimization and to produce a final 
distribution of best-fit conic constants. A 
collection of repeated measurements are 
incorporated into the Monte Carlo simulation to 
capture uncertainty due to measurement noise.  
The mean of the output conic distribution then 
becomes a good estimate of the best-fit conic and 
the width an estimate of the combined 
uncertainty. The simulation can be repeated with 
uncertainty contributors varied one at a time.  
This provides needed and heretofore unavailable 
insight into measurement aspects that most affect 
the combined conic uncertainty.  In this paper, 
we describe our approach in the context of 
application to SWLI and PSI measurements of a 
sample microlens. 
 
2.  The Sample Microlens:  The surface of a 
general aspheric microlens can be represented by 
a conic and an even-order polynomial [8], 
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where z is the surface height, k is the conic 
constant, ρ 22 yx +=   is the aperture coordinate, 

R is the base radius of curvature, and the Ai's are 
the deformation constants. The equation 
describes a conic surface when all deformation 
constants are zero. The  design specifications for 
our sample conic microlens are a conic constant, 
k = -2.1, a base radius of curvature, R = 1375 µm, 
and a clear aperture diameter of 800µm [2]. 

 
3.  Generating the Surface Profile:  The first 
step of the analysis is to generate the surface 
profile from the measurement data.  SWLI and 
PSI are the most common techniques for 
characterizing the surface profile of a microlens.  
Details of the methods can be found in the 
literature [9-16].  
 
We demonstrate the application to SWLI 
measurements with data taken with a 
NewViewTM 5000 SWLI.  Scanning white light 
interferometers are also known as optical 
profilers and yield a direct estimate of the height 
profile of a surface. We used a 10x Mirau 
interferometric objective, a spatial sampling of 
2.2 µm (320x240), and a system magnification 
of 2, which generated an observable pixel size of 
1.103 µm as read from the calibrated instrument.  
Measurements can be taken in either of two ways, 
a single measurement taken at the apex of the 
lens or a collection of measurements taken using 
the stitching mode.  SWLI instruments are 
limited in the surface slopes that can be 
measured.  If the slope is too high, light does not 
reflect back into the objective.  We used the 
stitching measurement mode whereby a higher 
NA objective can be used to capture steeper 
slopes, and to compensate, smaller area 
measurements are then taken as the lens is 
translated under the objective and stitched 
together for a final result.  Even so, only the 
region near the apex of the lens is measured.   A 
sample measurement is shown in Figure 1. 
 

Fig. 1:  One of the SWLI measurements of the 
microlens surface profile. 
 
It is important to take a collection of 
measurements to allow measurement noise to be 
included in the final uncertainty.  We took a total 
of 11 stitched measurements.  We repositioned 
and rotated the lens between the measurements 
to capture reproducibility.  The images were 
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 rotated back to the same orientation for the 

remaining analysis (made possible by a fiducial 
near the lens edge).  We define the axis of the 
microlens to be perpendicular to the plane of the 
substrate, therefore the substrate region is 
aligned perpendicular to the optical axis of the 
instrument for data acquisition.  Residual tip and 
tilt misalignment was removed with Vision® 32 
software.  
 
We take only the data from the apex region of 
the lens (central portion in Figure 1).  To 
complete the generate of the height profile, we 
estimate the sag of the lens from the 
measurements to define the height of he data 
above the substrate plane.  Among the collection 
of 11 measurements we estimate a mean sag of 
57.7 µm with an uncertainty (standard deviation) 
of ± 0.7.  We also need to define the x y (plane of 
the substrate) location of the lens center.  We 
take this to be the center of a circular mask fit to 
the data drop-out boundary at the edge of the 
lens (see Figure 1) and estimate an uncertainty of 
a fraction of a pixel on average, ± 0.63 µm. 
 
For the SWLI height profile generation, the 
dominant uncertainty contributors are noise in 
the measurements themselves (e.g. from 
turbulence, vibration, and source and detector 
noise) and estimation of the sag.  Calibration of 
the instrument in x, y (plane of substrate), and z 
contributes uncertainty, but these contributions 
are small compared to the sources.  For example, 
the calibration uncertainty for z is ± 0.26%, 
leading to an uncertainty of 0.1 µm for a sag of 
57.7 µm, whereas the measurement noise leads 
to a sag uncertainty of 0.7 µm. Therefore, 
calibration uncertainty can be ignored.  The 
estimated one-pixel variation in the lens center 
definition is negligible. 
 
Generating the profile estimate from the PSI 
measurement is more involved.  We use a Fisba 
Optik µphase®  interferometer with a numerical 
aperture of 0.34 and a spatial sampling of 2.285 
µm (512x512) for the PSI measurements. The 
Fisba Optik is a Twyman-Green configuration 
and measures the optical path difference (OPD) 
for the lens surface from wave front phase 
information [8, 17-21]. The OPD map must be 
combined with the profile of a sphere to generate 
the lens surface profile.  The Fisba uses a 
Heidenhain displacement gauge to measure 
(equivalently) z-position changes of the 
microlens.  This allows the microlens radius to 

be measured.  A height profile is generated by 
adding the OPD data to a spherical surface with 
the radius determined from a radius 
measurement.  The OPD represents the departure 
of the surface from a best fit sphere in the radial 
direction [22, 23].  We approximate this by 
adding the OPD in the z direction, which 
involves a cosine approximation.  This 
introduces an error that is small compared to our 
measurement noise and does not affect our result.  
But, this approximation should be avoided for 
lower noise applications.  We took a total of 15 
OPD measurements to capture measurement 
noise for our uncertainty evaluation.  A 
calibration map is subtracted from each 
measurement to remove the interferometer bias.  
The calibration is determined by carrying out a 
random ball test [24, 25].  One of the OPD 
measurements is shown in Figure 2. 
 
The radius is measured on the Fisba following 
the procedure described in reference 26.   In 
short, the radius is the distance the lens is 
translated between the cat’s eye and confocal 
positions (technically the interferometer is 
translated in the Fisba, but the effect is the same).  
The two positions are determined by collecting a 
series of measurements around the confocal and 
cat’s eye positions and using the curvature in the 
measured wavefront to interpolate to the two best 
null positions.  An uncertainty can be estimated 
as the standard deviation observed when the 
measurement is repeated several times.  We 
followed a more involved process whereby we 
estimated an uncertainty for the interpolation 
process, which is influenced by the uncertainty 
in the wavefront curvature measurements and the 
Heidenhain gauge uncertainty.  The details of the 
analysis are beyond the scope of this paper and 
will be published elsewhere [25].  In summary, 
we estimate a radius of 1366 µm ± 17 µm. This 
radius measurement yields an estimate of the 
radius of a best-fit sphere to the lens surface over 
the aperture of the OPD measurement.  Note that 
this is not the same as the base radius for an 
aspheric lens. This is however the correct radius 
to use to build the surface profile in the manner 
described. 
 
The numerical aperture of the OPD measurement 
must be known in order to add the OPD data to 
the spherical data.  Recall that the OPD is a 
measure of the surface departure from a best-fit 
sphere, taken with the lens positioned so the 
center of curvature coincides with the focus of  
 



 113  
 

Fig. 2:  One of the PSI measurements of the 
microlens. 
 
light from the interferometer.  The NA defines 
the solid angle of the OPD measurement at 
confocal.  Thus the NA of the measurement 
defines the sinθ of the lens geometry, as shown 
in Figure 3.  The NA will be lower than the NA 
of the interferometer objective if the cone of 
light overfills the lens and/or the data is masked.  
From our masking and objective NA information, 
we estimate a cone angle of 10.6° ± 1°.  The 
equation that defines the aperture from the 
geometry is max sinRρ = Θ .  An angle of 10.6° 

and a radius of 1366 mm gives maxρ = 251.4 µm.  
Error propagation gives an uncertainty estimate 
of ± 3.4 µm for maxρ . 
 
This aperture is less than the full aperture of the 
microlens (full aperture ~ 400 µm).  One 
advantage of PSI compared to SWLI is that the 
entire surface of the lens can be measured, as 
long as the NA of the interferometer is large 
enough so wave front overfills the lens.  The NA 
for our measurements is large enough to measure 
the entire surface, but we masked our data down 
so the aperture matches the largest circular patch 
measured by the SWLI.  In this way we can 
compare PSI to SWLI for measurements of the 
same lens region.  In general, however, the full  

Fig. 3:  Geometric relationship between aperture 
radius ρmax , radius of microlens and angle θ. 
 

surface geometry should be used for the PSI 
analysis.  Using this subaperture does not 
mathematically effect the conic constant. 
 
PSI surface geometry measurements are 
susceptible to artifacts if the lens is not well 
nulled for the measurement [27].  Well nulled 
means the focus of light from the interferometer 
is coincident with the center of curvature of the 
lens.  It is not mechanically possible to position 
the lens perfectly thus some artifacts are always 
present.  The artifacts are observed as high order 
aberrations that increase with misalignment.  The 
correlation can be observed by plotting the 
higher order Zernike coefficients versus the low 
order coefficients that represent misalignment 
(corresponding to tip tilt and power).    For 
example one will observe an approximately 
linear relationship between the 0

2A   (power) 

coefficient and the 0
4A   (low order spherical 

aberration) coefficient [25].  The slope from a 
linear fit to each curve estimates the correlation.  
These plots are referred to as alignment 
sensitivity plots.   Although the microlens is 
nulled as well as possible for each of the 15 
measurements, residual misalignment provides 
us with enough data to generate the alignment 
sensitivity plots. The aberrations up to second 
order spherical are included in our analysis.  The 
average Zernike tip, tilt and power among our 15 
measurements are approximately zero, but the 
standard deviation shows the likelihood for a 
single measurement to be misaligned.  These tip 
tilt and power standard deviations are multiplied 
by the sensitivity curve slopes for an uncertainty 
estimate for each higher order Zernike 
coefficient (up to second order spherical).  These 
uncertainties are used in the Monte Carlo 
simulation. 
 
To summarize, the dominant uncertainty 
contributors for PSI height profiles are noise in 
the measurement, estimation of the best-fit 
sphere radius, estimation of the aperture, and 
aberrations due to misalignment. 
 
4.  Building the Conic Surface Model:   The 
next step is to build a conic model, leaving only 
the conic constant k as an unknown parameter to 
be determined from the χ2 minimization.  The 
parameters needed are the base radius of 
curvature and the aperture radius.  
Mathematically, the base radius of a conic 
surface is the same as the radius of a sphere at 
the vertex, i.e., the sphere for k = 0 (R in 

66 nm PV66 nm PV66 nm PV

Radiusθ

σρρmax

ρmax

Radiusθ

σρρmax

ρmax
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 Equation 1).  This is not the same radius as used 

for the PSI profile generation.  The aperture 
radius is the radius of the lens footprint, referred 
to as ρmax.  Both parameters are depicted in 
Figure 4.  Note that the vertical scale in the plot 
is much larger than the horizontal scale.  

Fig. 4:  Two dimensional profile of a 
measurement, the best-fit conic model, and a 
model generated with an arbitrary k.  The 
parameters used to generate the model are the 
base radius R, and the aperture radius ρmax. 
 
For the SWLI measurements, we approximately 
estimate the base radius with a sequential 
masking process.  We subsequently masked 
down our surface profile data incrementally to a 
level of 5% of the lens surface about the apex. 
That is, the stitched data was masked down 
starting from 100% to 5% at a step of 5%. A 
best-fit sphere is fit to each of  the masked down 
images using Vision® 32  software to compute 
the radius. The  masking process was repeated 
for each of the 11 measurements. The mean 
values are plotted in Figure 5 as a function of 
mask diameter and the standard deviations are 
shown as error bars.  The analysis shows an 
increase in the radius below an aperture size of 
approximately 300 µm, suggesting an estimate 
for R of 1.5 mm.  However, tests we carried out 
with simulated data showed that the radius for 
small apertures becomes extremely sensitive to 
noise and is misleading below a mask diameter 
of ~300 µm.  Therefore we used the values at a 
mask diameter of 300 µm as our estimate, giving 
R= 1.36 mm ± 20 mm. 
 
The aperture radius of the microlens cannot be 
directly measured in SWLI because no data is 
obtained from the steep edges of the lens.  Thus 
we have to make an assumption about the lens 
surface in this region.  We assume the surface 
continues smoothly from where the data drop out 
begins to the measured edge of the flat substrate 
(see Figure 1).  We fit a circular mask to this 

edge and use the radius as our aperture radius 
estimate. We repeat this process for all 
measurements and calculate a mean radius of 
400 µm and an uncertainty of 2.42 µm.  Note 
that this uncertainty could be expanded to 
capture possible lens geometry variation in the 
data drop out region.  Profilometry 
measurements could be used to investigate this 
in detail. 
 

Fig. 5:  Best-fit sphere radius versus aperture 
diameter (masked data). 
 
 A base radius and aperture must be estimated 
from the PSI measurements, as well.  Using the 
Fisba, we directly measure the radius of the best-
fit sphere over the aperture of the OPD 
measurement.  This is not the same as the base 
radius for a conic surface.  One could estimate 
the base radius by carrying out the same 
sequential masking process as was done with the 
SWLI profile data.  Also, the base radius can be 
estimated from as a correction to the best-sphere 
radius from knowledge of the higher order 
aberrations observed in the OPD maps.  We took 
the later approach.  The first step is to calculate 
the Seidel focus description of the OPD map.  
This is given by a linear combination of Zernike 
coefficients [32, 33], 

( ) ( )2 20 2 2 2
4 2 2( ) 6seidel

focusW A A Aρ ρ−� �= − + +� �
� �

 .             

(6) 
where 0

4A , 2
2A , and 2

2A−  are the measured 
Zernike coefficients for low order spherical 
aberration, 0° astigmatism and 45° astigmatism, 
respectively.  From the average Zernike 
coefficients, Equation 6 gives a coefficient for 
the Seidel focus term of 0.2 µm (quantity in 
parenthesis).  This represents curvature in the 
wavefront in the paraxial limit (in the region near 
the optical axis).  This is the curvature 
information of interest to determine the radius of 
the lens near the apex.  We can convert the  0.2 
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 µm curvature to an approximate distance the 

microlens would have to be moved to null out 
this curvature.  This is the radius correction value 
we are after.  We can determine this distance 
with the interpolation information used to 
determine the two null positions for cat’s eye and 
confocal in the radius measurement.  The 
correction value is ~0.7 µm.  This is small 
compared to the 17µm uncertainty we estimate 
for the best-fit sphere R value, therefore we can 
use this value to approximate the base radius for 
the model with our level uncertainty.  The details 
of this analysis are described elsewhere [ref 
Solomon].  The correction would have to be 
made for lower noise applications. 
 
The aperture radius needed for the model is the 
same value needed for the surface profile 
generation from PSI data.  We use the same 
estimate, namely maxρ = 251.4 µm ± 3.4 µm. 
 
5.  ΧΧΧΧ2 Minimization and the Monte Carlo 
Simulation:  A conic surface is uniquely defined 
with a base radius, aperture diameter and conic 
value.  At this point, we have estimated the base 
radius and aperture diameter for the model, 
leaving only the conic parameter as unknown.  
We have also generated a surface profile from 
the measurement to compare to the model.  The 
next step is to carry out a one-parameter χ2 
minimization to determine the best-fit conic 
value with  

( )�
=

−=
N

i
isim zz

1

22 )()(χ       (2)                                          

where mz  is the model value at each xi yi 

coordinate (calculated from Equation 1), and sz  
are the corresponding height values from the 
profile data.  Figure 4 shows a SWLI data profile 
with the best-fit k compared to a model 
generated with an arbitrary k.  With a fixed base 
radius and aperture diameter, the model sag is 
defined by k.  The best-fit k yields the model 
with the best sag agreement with the data (the 
solid smooth line in the plot. 
 
The χ2 minimization is carried out for a specific 
measurement profile and model parameters R 
and ρmax , as summarized by Figure 4.  A single 
χ2 minimization does not show the possible 
variation in k due to uncertainties.  We can 
estimate the uncertainty by repeating the 
minimization while statistically sampling all of 
the likely values for the model parameters and 
profile data.  The likely values are defined by the 

uncertainties estimated from the measurements.  
To do this, we define Gaussian probability 
distributions for the model parameters, R and 
ρmax, each with the appropriate mean and σ.  The 
values used for SWLI are R =  1360 µm ± 20 µm 
and ρmax = 400.0 µm ± 2.4 µm and the values for 
PSI are R =  1366 µm ± 17 µm and ρmax = 251.4 
µm ± 3.4 µm.  We randomly pick an R and ρmax 
from the Gaussian distributions for each iteration 
(each χ2 minimization).  We also randomly select 
a data profile for each iteration to capture 
uncertainty in the measured profile.  This step is 
measurement specific.  
 
For SWLI measurements, profile uncertainty 
sources are measurement noise, the lens center 
location, and the sag value.  For PSI, uncertainty 
sources are measurement noise (including 
misalignment errors), radius, and aperture 
(defined by the NA).  For SWLI, we generate a 
profile by randomly picking one of the 11 
measurements, and then using a randomly 
chosen sag and a lens center value from 
Gaussian distributions defined by the appropriate 
mean and uncertainty for each.  The values for 
the sag distribution are 57.7 µm ± 0.7 µm and 
lens center distribution 0 ± 0.6 µm.  
 
For PSI, we generate a profile by randomly 
picking one of the 15 OPD measurements and  
using a randomly chosen radius and aperture 
value from appropriately defined Gaussian 
distributions.  The values for the radius 
distribution are 1366 µm ± 17 µm and 251.4 ± 
3.4 µm for the aperture distribution.  We then 
add small high-order aberration corrections to 
the OPD map to represent misalignment 
uncertainty.  We do this by randomly picking a 
tip, tilt, and power from Gaussian distributions 
based on the standard deviations observed 
among the 15 measurements.  We then multiply 
the tip, tilt, and power by the sensitivity curve 
slopes discussed above.  This results in a set of 
correction coefficients for the high order Zernike 
for the OPD map.  These coefficients are 
multiplied by the corresponding Zernike 
polynomial and this is then added to the OPD 
map.  This is the OPD map that is added to the 
best-fit sphere for the measurement profile. 
 
The Monte Carlo simulation is iterated 200 times. 
The approach assumes uncertainty sources are 
uncorrelated, and this may not be rigorously true 
(for example measurement noise may impact the 
radius value).  But, likely any correlation has a 
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 smaller effect on the final k distribution than the 

individual contributions.  The Monte Carlo 
approach is also useful because individual 
contributions can be investigated one at a time to 
assess relative importance.  That is, all 
uncertainty contributions can be fixed and only 
one aspect allowed to vary at a time.  Differences 
in the output k distributions are then a good 
indicator of measurement aspects limiting the 
final k uncertainty.  Only 50 iterations were used 
for these studies. 
 
6.  Results and Discussion:  The results of our 
complete Monte Carlo simulation are shown in 
Figure 6.  For SWLI, the mean k value is -2.4 
and the standard deviation is 0.7 µm (part (a)).  
For the PSI measurements the mean is -2.3 and 
the standard deviation is 0.9 µm.  Thus, the 
design conic value of  
-2.1 for the lens falls within the range of possible 
k values suggested from our analysis.  The 
analysis shows that current levels of 
measurement uncertainty will not allow us to 
evaluate conic conformance at a level below ± 
0.7 at best.   

 
Fig. 6:  The probability distributions for k from 
the Monte Carlo simulation. The mean best-fit 
conic constant of the SWLI and PSI are k  =  -2.4 
± 0.7 and k = -2.3± 0.9. 
 
 The simulation result for individual 
contributions is summarized in Table 1 and 
Figure 7.  The table lists the mean and σ values 
for the k distributions when uncertainty sources 

are varied one at a time.  The variation in the 
mean is not statistically significant, taking the 
uncertainty in the mean as  / Nσ .  The 
distribution widths are the important quantities to 
compare.  For a visual comparison of the widths, 

we generate a Gaussian fit to k-kmean for each 
distribution.  These distributions are compared in 
Figure 7.  The analysis shows that the radius and 
the sag dominate the combined k uncertainty for 
SWLI measurements.  The radius and 
measurement noise dominate the uncertainty for 
the PSI measurements.  Note that the conic value 
is very sensitive to the radius value.  Variations 
in R of ~1% lead to 20% variation in k.  

 
Fig. 7:  The meank k− distributions where uncertainty 
contributors are varied one at a time. (a) Results for 

Table 1:  Results of Monte Carlo 
simulations when uncertainty parameters are 
varied one at a time.  The mean and σ of the 
resulting k distributions are listed. 

 SWLI PSI 
 Mean σ Mean σ 

All -2.44 0.72 -2.27 0.91 
Radius -2.44 0.55 -2.39 0.71 
Sag -2.36 0.47    -   - 
Noise -2.49 0.29 -2.29 0.68 
Aperture -2.35 0.26 -2.21 0.38 
Center -2.37 0.00     -    - 
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 the SWLI measurements. (b) Results for the PSI 

measurements. 
 
 
7.  Conclusions:  We have devised and 
documented a new procedure for analyzing data 
from microlens geometry measurements that is 
applicable to any type of microlens measurement.  
We illustrate the approach by applying it data 
from the two major microlens metrology 
techniques, SWLI and PSI.  The major 
components of our analysis are (1) determine the 
best-fit conic constant for a microlens using chi 
square minimization, (2) estimate the uncertainty 
in the best-fit conic constant using a Monte Carlo 
simulation, and (3) use a Monte Carlo simulation 
to determine the aspects of the measurement that 
have the greatest effect on the best-fit conic 
constant. 
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Abstract:  The ability to accurately characterize 
physical attributes of an aspheric microlens is 
crucial to understanding and improving 
processing in micro-optic manufacturing. Since 
most microlenses are plano-convex, where the 
convex geometry is a conic surface, current 
practice focuses on estimating the manufactured 
lens’ conic constant, which ignores the surface 
geometry that departs from an exact conic 
surface.  The best-fit conic is later used to 
evaluate processing output. We propose an 
alternative analysis that focuses on the surface 
errors, rather than the best-fit conic constant.  
We consider the surface errors as the difference 
between the measured geometry and the best-fit 
conic surface or as the difference between the 
measured geometry and the design specification 
for the lens.  A complete uncertainty assessment 
is an important part of our approach.  We 
estimate uncertainties for several parameters 
from the measurement and then carry out a 
Monte Carlo simulation to estimate the resulting 
variation in the surface error.  We focus on a 
Zernike polynomial description of the surface 
error, and the Monte Carlo analysis yields a 
combined uncertainty for each Zernike 
coefficient.  We describe our approach as applied 
to the two most dominant microlens metrology 
methods in use today, namely, scanning white 
light interferometry (SWLI) and phase shifting 
interferometry (PSI). 
 
1.  Introduction:  While microlenses in general 
have become important components in many 
technologies such as tele- and data-
communication devices, optical data storage, and 
detector arrays, microlenses with a conic surface 
geometry are especially useful in today's micro-
optic applications. A single refracting conic 
surface such as a hyperboloid with a specific 
conic constant whose value depends on the 
refractive index, corrects on-axis spherical 

aberration and perfectly images collimated light 
on axis [1].  This functionality is commonly used 
to couple light into and out of optical fibers. 
Thus many microlens design specifications 
require a conic surface geometry with a specific 
conic constant.  While conic tolerances do vary 
with application, they can approach ± 0.3 in 
demanding applications [2].  Further, one must 
expect that new or improved applications will 
drive tolerances lower, particularly as 
manufacturers move to passive rather than active 
alignment processes in an effort to reduce cost.  
The conic is a key design parameter, 
consequently microlens characterization to date 
focuses on estimating the best-fit conic for the 
manufactured lens.  The lens however, is not 
likely to be a perfect conic therefore the 
departure from an exact conic is not captured.  
Further the best-fit conic does not directly reflect 
the errors in the manufactured part, i.e. the 
difference between the surface geometry and the 
design specification.  The current approach is 
convenient for assessing part performance and 
tolerance compliance, but the connection to 
problems with the manufacturing process is less 
direct.  A strong connection between 
measurement output and process parameters is 
critical for effective process feedback and 
control. 
 
In this paper we describe a new analysis strategy 
for microlens manufacturing.  We propose to 
focus on the surface errors, rather than the best-
fit conic constant.  In order to connect the new 
analysis with current practice, we consider the 
surface errors as either (i) the difference between 
the measured geometry and the best-fit conic 
surface or as (ii) the difference between the 
measured geometry and the design specification 
for the lens.  In either case, we consider a 
Zernike polynomial description of the surface 
error map [3]   as the final output.  A complete 
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 uncertainty assessment is an important part of 

our approach.  We estimate uncertainties for 
several parameters from the measurement and 
then carry out a Monte Carlo simulation to 
estimate the resulting combined uncertainty in 
the surface error map and therefore a combined 
uncertainty for each Zernike coefficient.   
 
We describe our analysis through an illustration 
with a representative aspheric microlens.  We 
measured the lens using both scanning white 
light interferometry (SWLI) [4-6] and phase 
shifting interferometry (PSI) [7], which are the 
two dominant metrology techniques used in 
microlens manufacturing.  The first step is to 
measure the lens and estimate measurement 
uncertainties.  This information is then used in a 
Monte Carlo simulation as shown schematically 
in Figure 1.  For each iteration through the 
Monte Carlo loop, we first generate an estimate 
of the surface profile from the measurement data.  
Each iteration through the Monte Carlo loop, we 
first generate an estimate of the surface profile 
from the measurement. This estimate includes 
appropriately chosen randomly variables to 
capture the affect of measurement uncertainty.  
These details depend on the measurement type 
(PSI or SWLI).  Once a representative estimate 
of the surface profile is generated, the surface 
error map is calculated as either the difference 
from the best-fit conic surface or from the design 
specification (design shape).  The best-fit conic 
surface is determined with a χ2 minimization 
process, the details of which are described 
elsewhere [8].  The last step is to fit the surface 
error map to the set of Zernike polynomials [3] 
and store the coefficients in an array.  The output 
of the Monte Carlo loop is a distribution for each 
Zernike coefficient.  The mean of each 
distribution is an estimate of the coefficient for 
the surface error map and the standard deviation 
is an estimate of the combined uncertainty.  The 
simulation can be repeated where only a single 
uncertainty source varies at a time to investigate 
uncertainty sensitivity to individual contributions.  
In the sections that follow, we describe the 
sample lens used for the illustration, the 
experimental details of the measurements and the 
uncertainty estimations, and the Monte Carlo 
simulation details, followed by the results and 
discussion. 
 
2.  The Sample Microlens:  The surface of a 
general aspheric microlens can be represented by 
a conic and an even-order polynomial [9], 
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where z is the surface height, k is the conic 
constant, ρ 22 yx +=   is the aperture coordinate, 

R is the base radius of curvature, and the Ai's are 
the deformation constants. The equation 
describes a conic surface when all deformation 
constants are zero. The  design specifications for 
our sample conic microlens are a conic constant, 
k = -2.1, a base radius of curvature, R = 1375 µm, 
and a clear aperture diameter of 800µm [2]. 
 

Fig. 1:  Schematic of the Monte Carlo process. 
 
3.  Measurement Details and Uncertainty 
Estimates:  In this section we describe the 
measurements of the sample lens with both a 
scanning white light interferometer (SWLI) and 
a phase shifting interferometer (PSI).  These are 
the two common measurement methods used to 
characterize microlenses.  Details of the methods 
can be found in the literature [10-17].  
 
Measurements of our sample lens were taken 
with a NewViewTM 5000 SWLI.  Scanning white 
light interferometers are also known as optical 
profilers and yield a direct estimate of the height 
profile of a surface. We used a 10x Mirau 
interferometric objective, a spatial sampling of 
2.2 µm (320x240), and a system magnification 
of 2, which generated an observable pixel size of 
1.103 µm as read from the calibrated instrument.  
Measurements can be taken in either of two ways, 
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 a single measurement taken at the apex of the 

lens or a collection of measurements taken using 
the stitching mode.  SWLI instruments are 
limited in the surface slopes that can be 
measured.  If the slope is too high, light does not 
reflect back into the objective.  We used the 
stitching measurement mode whereby a higher 
NA objective can be used to capture steeper 
slopes, and to compensate, smaller area 
measurements are then taken as the lens is 
translated under the objective and stitched 
together for a final result.  Even so, only the 
region near the apex of the lens is measured.   A 
sample measurement is shown in Figure 2 (a). 
 
It is important to take a collection of 
measurements to allow measurement noise to be 
included in the uncertainty assessment.  We took 
a total of 11 stitched measurements.  We 
repositioned and rotated the lens between the 
measurements to capture reproducibility.  The 
images were rotated back to the same orientation 
for the remaining analysis (made possible by a 
fiducial near the lens edge).  We define the axis  

Fig. 2:  Examples of measurements taken of the 
sample lens.  (a) SWLI measurement.  (b) 
Optical path difference map taken with the PSI. 
 
 

of the microlens to be perpendicular to the 
plane of the substrate, therefore the substrate 
region is aligned perpendicular to the optical axis 
of the instrument for data acquisition.  Residual 
tip and tilt misalignment was removed with 
Vision® 32 software.  
 
We take only the data from the apex region of 
the lens (central portion in Figure 2 (a)).  To 
complete the generate of the height profile, we 
estimate the sag of the lens from the 
measurements to define the height of he data 
above the substrate plane.  Among the collection 
of 11 measurements we estimate a mean sag of 
57.7 µm with an uncertainty (standard deviation) 
of ± 0.7.  We also need to define the x y (plane of 
the substrate) location of the lens center.  We 
take this to be the center of a circular mask fit to 
the data drop-out boundary at the edge of the 
lens (see Figure 1) and estimate an uncertainty of 
a fraction of a pixel, ± 0.63 µm. 
 
For the SWLI height profile generation, the 
dominant uncertainty contributors are noise in 
the measurements themselves (e.g. from 
turbulence, vibration, and source and detector 
noise), estimation of the sag, and lens center.  
Calibration of the instrument in x, y (plane of 
substrate), and z contributes uncertainty, but 
these contributions are small compared to the 
sources.  For example, the calibration uncertainty 
for z is ± 0.26%, leading to an uncertainty of 0.1 
µm for a sag of 57.7 µm, whereas the 
measurement noise leads to a sag uncertainty of 
0.7 µm. Therefore, calibration uncertainty can be 
ignored.  The estimated one-pixel variation in the 
lens center definition is negligible. 
 
Generating the profile estimate from the PSI 
measurement is more involved.  We use a Fisba 
Optik µphase®  interferometer with a numerical 
aperture of 0.34 and a spatial sampling of 2.285 
µm (512x512) for the PSI measurements. The 
Fisba Optik is a Twyman-Green configuration 
and measures the optical path difference (OPD) 
for the lens surface from wave front phase 
information [7, 18-22]. The OPD map must be 
combined with the profile of a sphere to generate 
the lens surface profile.  The Fisba uses a 
Heidenhain displacement gauge to measure 
(equivalently) z-position changes of the 
microlens.  This allows the microlens radius to 
be measured.  A height profile is generated by 
adding the OPD data to a spherical surface with 
the radius determined from a radius 
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 measurement.  The OPD represents the departure 

of the surface from a best fit sphere in the radial 
direction [23, 24].  We approximate this by 
adding the OPD in the z direction, which 
involves a cosine approximation.  This 
introduces an error that is small compared to our 
measurement noise and does not affect our result.  
But, this approximation should be avoided for 
lower noise applications.  We took a total of 15 
OPD measurements to capture measurement 
noise for our uncertainty evaluation.  A 
calibration map is subtracted from each 
measurement to remove the interferometer bias.  
The calibration is determined by carrying out a 
random ball test [25, 26].  One of the OPD 
measurements is shown in Figure 2 (b). 
 
The radius is measured on the Fisba following 
the procedure described in reference 27.   In 
short, the radius is the distance the lens is 
translated between the cat’s eye and confocal 
positions (technically the interferometer is 
translated in the Fisba, but the effect is the same).  
The two positions are determined by collecting a 
series of measurements around the confocal and 
cat’s eye positions and using the curvature in the 
measured wavefront to interpolate to the two best 
null positions.  An uncertainty can be estimated 
as the standard deviation observed when the 
measurement is repeated several times.  We 
followed a more involved process whereby we 
estimated an uncertainty for the interpolation 
process, which is influenced by the uncertainty 
in the wavefront curvature measurements and the 
Heidenhain gauge uncertainty.  The details of the 
analysis are beyond the scope of this paper and 
are described elsewhere [26].  In summary, we 
estimate a radius of 1366 µm ± 17 µm. This 
radius measurement yields an estimate of the 
radius of a best-fit sphere to the lens surface over 
the aperture of the OPD measurement.  Note that 
this is not the same as the base radius for an 
aspheric lens. This is however the correct radius 
to use to build the surface profile in the manner 
described. 
 
The numerical aperture of the OPD measurement 
must be known in order to add the OPD data to 
the spherical data.  Recall that the OPD is a 
measure of the surface departure from a best-fit 
sphere, taken with the lens positioned so the 
center of curvature coincides with the focus of 
light from the interferometer.  The NA defines 
the solid angle of the OPD measurement at 
confocal.  Thus the NA of the measurement 
defines the sinθ of the lens geometry, as shown 

in Figure 3.  The NA will be lower than the 
NA of the interferometer objective if the cone of 
light overfills the lens and/or the data is masked.  
From our masking and objective NA information, 
we estimate a cone angle of 10.6° ± 1°.  The 
equation that defines the aperture from the 
geometry is max sinRρ = Θ .  An angle of 10.6° 

and a radius of 1366 mm gives maxρ = 251.4 µm.  
Error propagation gives an uncertainty estimate 
of ± 3.4 µm for maxρ . 

Fig. 3:  Geometric relationship between aperture 
radius ρmax , radius of microlens and angle θ. 
 
This aperture is less than the full aperture of the 
microlens (full aperture ~ 400 µm).  One 
advantage of PSI compared to SWLI is that the 
entire surface of the lens can be measured, as 
long as the NA of the interferometer is large 
enough so the wave front overfills the lens.  The 
NA for our measurements is large enough to 
measure the entire surface, but we masked our 
data down so the aperture matches the largest 
circular patch measured by the SWLI.  In this 
way we can compare PSI to SWLI for 
measurements of the same lens region.  In 
general, however, the full surface geometry 
should be used for the PSI analysis. 
 
PSI surface geometry measurements are 
susceptible to artifacts if the lens is not well 
nulled for the measurement [28].  Well nulled 
means the focus of light from the interferometer 
is coincident with the center of curvature of the 
lens.  It is not mechanically possible to position 
the lens perfectly, thus some artifacts are always 
present.  The artifacts are observed as high order 
aberrations that increase approximately linearly 
with misalignment.  The correlation can be 
observed and quantified by plotting the higher 
order Zernike coefficients versus the low order 
coefficients that represent misalignment (the 
coefficients corresponding to tip tilt and power).    
For example an approximately linear relationship 
will exist between the a20  (power) coefficient 
and the a40  coefficient (low order spherical 
aberration) [26].  The slope from a linear fit to 
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 each curve estimates the correlation.  These plots 

are referred to as alignment sensitivity plots.   
Although the microlens is nulled as well as 
possible for each of the 15 measurements, 
residual misalignment provides us with enough 
data to generate the alignment sensitivity plots. 
The aberrations up to second order spherical are 
included in our analysis.  The average Zernike 
tip, tilt and power among our 15 measurements 
are approximately zero, but the standard 
deviation shows the likelihood for a single 
measurement to be misaligned.  These tip tilt and 
power standard deviations are multiplied by the 
sensitivity curve slopes for an uncertainty 
estimate for each higher order Zernike 
coefficient (up to second order spherical).  These 
uncertainties are used for the random generation 
of the surface profile in the Monte Carlo 
simulation. 
 
To summarize, the dominant uncertainty 
contributors for PSI height profile measurements 
are noise in the measurement, estimation of the 
best-fit sphere radius, estimation of the aperture, 
and aberrations due to misalignment. 
 
4.  The Monte Carlo Simulation:  Once the 
measurements are taken and uncertainties 
estimated, the Monte Carlo simulation can be 
carried out (Figure 1).  The goal of the 
simulation is to determine the distribution of 
surface error maps that are likely, given the 
measurement uncertainty.  To make the results 
more quantitative, we fit each error map to a set 
of Zernike polynomials and consider the mean 
and standard deviation for each Zernike 
coefficient.  Thus, one can evaluate the amount 
of spherical aberration, astigmatism, coma, etc. 
in the surface error map and the uncertainty for 
each aberration.  The analysis details for each 
iteration are described in this section. 
 
For the SWLI, each surface profile estimate is 
determined by randomly picking one of the 11 
measurements, and then using a randomly 
chosen sag and a lens center value from 
Gaussian distributions defined by the appropriate 
mean and uncertainty for each.  The values for 
the sag distribution are 57.7 µm ± 0.7 µm and 
lens center distribution 0 ± 0.6 µm.  Then the 
two types of surface error maps are calculated.  
For the comparison to the design shape, the 
design shape is directly subtracted from the 
measurement surface profile.  For the 
comparison to the best-fit conic, the best-fit 
conic surface is first determined, and then this is 

directly subtracted from the measurement 
surface.  The determination of the best-fit conic 
is described in detail elsewhere [8].  In brief, a 
conic surface model is compared to the data in a 
least-squares sense where only the conic constant 
is left as an unknown fit parameter.  Definition 
of the conic model requires an estimate of the 
aperture diameter and the base radius of 
curvature.  These values are also randomly 
chosen from Gaussian distributions defined by 
the appropriate mean and uncertainty.  
Information from the measurements is used to 
estimate these values.  With this approach, the 
impact of the best-fit conic uncertainty is also 
captured in the final uncertainty in the surface 
error map (the surface error map compared to the 
best-fit conic, that is).   
 
Examples of surface error maps for SWLI 
measurements are shown in Figure 4.  The best 
fit conic surface is very close to the design shape 
conic, therefore the two surface error maps are 
very similar.  Both maps contain tilt, power, 
astigmatism, and low-order spherical aberration.  
Tilt would result from an asymmetric etch during 
the manufacturing or a center offset between the 
measurement profile and the subtracted surface 
(best-fit conic or design shape).  The spherical 
aberration indicates that the surface is not a 
perfect conic, but rather a general asphere.  We 
did not characterize and remove system biases 
from the SWLI measurements and these can 
easily be on the order of 100s of nanometers [25]. 
Calibration to measure and remove these biases 
are challenging and beyond the scope of this 
work [29]. 
 
For PSI, we generate a profile by randomly 
picking one of the 15 OPD measurements and 
using a randomly chosen radius and aperture 
value from appropriately defined Gaussian 
distributions.  The values for the radius 
distribution are 1366 µm ± 17 µm and 251.4 ± 
3.4 µm for the aperture distribution.  We then 
add small high-order aberration corrections to 
the OPD map to represent misalignment 
uncertainty.  We do this by randomly picking a 
tip, tilt, and power from Gaussian distributions 
based on the standard deviations observed 
among the 15 measurements.  We then multiply 
the tip, tilt, and power by the sensitivity curve 
slopes discussed above.  This results in a set of 
correction coefficients for the high order Zernike 
coefficients for the OPD map.  These 
coefficients are multiplied by the corresponding 
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 Zernike polynomial and this is then added to the 

OPD map.  
 
Examples of surface error maps for PSI 
measurements are shown in Figure 5.  Again, the 
two error maps are very similar.  The PSI 
measurements show surface errors dominated by 
power and spherical aberration.  The power is 
larger than observed with the SWLI 
measurements.  In Figure 5, two versions of the 
error maps are shown to appreciate both 
aberration features.  The small inset to the left is 
the as-calculated surface error map dominated by 
the power.  The larger image is the error map 
after removing power.  A difference in the 
surface error maps between the SWLI and PSI 
measurements is not surprising.  Measurement 
biases were removed from the PSI measurements 
but not from the SWLI measurements, as 
mentioned, and likely accounts for the difference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4:  Example surface error maps for the 
SWLI measurement analysis.  The error maps 
subtracting both the best-fit conic surface and 
subtracting the design shape are shown.  
 
The Monte Carlo simulation is iterated 200 times 
and 36 Zernike coefficients for each surface error 
map are determined and stored in an array [3].  
The  
distributions for the coefficient at the conclusion 
of the Monte Carlo loop are the final goal.  Each 
distribution captures the most likely Zernike 
coefficient and the expected variation due to 
measurement uncertainty. Our approach assumes 
uncertainty sources are uncorrelated, and this 
may not be rigorously true (for example 
measurement noise may impact the radius value).  

But, likely any correlation has a smaller effect 
on the final Zernike coefficient distributions than 
the individual contributions.   
A Monte Carlo approach is also useful because 
individual contributions to the uncertainty are 
easily investigated.  One can repeat the 
simulation and allow only single uncertainty 
sources to vary at a time.  This yields insight into 
their relative importance.   We used only 50 
iterations for these studies.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5:  Example surface error maps for the PSI 
measurement analysis.  The error maps 
subtracting both the best-fit conic surface and 
subtracting the design shape are shown.  
Curvature is the dominant surface error observed 
for the PSI analysis, as seen in the smaller 
images on the left.  Power is removed in the 
larger images so the spherical aberration can be 
seen. 
 
5.  Results and Discussion:  The surface error 
map information is captured by the distributions 
of Zernike coefficients resulting from the Monte 
Carlo simulation.  The mean and standard 
deviation for each distribution are good estimates 
of the Zernike coefficient of the surface error 
map and its uncertainty, respectively.   
The dominant structure in the surface error maps 
from the SWLI measurements are tilt, power, 
astigmatism and spherical aberration.  The type 
of information obtained is shown in Table 1 
which lists the mean and standard deviation for 
the power and spherical aberration coefficients 
for the SWLI measurements.  The values for 
both types of surface error maps are shown 
(compared to the design shape and the best-fit 
conic surface).   Notice that the lowest order 
spherical aberration coefficient is the largest, 
followed by the power.  The Monte Carlo 
analysis shows that the measurement uncertainty 
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 has a much larger impact on the uncertainty in 

the power Zernike coefficient compared to the 
spherical aberration coefficient.  This is useful 
information because, for example, much of the 
power error in the surface can be compensated 
for in a final lens assembly and alignment 
process, whereas the spherical aberration cannot.  
 

Table 1:  Example Zernike coefficient 
results for the surface error maps.  The numbers 
correspond to the analysis applied to the SWLI 
measurements.  The mean and standard 
deviations for the rotational symmetric 
coefficients are shown.  Units are nanometers. 

Zernik
e 

Coefficient 

Measurem
ent Minus 

Design Shape 

Measureme
nt Minus Best-

Fit Conic 
 Mean σ Mean σ 
A20 -87 52 -38 77 
A40 -148 8 -147 8 
A60 15 7 15 7 

 
Table 2:  Example Zernike coefficient 

results for the surface error maps where 
uncertainty sources are varied one at a time to 
estimate relative importance.  The numbers 
correspond to the analysis applied to the SWLI 
measurements where the surface error map is the 
difference between the measurement and the 
best-fit conic surface.  The mean and standard 
deviations for the rotational symmetric 
coefficients are shown.  Units are nanometers. 

Zernike 
Coefficient Power 

a20 

Low-Order 
Spherical 
Aberration 
a40 

 Mean σ Mean σ 

All -38 77 -147 8.4 
Noise -35 72 -149 7.9 
Radius -40 71 -148 1.9 

Aperture -34 3 -148 1.8 
Sag -34 6 -148 1.5 
Center -34 - -148 0.2 

The assessment of individual uncertainty 
contributions for the SWLI measurements is 
summarized in Table 2. The surface error map 
compared to the best-fit conic is used for the 
illustration.  The first row contains the same 
numbers in Table 1.  The subsequent rows show 
the Zernike distribution characteristics when 
only a single uncertainty sources is varied (while 
holding the other values constant).  ‘Noise’, 
‘Sag’, and ‘Center’ are uncertainty sources 
affecting the generation of the measurement 

profile, while ‘Radius’ and ‘Aperture’ affect 
the conic model used to determine the best-fit 
conic surface.  The variation in the mean is not 
statistically significant, taking the uncertainty in 
the mean as / Nσ .  The distribution widths are 
the important quantities to compare.  For a visual 
comparison of the widths, we generate a 
Gaussian fit to e.g. a40 - a40 mean for each 
distribution, the distributions for the a20 and a40 
coefficients are compared in Figure 6.  The 
analysis reveals that the power in the surface 
error (a20) is very sensitive to uncertainty in the 
radius used for the best-fit conic determination 
and to the noise in the measurements.  In contrast, 
the uncertainty in the a40 coefficient is dominated 
by the measurement noise only. 
 
 

Fig. 6:  Examples of two Zernike coefficient 
distributions for the SWLI measurements.  The surface 
error maps are the difference between the measured 
geometry and the best-fit conic surface for these 
examples.  (a) Distribution of the a20 Zernike 
coefficients for the surface error map. (b) Distribution 
of the a40 Zernike coefficients for the surface error 
map.   
 
The dominant structure in the surface error maps 
from the PSI measurements are power and 
spherical aberration.  Distribution parameters for 
the power (a20) and the two lowest-order 
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 spherical aberration coefficients (a40 and a60) are 

listed in Table 3.  The values for both types of 
surface error maps are shown.   For the PSI 
measurements, the power and lowest-order 
spherical aberration have comparable 
contributions to the surface error maps.  The 
measurement uncertainty has a dramatically 
larger impact on the uncertainty than the other 
coefficients.  The Monte Carlo analysis shows 
that measurement uncertainty has a much larger 
impact on the final a20 uncertainty compared to 
any other aberration.   
 

Table 3:  Example Zernike coefficient 
results for the surface error maps.  The numbers 
correspond to the analysis applied to the PSI 
measurements.  The mean and standard 
deviations for the rotational symmetric 
coefficients are shown.  Units are nanometers. 

Zernik
e 

Coefficient 

Measurem
ent Minus 

Design Shape 

Measureme
nt Minus Best-

Fit Conic 
 Mean σ Mean σ 
A20 -130 116 -119 107 
A40 -112 5 -111 30 
A60 0.5 3 0.6 3 

The assessment of individual uncertainty 
contributions for the PSI measurements is 
summarized in Table 4. The surface error map 
compared to the best-fit conic is used for the 
illustration.  For the PSI measurements ‘Noise’, 
‘Aperture’, and ‘Radius’ are uncertainty sources 
affecting the generation of the measurement 
profile, while ‘Aperture’ and ‘Radius’ alone 
affect the conic model used to determine the 

Table 4:  Example Zernike coefficient 
results for the surface error maps where 
uncertainty sources are varied one at a time to 
estimate relative importance.  The numbers 
correspond to the analysis applied to the SWLI 
measurements where the surface error map is the 
difference between the measurement and the 
best-fit conic surface.  The mean and standard 
deviations for the rotational symmetric 
coefficients are shown.  Units are nanometers. 

Zernik
e 

Coefficient 

Low-Order Spherical 
Aberration 

a40 
 Mean σ 

All -111 30 
Noise -110 22 
Radius -114 23 
Aperture -107 12 
 

best-fit conic surface.  For this analysis 
‘Noise’ includes instrument noise in the 
measurements and the misalignment uncertainty 
discussed above.  The distribution widths are 
compared in Figure 7 for the a40 where, as 
described above, Gaussian fits to a40 - a40 mean 
were used for the comparison.  The ‘Radius’ and 
the ‘Noise’ both have a significant and 
comparable contribution to the uncertainty in the 
a40 coefficient 
 
6.  Conclusions:  We have presented an 
alternative analysis approach to characterizing 
surface geometry for microlens manufacturing.  
Current practice focuses on determining the best-
fit conic constant and we propose to alternatively 
look at the surface error on the lens only.  By 
surface error we mean the difference between the 
measured surface geometry and the design 
specification for the lens.  We also consider the 
surface error as the difference between the 
measured geometry and the best-fit conic surface.  
Focusing on the surface error will provide 
stronger feedback to the manufacturing process 
while still allowing part conformance to be 
assessed.  A complete uncertainty evaluation is a 
significant and important part of our approach.  
We estimate uncertainties for important 

parameters  
Fig. 7:  Examples of one Zernike coefficient 
distribution for the PSI measurements.  The surface 
error map is the difference between the measured 
geometry and the best-fit conic surface for this 
example. 
 
from the measurement and then carry out a 
Monte  
Carlo simulation to estimate the resulting 
variation in the surface error map.  We focus on 
a Zernike polynomial description of the surface 
error, and the Monte Carlo analysis yields a best 
estimate and an combined uncertainty for each 
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 Zernike coefficient.  We described our approach 

as applied to the two most dominant microlens 
metrology methods in use today, namely, 
scanning white light interferometry (SWLI) and 
phase shifting interferometry (PSI). 
 
7.  Acknowledgements:  This material is based 
upon work supported by the National Science 
Foundation under Grant No. 0323505. Any 
opinions, findings, and conclusions or 
recommendations expressed in this material are 
those of the authors and do not necessarily 
reflect the views of the National Science 
Foundation. The authors would also like to thank 
Mark Boomgarden and Chris Linnen from 
Digital Optics Corporation, and Tom Suleski 
from UNC Charlotte. 

 
8.  References:   
 
[1] Frank L. Pedrotti, S.J. Leno S. Pedrotti, 
“Introduction to optics”, 2nd edition, 1992. 
 
[2] Digital Optics Corporation, private 
communication. 
 
[3] J.C. Wayant and Katherine Creath, “Basic 
Wavefront Aberration Theory for Optical 
Metrology”, in Applied Optics and Optical 
Engineering, vol. XI, Chapter 1, Academic Press 
(1992). 
 
[4] G. S. Kino and S. S. C. Chim, “Mirau 
correlation microscope,” Applied Optics 29, 
3775-3783 (1990). 

 
 [5] L. Deck and P. de Groot, “High speed 
noncontact profiler based on scanning white light 
interferometry,” Applied Optics 33, 7334-7338 
(1994). 
[6] J. Schmit and A. Olszak, “High precision 
shape measurement by white-light interferometry 
with real time scanner correction,” Applied 
Optics 41, 5943-5950 (2002). 
 
[7] J.E. Greivenkamp and J. H. Burning, “Phase 
shifting interferometers,” in Optical shop 
testing, D. Malacara, ed. (Wiley, 1992), pp. 
501-598. 
 
[8] Solomon A. Gugsa nd Angela Davies, 
“Aleast-Squares Minimization and Monte Carlo 
Approach to Estimating the Conic Constant and 
Uncertainty for Microlens Measurements”, to be 
published in Applied Optics 
 

[9] D. Malacara, “Optical Shop Testing’” 
Chapter 13, Wiley, New York, 1992. 
 
[10] Davidson M., Kaufman K., Mazor I., and 
Cohen F., Proceedings of the SPIE, 775 
(Bellingham, Washington: SPIE), p. 233 (1987). 

 
[11] Lee B. S., and Strand T C., 1990, Applied 
Optics, 29, 3784 

 
[12] Kino G. S., and Chim S.C., Applied Optics, 
29 3775 (1990). 

 
[13] Caber, P.J., Applied Optics, 32 3438 (1993). 

 
[14] Sandoz P., and Tribillon G., Journal of 
Modern Optics, 40 1691 (1993). 

 
[15] Hariharran P., and Roy M., Journal of 
Modern Optics, 42 2357 (1995). 

 
[16] De Groot P., and Deck L., Journal of 
Modern Optics, 42 389 (1995). 

 
[17] Hariharran P., and Roy M., Journal of 
Modern Optics, 41 2197 (1994). 
 
[18] Gallagher, J. E. and D. R. Herriott, 
“Wavefront Measurement.” U. S. Patent 3, 
694,088 (1972/1972). 

 
[19] Burning, J. H., D. R. Herriott, J. E. 
Gallagher, D. P. Rosenfeld, A. D. White, and D. 
J. Brangaccio, “Digital Wavefront Measuring 
Interferometer for Testing Optical Surfaces and 
Lenses,” Appl. Opt., 13, 2693 (1974). 

 
[20] Greivenkamp, J. E., “Interferometric 
Measurements at Eastman Kodak Company,” 
Proc. SPIE, 816, 212 (1987a). 

 
[21] Carre, P. “Installation et Utilisation du 
Comparateur Photoelectrique et Interferentiel du 
Bureau International des Poids de Mesures, 
“ Metrologia 2, 13 (1966). 
 
[22] Hariharan, P. B. F. Oreb, and T. Eiju, 
“Digital Phase-Shifting Interferometry: A simple 
Error-Compensating Phase Calculation 
Algorithm,” Appl. Opt., 26, 2504 (1987a). 
 
[23] D. Malacara and S. L. DeVore, 
“Interferogram Evaluation and Wavefront 
Fitting,'' in Optical Shop Testing, D. Malacara, 
Ed. Wiley, New York, 1992. 
 



 

 

128  
 [24] D. Malacara, “Optical Shop Testing’” 

Appendix 1, Wiley, New York, (1992). 
 
[25] “Self-calibration for Micro-refractive Lens 
Measurements.” N. Gardner and A. Davies, 
Optical Engineering, 45 (3), (2006). 
 
 [26] S. Gugsa, “New Analysis Strategies for 
Micro Aspheric Lens Metrology,” Ph. D. 
Dissertation, Department of Physics and Optical  
Science, UNC Charlotte, to be submitted June 
2006. 
 
[27] T. L. Schmitz, A. Davies, and C. J. Evans,   
“Uncertainties in interferometric measurements 
of radius of curvature.” SPIE Conference 
Proceedings, SPIE’s 46th Annual International 
Symposium on Optical Science and Technology, 
July (2001). 
 
[28] C. J. Evans, “Compensation of Errors 
Introduced by Nonzero Fringe Densities in 
Phase-shifting Interferometry,” Annals of the 
CIRP, 42, pp. 577-780, 1993. 
 
[29] Joanna Schmit and Erik Novak and Artur G. 
Olszak, “White-light interferometer with internal 
length standard”, Veeco Metrology, 2650 E 
Elvira Road, Tucson, Arizona, USA 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 

 

 
 

 
 
 
 
 
 
 
 



 

 

129  
 APPENDIX C: MISALIGNMENT SIMUATION CODE 

% The program does the following 
    % request different inputs like conic constant, misalignments,etc 
    % correct OPDs at the edges 
    % specify sag equations for both reference and test surface 
    % calculate OPDs along the radial direction of the reference sphere radius 
    % use transformation of coordinates during misalignments 
k=input ('conic constant of the part ='); ks=0;   
I0=1;  La=0.6328; 
r1=input('radius of curvature (um)of the part='); 
dia=input('diamter (um) of the part='); 
NAo=input(‘numerical aperture’); 
NAL=(dia/2)/r1; do=2*r1*NAo; MM=512;  
x_center = MM/2; y_center = MM/2; center_pos = [x_center y_center]; 
if NAL > NAo    NA=NAo;  else    NA=NAL;  end 
Mask=input ('mask in % (80,etc) =');d=(Mask/100); 
Lx=input ('translation along X or Y='); 
Ly=input ('translation along Y or Y='); 
Lz=input ('translation along Z or Y='); 
ThetaX=input ('rotation angle of the part about X in CCW (+ve) or inCW (-ve)'); 
ThetaY=input ('rotation angle of the part about Y in CCW (+ve) or inCW (-ve)'); 
ThetaZ=input ('rotation angle of the part about Z in CCW (+ve) or inCW (-ve)'); 
A=[-MM/2:1:MM/2]; B=[-MM/2:1:MM/2]; [x1,y1]=meshgrid(A,B); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OPD correction at the edge (very small correction) 
    rho=r1*NA; 
    zsag=(-r1/(k+1))*(1-sqrt(1-(k+1)*NA^2))+r1;   
    zsagp=r1*(1-NA^2/2);  % sag  for a parabola 
    opd=abs(sqrt(rho^2 + zsag^2)-r1);  
    opdp=sqrt(rho^2 + zsagp^2)-r1; % OPD for a parabola  
if k==-1 
    Dpr= (do -2*NA*opdp);   
else 
    Dpr= (do -2*NA*opd);   
end 

r=r1*MM/Dpr;   c=1/r;    s=sqrt(x1.^2 + y1.^2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for ii=1:Lx 
    if s < r    
        xt=x1+ ii;  yt=y1;                                           
        Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))))+r; % the convex surface equation 
        ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))))+r; % the reference wavefront  
        else     nan;        end 
 xsp=1*xt + 0*yt + 0*(Zs); ysp=0*xt + 1*yt + 0*(Zs); zsp=0*xt + 0*yt + 1*(Zs);       
W= -sqrt(x1.^2 + y1.^2 + ZRef.^2) + sqrt((xsp).^2 + (ysp).^2 + (zsp).^2);  
newzs=W; rr =(y_center)*d; [z_heights] = mask_circle(newzs,center_pos,rr);  
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 ITs=I0*(1+cos (4*pi*(z_heights. /La))); % intensity;   end 

     
 for jj=1:Ly 
        if s < r   
         xt=x1;  yt=y1+ jj;  %the part coordinate interms of the reference coordinate                                   
        Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2)))) +r; % the part (convex) surface equation 
        ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))))+r; % the reference wavefront  
        else            nan;        end 
  xsp=1*xt + 0*yt + 0*(Zs); ysp=0*xt + 1*yt + 0*(Zs); zsp=0*xt + 0*yt + 1*(Zs);    
  W= -sqrt(x1.^2 + y1.^2 + ZRef.^2) + sqrt((xsp).^2 + (ysp).^2 + (zsp).^2);  
  newzs=W;rr =(y_center)*d; [z_heights] = mask_circle(newzs,center_pos,rr);   
  ITss=I0*(1+cos(4*pi*(z_heights./La)));  end 
 
for q =1:Lz    
    % reference sphere radius correction (z_misalignment) 
      rz=r1-4*(q-1); C=1/rz;     
      dr=sqrt(r^2 - 2*r*4*(q-1))-r;   drz=sqrt(rz^2 - 2*rz*4*(q-1))-rz; 
      X=(1+(dr/r))*x1; Y=(1+(dr/r))*y1; S=sqrt((X).^2 + (Y).^2);  
      Xz=(1+(drz/rz))*x1; Yz=(1+(drz/rz))*y1; Sz=sqrt((Xz).^2 + (Yz).^2); 
     
  if r <= rz &  s < r  & S < rz   
           xt=X;  yt=Y;                                           
    Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2)))) +r;  
    ZRef=-(C*S.^2./(1+sqrt(1-(ks+1)*C^2*(S.^2))))+rz;  
 
xsp=1*xt + 0*yt + 0*(Zs-4*(q-1)); ysp=0*xt + 1*yt + 0*(Zs-4*(q-1));  
zsp=0*xt + 0*yt + 1*(Zs-4*(q-1));  
W= -sqrt(X.^2 + Y.^2 + ZRef.^2) + sqrt((xsp).^2 + (ysp).^2 + (zsp).^2);  
newzs=W;rr =(y_center)*d; [z_heights] = mask_circle(newzs,center_pos,rr);   
ITsss=2*I0*(1+cos(4*pi*(z_heights./La))); 
else if r > rz &  s < r  & Sz < rz                    
     xtz=Xz;  ytz=Yz;   
     Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))))+r;  
     ZRef=-(C*Sz.^2./(1+sqrt(1-(ks+1)*C^2*(Sz.^2))))+rz;  
            
     xsp=1*xtz + 0*ytz + 0*(Zs-4*(q-1)); ysp=0*xtz + 1*ytz + 0*(Zs-4*(q-1));  
     zsp=0*xtz + 0*ytz + 1*(Zs-4*(q-1));       
     W= -sqrt(X.^2 + Y.^2 + ZRef.^2)+sqrt((xsp).^2 + (ysp).^2 + (zsp).^2);  
     newzs=W; rr = (y_center)*d; [z_heights] = mask_circle(newzs,center_pos,rr);   
     ITsss=I0*(1+cos(4*pi*(z_heights./La))); 
else  nan;   end  end  end 
 
for tip=1:2    
Rxp=[1 0 0; 0 cos(tip*ThetaX*pi/180) sin(tip*ThetaX*pi/180); 0 -sin(tip*ThetaX*pi/180) 
cos(tip*ThetaX*pi/180)]; 
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 Ryp=[cos(0*ThetaY*pi/180) 0 -sin(0*ThetaY*pi/180); 0 1 0; sin(0*ThetaY*pi/180) 0 

cos(0*ThetaY*pi/180)]; 
Rzp=[cos(0*ThetaZ*pi/180) sin(0*ThetaZ*pi/180) 0; -sin(0*ThetaZ*pi/180) 
cos(0*ThetaZ*pi/180) 0; 0 0 1]; 
R1p=Rxp*(Ryp*Rzp);  R2p=Rxp*(Rzp*Ryp);  R3p=Ryp*(Rxp*Rzp);  
R4p=Ryp*(Rzp*Rxp);  R5p=Rzp*(Rxp*Ryp);  R6p=Rzp*(Ryp*Rxp); RR=R6p; 
 if s < r  
       xt=x1;  yt=y1;                                
       Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))));  
       ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))));  
        else            nan;        end 

xsp=RR(1,1).*(xt-1) + RR(1,2).*yt + RR(1,3).*(Zs);  
  ysp=RR(2,1).*xt + RR(2,2).*(yt-1) + RR(2,3).*(Zs);  
  zsp=RR(3,1).*xt + RR(3,2).*yt + RR(3,3).*(Zs-1); 
  W= sqrt((xsp-x1).^2 + (ysp-y1).^2 + (zsp-ZRef).^2);  

newzs=W;rr =(y_center)*d;[z_heights] = mask_circle(newzs,center_pos,rr);   
ITssss=I0*(1+cos(4*pi*(z_heights./La)));  end 

for til=1:2 
Rxt=[1 0 0; 0 cos(0*ThetaX*pi/180) sin(0*ThetaX*pi/180); 0 -sin(0*ThetaX*pi/180) 
cos(0*ThetaX*pi/180)]; 
Ryt=[cos(til*ThetaY*pi/180) 0 -sin(til*ThetaY*pi/180); 0 1 0; sin(til*ThetaY*pi/180) 0 
cos(til*ThetaY*pi/180)]; 
Rzt=[cos(0*ThetaZ*pi/180) sin(0*ThetaZ*pi/180) 0; -sin(0*ThetaZ*pi/180) 
cos(0*ThetaZ*pi/180) 0; 0 0 1]; 
R1t=Rxt*(Ryt*Rzt);  R2t=Rxt*(Rzt*Ryt);  R3t=Ryt*(Rxt*Rzt);  
R4t=Ryt*(Rzt*Rxt);  R5t=Rzt*(Rxt*Ryt);  R6t=Rzt*(Ryt*Rxt); RRt=R6t; 
if s < r  
  xt=x1;  yt=y1;                                     
  Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))));  
  ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))));  
  else            nan;        end 
            xsp=RRt(1,1).*(xt+1) + RRt(1,2).*yt + RRt(1,3).*(Zs);  
            ysp=RRt(2,1).*xt + RRt(2,2).*(yt+1) + RRt(2,3).*(Zs);  
            zsp=RRt(3,1).*xt + RRt(3,2).*yt + RRt(3,3).*(Zs+1);   
            W= sqrt((xsp-x1).^2 + (ysp-y1).^2 + (zsp-ZRef).^2);  
newzs=W;rr =(y_center)*d;[z_heights] = mask_circle(newzs,center_pos,rr);   
ITsssss=2*I0*(1+cos(4*pi*(z_heights./La)));  end 
 
for tiz=1:2 
Rxz=[1 0 0; 0 cos(0*ThetaX*pi/180) sin(0*ThetaX*pi/180); 0 -sin(0*ThetaX*pi/180) 
cos(0*ThetaX*pi/180)]; 
Ryz=[cos(0*ThetaY*pi/180) 0 -sin(0*ThetaY*pi/180); 0 1 0; sin(0*ThetaY*pi/180) 0 
cos(0*ThetaY*pi/180)]; 
Rzz=[cos(tiz*ThetaZ*pi/180) sin(tiz*ThetaZ*pi/180) 0; -sin(tiz*ThetaZ*pi/180) 
cos(tiz*ThetaZ*pi/180) 0; 0 0 1]; 
R1z=Rxz*(Ryz*Rzz);  R2z=Rxz*(Rzz*Ryz);  R3z=Ryz*(Rxz*Rzz);  
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 R4z=Ryz*(Rzz*Rxz);  R5z=Rzz*(Rxz*Ryz);  R6z=Rzz*(Ryz*Rxz); RRz=R6z; 

if s < r  
    xt=x1;  yt=y1;                                     
    Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))));  
    ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))));  
    else     nan;      end 
            xsp=RRz(1,1).*(xt-2) + RRz(1,2).*yt + RRz(1,3).*(Zs);  
            ysp=RRz(2,1).*xt + RRz(2,2).*(yt-2) + RRz(2,3).*(Zs);   
            zsp=RRz(3,1).*xt + RRz(3,2).*yt + RRz(3,3).*(Zs-2);   
            W= sqrt((xsp-x1).^2 + (ysp-y1).^2 + (zsp-ZRef).^2);  
newzs=W; rr =(y_center)*d; [z_heights] = mask_circle(newzs,center_pos,rr);   
ITsssss=2*I0*(1+cos(4*pi*(z_heights./La))); end 
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 APPENDIX D: MONTE CARLO SIMULATION CODE 

% This program does the following 
    % randomly pick the measured .opd file  
    % assigned random sigmas for Monte Carlo (zero for chi-squre) 
    % generate simulated surface 
    % find chi-squres and do minimization 
    % generate intended surface 
    % find the residual error surfaces and find Zernikes 
    % save files to .xls and .opd as necessary 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L=50; NN=100;  
NEWX=780;NEWY=780;x_centtt=NEWX/2;y_centtt=NEWY/2; 
centt_pos = [x_centtt y_centtt];  
NNEWX=880;NNEWY=880; CENTERXX=NNEWX/2; CENTERYY=NNEWY/2; 
CENTTR_POSS=[CENTERYY CENTERXX];   
Ka=-3.6; Kb=-0.6; dK=(Kb-Ka)/NN; % conic constant range and steps   
aa=linspace(-NEWX/2,NEWX/2,NEWX);bb=linspace(-NEWY/2,NEWY/2,NEWY); 
[X,Y]=meshgrid((1.103)*aa,(1.103)*bb);% pixel to um 
Lenxx=length(aa);Lenyy=length(bb); 
newm = floor(length(aa)); newn = floor(length(bb));padnum = nan; 
Zsurf1 = zeros(newm,newn);Zsurf2 = zeros(newm,newn); 
r3 = 400/1.103; % aperture radius                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:L 
gg=floor(11*rand)+30; 
fname_strr=['DS2LSTITCH',num2str(gg),'.opd'];  % file name 
% fname_strr=['DS2LSTITCHAVERAGE.opd'];  
[array,wavelength,aspect,pxlsize]=readopd(fname_strr); 
[ii jj]=find(~isnan(array)); 
imin=min(ii);imax=max(ii);jmin=min(jj);jmax=max(jj); 
apr=randn;sr=0.5*randn; % sigmas of aperture radius and sag, zero for best estimate. 
crx=0.5*randn;cry=0.5*randn; % sigmas of center, zero for best estimate. 
rcr=20*randn; % sigma of the base radius, zero for best estimate. 
x_center = ((jmax-jmin)/2);y_center = ((imax-imin)/2);  
center_pos = [x_center  y_center];  
array11=array(imin:1:imax,jmin:1:jmax);   
AARR=POSITION_N_PAD(newn,newm,y_centtt,x_centtt,array11,padnum); 
[Zcc_height] = mask_circle(AARR,centt_pos,r3);  
[Z_height] = mask_circle(Zcc_height,centt_pos,r3); 
Zmax=max(Z_height(:));Zmin=min(Z_height(:)); % measured sag is 57.68um 
Z_he1=Z_height-Zmax; Zmsag=(57.68)+sr;Z_hee1=Z_he1+Zmsag;   
R=1360; ;Rr=R+rcr;C=1/Rr;   
S=(sqrt((X).^2 + (Y).^2));Smax=max(S(:));Smin=min(S(:)); 
for q=1:NN 
  KK=Ka + dK*(q-1); 
  if S < Rr  
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     Zsurf1=-C*S.^2./(1+sqrt(1-(KK+1)*C^2*S.^2)); 

    Zsurf2=-C*S.^2./(1+sqrt(1-(KK+dK+1)*C^2*S.^2)); 
    Znew1=Zsurf1;Znew2=Zsurf2; r2=r3+apr; 
    [ZZ_height1] = mask_circle(Znew1,centt_pos,r2);  
    [ZZ_height2] = mask_circle(Znew2,centt_pos,r2);  
    else       nan;           end 
newzz1=ZZ_height1;    
[Z_heightt1] = mask_circle(newzz1,centt_pos,r2);  
ZZZsagg1=max(Z_heightt1(:))-min(Z_heightt1(:)); 
newzz2=ZZ_height2; 
[Z_heightt2] = mask_circle(newzz2,centt_pos,r2);  
ZZZsagg2=max(Z_heightt2(:))-min(Z_heightt2(:)); 
ZtestSAG=max(ZZ_height1(:))-min(ZZ_height1(:)); 
ZZmax1=max(Z_heightt1(:));ZZmin1=min(Z_heightt1(:)); 
ZZsag1=ZZmax1-ZZmin1; ZZZ_1=(Z_heightt1-ZZmin1); 
ZZmax2=max(Z_heightt2(:));ZZmin2=min(Z_heightt2(:)); 
ZZsag2=ZZmax2-ZZmin2;ZZZ_2=(Z_heightt2-ZZmin2); 
ZZZ1=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX,ZZZ_1, 
padnum);   
 ZZZ2=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX,ZZZ_2, 
padnum);   
Z_hee=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY+crx,CENTERXX+cry, 
Z_hee1,padnum);  
Zneww1=(Z_hee-ZZZ1);  
[Zopti1] = mask_circle(Zneww1,CENTTR_POSS,r2);  
Zneww2=(Z_hee-ZZZ2);  
[Zopti2] = mask_circle(Zneww2,CENTTR_POSS,r2);  
dzz=std(~isnan(Zopti1));dz1=dzz(:);dz=4*sum(dz1(~isnan(dz1)));    
ZEE1=Zopti1(:);E1=sum((ZEE1(~isnan(ZEE1))).^2./dz.^2);% E1 is Chi-square 
ZEE2=Zopti2(:);E2=sum((ZEE2(~isnan(ZEE2))).^2./dz.^2);% E2 is Chi-square 
slopeMin=((E1 -E2)./dK); % slope 
 
if slopeMin < 0 
fid=fopen('CHI_SQUARESTITCH.xls','at'); % save chi-square values 
fprintf(fid,'%0.4f\t%0.4f\t%0.4f\t%0.4f\n',KK,E1,E2,slopeMin);fclose(fid); 
ZAVG=(ZZZ1 + ZZZ2)./2; % Best fit 
AA=[Rr,crx,cry,r3,Smax,Smin,r2,KK,Zmsag,ZZsag1,ZZsag2,E1,E2,slopeMin]; 
fid=fopen('BESTFITPSTITCH.xls','at');fprintf(fid,’format’,AA);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Intended surface 
RC=1375;  KC=-2.1; rc=r3; CC=1/RC;   
   if S < RC  
       ZI=-CC*S.^2./(1+sqrt(1-(KC+1)*CC^2*S.^2));[ZIN] 
 = mask_circle(ZI,centt_pos,rc);  
   else       nan;   end 
   NNEWW=ZIN;  ZZ_IN=mask_circle(NNEWW,centt_pos,rc); 
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    ZINN=ZZ_IN - min(ZZ_IN(:)); 

ZINT=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX,ZINN, 
padnum); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   ZRESM= Z_hee - ZINT; ZRESD= Z_hee - ZAVG; ZRESF=ZRESD - ZRESM; 
 newzA=ZAVG; % best fit surface 
fid=fopen('BESTFIT_1.xls','at');fprintf(fid,’format’,zernsA);fclose(fid); 
ZAVGG=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX, 
newzA,padnum); 
writeopd(['BESTFITSTITCH_',num2str(i),'.opd'],ZAVGG,633,1,0.001103); 
newzI=ZINT; % Intended surface 
fid=fopen('INTENDED_1.xls','at');fprintf(fid,’format’,zernsI);fclose(fid); 
ZINTT=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX,newzI, 
padnum); 
writeopd(['INTENDEDSTITCH_',num2str(1),'.opd'],ZINTT,633,1,0.001103); 
newzE=Z_hee; % measured surface data 
fid=fopen('DATA_1.xls','at');fprintf(fid,’format’,zernsE);fclose(fid); 
Z_heee=POSITION_N_PAD(NNEWY,NNEWX,CENTERYY,CENTERXX,newzE, 
padnum); 
writeopd(['DATASTITCH_',num2str(i),'.opd'],Z_heee,633,1,0.001103); 
newzs=ZRESF; % Intended from Best fit 
[z_heightss] = mask_circle(newzs,CENTTR_POSS,r2);   
[x_vectF,y_vectF]=get_xy(newzs,1); 
zz_RESF=RMTERMSISO((1.103)*x_vectF,(1.103)*y_vectF,z_heightss,[0 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36);  
[z_RESF] = mask_circle(zz_RESF,CENTTR_POSS,r2); 
vsize= size(zz_RESF);  
[mr,ma] = zern_radius_angle(vsize,CENTTR_POSS,r2);   
num_zernss = 36;viz = 1:1:num_zernss; % find zernike 
[vpars,rmses,spars,tpars,ppars] = zern_estim(zz_RESF,mr,ma,viz); zernss = (vpars); 
fid=fopen('INTFBESTFITSTITCH_1.xls','at');fprintf(fid,’format’,zernss);fclose(fid); 
ZRESFF=POSITION_N_PAD(NNEWX,NNEWY,CENTERYY,CENTERXX,z_RE 
SF,padnum); 
writeopd(['INTFBESTFITSTITCH_',num2str(i),'.opd'],ZRESFF,633,1,0.001103); 
 newzm=ZRESM; % Intended from Data 
[z_heightsm] = mask_circle(newzm,CENTTR_POSS,r2);   
[x_vectM,y_vectM]=get_xy(newzm,1); 
zz_RESM=RMTERMSISO((1.103)*x_vectM,(1.103)*y_vectM,z_heightsm,[0 1 1 1 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
[z_RESM] = mask_circle(zz_RESM,CENTTR_POSS,r2);  
vsize= size(zz_RESM);  
[mr,ma] = zern_radius_angle(vsize,CENTTR_POSS,r2);  
num_zernsm = 36;viz = 1:1:num_zernsm;  
[vparm,rmsem,sparm,tparm,pparm]=zern_estim(zz_RESM,mr,ma,viz);zernsm =  
(vparm); 
fid=fopen('INTFDATASTITCH_1.xls','at');fprintf(fid,’format’,zernsm);fclose(fid); 
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 ZRESMM=POSITION_N_PAD(NNEWX,NNEWY,CENTERYY,CENTERXX, 

z_RESM,padnum); 
writeopd(['INTFDATASTITCH_',num2str(i),'.opd'],ZRESMM,633,1,0.001103); 
newzd=ZRESD; % Best fit from Data 
[z_heightsd] = mask_circle(newzd,CENTTR_POSS,r2);  
[x_vectD,y_vectD]=get_xy(newzd,1); 
zz_RESD=RMTERMSISO((1.103)*x_vectD,(1.103)*y_vectD,z_heightsd,[0 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
[z_RESD] = mask_circle(zz_RESD,CENTTR_POSS,r2);   
vsize= size(zz_RESD);  
[mr,ma] = zern_radius_angle(vsize,CENTTR_POSS,r2); 
num_zernsd = 36; viz = 1:1:num_zernsd;  
[vpard,rmsed,spard,tpard,ppard] = zern_estim(zz_RESD,mr,ma,viz); zernsd = (vpard);  
fid=fopen('BESTFITFDATASTITCH_1.xls','at');fprintf(fid,’format’,zernsd); 
fclose(fid);  
ZRESDD=POSITION_N_PAD(NNEWX,NNEWY,CENTERYY,CENTERXX,z_RE 
SD,padnum); 
writeopd(['BESTFITFDATASTITCH_',num2str(i),'.opd'],ZRESDD,633,1,0.001103); 
break;  else    nan;  end  end  end 
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 APPENDIX E: PSI MEASUREMENT ANALYSIS CODE 

% This comprehensive program does the following 
       % Average all measurement values of sphere (0.99mm radius) at "null" position 
       % Average all measurement values of sphere (1.985mm radius) at "null" position 
        % subtract tip tilt and defocus in the process 
        % finally find the avearge of the two to get the Interferometric bias of the FISBA       
        % subtracts each OPD measurement from the interferometric bias 
        % find slope and offset uncertainties of higher order aberrations 
        % OPD measurement data based on gaussian distribution of higher order aberrations 
        % calculate the base radius from the z position versus power terms plot 
        % generate the base radius and aperture distribution 
        % generates the actual surface profile of the micro lens from OPD and spheres 
newm = 512; newn = 512; 
padnum = nan;   % Put "not-a-number"s around mask 
zsum = zeros(newm,newn);        index = zeros(newm,newn); 
zsumB=zeros(newm,newn);         indexB=zeros(newm,newn); 
zsumN=zeros(newm,newn);         indexN=zeros(newm,newn); 
aa=linspace(-newm/2,newm/2,newm);       Lenxx=length(aa); 
bb=linspace(-newn/2,newn/2,newn);       Lenyy=length(bb); 
centt=newm/2;     centt=newn/2; cent_pos=[centt centt];  % center 
[X1,Y1]=meshgrid((1170/512)*aa,(1170/512)*bb);   % pixel to um 
ar=55; muu=1.02; ITER=3;MM= 5; NN = 5; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% average measurements of a sphere with radius 0.99mm 
for i = 1:NN  
filename = ['sphere099_' num2str(i) '.txt'];  disp(filename) 
[xz, yz, w] = read_fisba(filename); %Read data from .txt file  
len = length(xz); 
xmaxz = max(xz);   xminz = min(xz);     x_vectz = xminz: 1: xmaxz; 
yminz = min(yz);   ymaxz = max(yz);     y_vectz = yminz: 1: ymaxz; 
lenxz = length(x_vectz);        centerxz = floor(max(xz)/2); 
lenyz = length(y_vectz);        centeryz = floor(max(yz)/2); 
                                  center=[centerxz centeryz]; 
  for q=1:lenyz 
    for r=1:lenxz 
        nancheck = isnan(w(q,r)); 
        if nancheck == 0 
            zsum(q,r) = zsum(q,r) + w(q,r);  index(q,r) = index(q,r) + 1; 
        end    end  end  end 
zavg = zsum./(index+eps);    [ii jj]=find(~isnan(zavg)); 
imin=min(ii);   jmin=min(jj);  imax=max(ii);   jmax=max(jj); 
zavg=zavg(imin:imax,jmin:jmax); [x_vectz,y_vectz]=get_xy(zavg,1); 
ZZAVG=mask_circle(zavg,center,ar);  
ZZAVGG=10^-4*POSITION_N_PAD(newm,newn,centt,centt,ZZAVG,padnum);   
ZZAVGZZ=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,ZZAV
GG,[0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
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 ZZAVGZ=mask_circle(ZZAVGZZ,cent_pos,ar); 

% find Zernike terms 
vsize= size(ZZAVGZ); 
[mr,ma] = zern_radius_angle(vsize,center,ar);  num_zernsS = 36; viz = 1:1:num_zernsS; 
[vparS,rmseS,sparS,tparS,pparS] = zern_estim(ZZAVGZ,mr,ma,viz); zernsS = vparS; 
ZZAVGC=POSITION_N_PAD(newm,newn,centt,centt,ZZAVGZ,padnum); 
writeopd(['SPHR099AVG_',num2str(1),'.opd'],ZZAVGC,633,1,0.001103);  
% save in .xls format 
fid=fopen('FISBA_SPHR099AVG.xls','at');fprintf(fid,’format’,zernsS);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% average measurements of a sphere with radius 1.985mm 
for j = 1:MM  
filenameB = ['sphere1985_' num2str(j) '.txt']; 
disp(filenameB) 
[xB, yB, wB] = read_fisba(filenameB); %used w's instead of z's for conversion to .opd 
lenB = length(xB); 
xmaxB = max(xB);     xminB = min(xB);       x_vectB = xminB: 1: xmaxB; 
yminB = min(yB);     ymaxB = max(yB);       y_vectB = yminB: 1: ymaxB; 
lenxB = length(x_vectB);        centerxB = floor(max(xB)/2); 
lenyB = length(y_vectB);        centeryB = floor(max(yB)/2);     
                                centerB=[centerxB centeryB]; 
  
for qB=1:lenyB 
    for rB=1:lenxB 
        nancheck = isnan(wB(qB,rB)); 
        if nancheck == 0 
            zsumB(qB,rB) = zsumB(qB,rB) + wB(qB,rB); 
            indexB(qB,rB) = indexB(qB,rB) + 1; 
        end    end  end end 
zavgB = zsumB./(indexB+eps);[iiB jjB]=find(~isnan(zavgB)); 
iminB=min(iiB); jminB=min(jjB);imaxB=max(iiB); jmaxB=max(jjB); 
zavgB=zavgB(iminB:imaxB,jminB:jmaxB);[x_vectB,y_vectB]=get_xy(zavgB,1); 
ZZAVGB=mask_circle(zavgB,centerB,ar);   
ZZAVGBB=10^-4*POSITION_N_PAD(newm,newn,centt,centt,ZZAVGB,padnum); 
ZZAVGZZB=RMTERMSISO(muu*(1170/512)*x_vectB,muu*(1170/512)*y_vectB,ZZ
AVGBB,[0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
ZZAVGZB=mask_circle(ZZAVGZZB,cent_pos,ar); 
 
vsize= size(ZZAVGZB); 
[mr,ma] = zern_radius_angle(vsize,centerB,ar);num_zernsB = 36;viz = 1:1:num_zernsB; 
[vparB,rmseB,sparB,tparB,pparB] = zern_estim(ZZAVGZB,mr,ma,viz);zernsB = vparB 
ZZAVGZBRMS=stat_rms(ZZAVGZB) 
ZZAVGCB=POSITION_N_PAD(newm,newn,centt,centt,ZZAVGZB,padnum); 
writeopd(['SPHR1985AVG_',num2str(1),'.opd'],ZZAVGCB,633,1,0.001103);  
fid=fopen('FISBA_SPHR1985AVG.xls','at');fprintf(fid,’format’,zernsB);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 RCAT=10^-4*[-426.3944 -214.4618 -140.2892 -11.2448 0.3575 77.3561 272.6526

 605.6178 434.0229]; % The radius measurement at cat's eye. 
RCON=10^-4*[167.8281 125.2885 122.2399 147.3618 151.8848 170.3855
 234.1323 223.9239 268.2602]; % The radius measurement at confocal.  
zpCON=[-0.064 -0.048 -0.032 -0.016 0 0.016 0.032 0.048 0.064]; z positions @ confocal 
zpCAT=[1421.5   1405.5  1389.5  1373.5  1357.5  1341.5  1325.5 1309.5 1293.5]; 
% find slope and offset uncertainties at cat’s eye 
Axy=mean(RCAT.*zpCAT)-mean(RCAT)*mean(zpCAT); 
Axx=mean(RCAT.^2)-(mean(RCAT)).^2; alpha1=Axy/Axx;  % slope 
alpha2=mean(zpCAT)-alpha1*mean(RCAT); % intercept 
N=length(zpCAT);dzpCAT=std(zpCAT);   
sig2alph1= sqrt(dzpCAT.^2/(N*Axx)); % uncertainty of the slope 
sig2alph2= sqrt((dzpCAT.^2*mean(RCAT.^2))/(N*Axx)); % uncertainty of the offset 
% find slope and offset uncertainties at confocal 
AxyC=mean(RCON.*zpCON)-mean(RCON)*mean(zpCON); 
AxxC=mean(RCON.^2)-(mean(RCON)).^2;alpha1C=AxyC/AxxC;   
alpha2C=mean(zpCON)-alpha1C*mean(RCON);  
NC=length(zpCON);dzpCON=std(zpCON);   
sig2alph1C= sqrt(dzpCON.^2/(NC*AxxC)); 
sig2alph2C= sqrt((dzpCON.^2*mean(RCON.^2))/(NC*AxxC)); 
for l=1:1   
Newalph1=alpha1 + sig2alph1*randn(100,1);  % New slope 
Newalph2=alpha2 + sig2alph2*randn(100,1);  % New offset 
Newalph1C=alpha1C + sig2alph1C*randn(100,1);% New slope 
Newalph2C=alpha2C + sig2alph2C*randn(100,1);  % New offset 
[Rcrv]=Newalph2 - Newalph2C;   Rm=mean(Rcrv); end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Aperture radius and its uncertainty 
Theta1=20; Theta2=(180/pi)*asin(0.34);Thetacor=11; 
dRHdR=sin(pi*Thetacor/180);dRHdTh=cos(pi*Thetacor/180); 
SigR=std(Rcrv); SigTh=(1/360)*2*pi;   
SigRHO=sqrt(dRHdR^2*SigR^2 + Rm*dRHdTh^2*SigTh^2); 
SigRHOPP=SigRHO;  SigRHOP=SigRHOPP*(512/1170);  % change it to pixel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get the interferometric bias 
    zs=[zernsS];  Rsb=[990 1985]; zb=[zernsB];   Ra=Rm;   Aber=zeros(36,1); 
for g=1:36 
 zsb=[zs(g) zb(g)];Axy=mean(zsb.*Rsb)-mean(zsb)*mean(Rsb); 
Axx=mean(Rsb.^2)-(mean(Rsb)).^2; alpha1=Axy/Axx;   
alpha2=mean(zsb)-alpha1*mean(Rsb);Ysb=alpha1*Rsb + alpha2; 
[Aber(g)]=(alpha1*Ra + alpha2);Aber(36,1); end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Interferometeric bias 
ABB=Aber(:,1);ZernBIAS=ABB; 
x=muu*(1170/512)*x_vectz; y=muu*(1170/512)*y_vectz; 
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 x2=x.*x; y2=y.*y; xy=x.*y; x3=x2.*x; y3=y2.*y; xy2=x.*y2; x2y=x2.*y; r2=x2+y2; 

x4=x2.*x2; y4=y2.*y2; x5=x3.*x2; y5=y3.*y2; 
x6=x4.*x2; y6=y4.*y2; x7=x5.*x2; y7=y5.*y2; x8=x4.*x4; y8=y4.*y4; x9=x7.*x2; 
y9=y7.*y2; x10=x8.*x2; y10=y8.*y2; p4=r2.*r2; p6=p4.*r2; 
% write Zernike polynomials for the bias 
ABB1=ABB(1)*ones(512,512)+ABB(2)*x+ABB(3)*y+ABB(4)*(2*x2+2*y2-
1)+ABB(5)*(x2-y2)+ABB(6)*(2*xy)+ABB(7)*(3*x3+3*xy2-
2*x)+ABB(8)*(3*x2y+3*y3-2*y)+ABB(9)*(6*r2.*r2-6*r2+1)+ABB(10)*(x3-3*xy2); 
ABB2=ABB(11)*(3*x2y-y3)+ABB(12)*(4*x2.*x2-3*x2+3*y2-
4*y2.*y2)+ABB(13)*(8*x3.*y+8*x.*y3-
6*xy)+ABB(14)*(10*x3.*x2+20*x3.*y2+10*xy.*y3-12*x3-
12*xy2+3*x)+ABB(15)*(10*x2y.*x2+20*x2y.*y2+10*y3.*y2-12*x2y-12*y3+3*y); 
ABB3=ABB(16)*(20*p6-30*p4+12*r2-1)+ABB(17)*(x2.*x2-
6*x2.*y2+y2.*y2)+ABB(18)*(4*x3.*y-4*x.*y3)+ABB(19)*(5*x3.*x2-10*x3.*y2-4*x3-
15*xy2.*y2+12*xy2)+ABB(20)*(-5*y3.*y2+10*x2.*y3+4*y3+15*x2y.*x2-
12*x2y)+ABB(21)*(15*x3.*x3+15*x2y.*x2y-15*x2y.*y3-20*x2.*x2+6*x2-
15*y3.*y3+20*y3.*y-6*y2); 
ABB4=ABB(22)*(30*x3.*x2y+60*x2y.*xy2+30*xy2.*y3-40*x3.*y-40*xy2.*y 
+12*xy)+ABB(23)*(35*x4.*x3+105*x4.*xy2+105*x3.*y4+35*xy2.*y4-60*x.*x4-
120*x2.*xy2-60*x.*y4+30*x3+30*xy2-
4*x)+ABB(24)*(35*x4.*x2y+105*x4.*y3+105*x2y.*y4+35*y4.*y3-60*x4.*y-
120*x2y.*y2-60*y4.*y+30*x2y+30*y3-4*y)+ABB(25)*(-(70*y8+280*y6.*x2 + 
420*y4.*x4 + 280*y2.*x6 + 70*x8 -140*y6 -420*y4.*x2 -420*y2.*x4 -140*x6 +90*y4 
+180*y2.*x2 + 90*x4 -20*y2 -20*x2 +1)); 
ABB5=ABB(26)*(x3.*x2-10*x3.*y2+5*xy2.*y2)+ABB(27)*(5*x2y.*x2-
10*x2.*y3+y3.*y2)+ABB(28)*(6*x3.*x3-30*x2y.*x2y-30*x2y.*y3+6*y3.*y3-
5*x2.*x2+30*x2.*y2-5*y2.*y2)+ABB(29)*(24*x3.*x2y-20*x2y.*x-
24*xy2.*y3+20*xy2.*y)+ABB(30)*(21*x4.*x3-21*x4.*xy2-105*x3.*y4-
30*x4.*x+60*x3.*y2+10*x3-63*xy2.*y4+90*x.*y4-
30*xy2)+ABB(31)*(63*x4.*x2y+105*x4.*y3+21*x2y.*y4-90*x4.*y-
60*x2.*y3+30*x2y-21*y3.*y4+30*y4.*y-10*y3); 
ABB6=ABB(32)*(-(-56*y8 -112*y6.*x2 -112*y2.*x6 +56*x8 +105*y6 +105*y4.*x2 -
105*y2.*x4 -105*x6 -60*y4 +60*x4 +10*y2 -10*x2)); 
ABB7=ABB(33)*(-(112*y7.*x +336*y5.*x3 +336*y3.*x5 +112*y.*x7 -210*y5.*x -
420*y3.*x3 -210*y.*x5 +120*y3.*x +120*y.*x3 -20*y.*x)); 
ABB8=ABB(34)*(-(126*y8.*x +504.*y6.*x3 + 756*y4.*x5 + 504*y2.*x7 + 126*x8.*x -
280*y6.*x -840*y4.*x3 -840*y2.*x5 -280*x7 +210*y4.*x +420*y2.*x3 + 210*x5 -
60*y2.*x -60*x3 +5*x)); 
ABB9=ABB(35)*(-(126*y9 +504.*y7.*x2 + 756*y5.*x4 + 504*y3.*x6 + 126*y.*x8 -
280*y7 -840*y5.*x2 -840*y3.*x4 -280*y.*x6 +210*y5 +420*y3.*x2 + 210*y.*x4 -
60*y3 -60*y.*x2 +5*y)); 
ABB10=ABB(36)*(-(252*y10 +1260.*y8.*x2 + 2520*y6.*x4 + 2520*y4.*x6 + 
1260*y2.*x8 +252*x10 -630*y8 -2520*y6.*x2 -3780*y4.*x4 -2520*y2.*x6 -630*x8 + 
560*y6 +1680*y4.*x2 +1680*y2.*x4 +560*x6 -210*y4 -420*y2.*x2-210*x4 +30*y2 
+30*x2 -1)); 
ABBPLOT=ABB1+…+ABB10; 
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 ABPLO=mask_circle(ABBPLOT,cent_pos,ar); 

ABBPLOTF=POSITION_N_PAD(newm,newn,centt,centt,ABPLO,padnum);  
ABBPPLL=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,ABBP
LOTF,[0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
ABPLOO=mask_circle(ABBPPLL,cent_pos,ar); 
 
vsize= size(ABPLOO); 
[mr,ma] = zern_radius_angle(vsize,cent_pos,ar);num_zernsSA = 36; 
viz = 1:1:num_zernsSA; 
[vparSA,rmseSA,sparSA,tparSA,pparSA] = zern_estim(ABPLOO,mr,ma,viz); 
zernsINTBIAS = vparSA 
ABBPLOTFF=POSITION_N_PAD(newm,newn,centt,centt,ABPLOO,padnum); 
writeopd(['INTBIASASPH_',num2str(1),'.opd'],ABBPLOTFF,633,1,0.001103);  
fid=fopen('INTBIASASPH.xls','at');fprintf(fid,’format’,zernsINTBIAS);fclose(fid); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% subtract interferometeric bias from each OPD measurement  
PP=15;    
zernsF=zeros(36,PP); 
for gg=1:PP 
%     bb=ceil(PP*rand);    bb=gg; 
    filenamestr = ['022405ASPH_' num2str(bb) '.txt'];  % measured OPD data 
[xN, yN, wN] = read_fisba(filenamestr);  
xmaxN = max(xN);     xminN = min(xN);       x_vectN = xminN: 1: xmaxN; 
yminN = min(yN);     ymaxN = max(yN);       y_vectN = yminN: 1: ymaxN; 
lenxN = length(x_vectN);        centerxN = floor((max(xN)-min(xN))/2); 
lenyN = length(y_vectN);        centeryN = floor((max(yN)-min(yN))/2);  
                                centerN=[centerxN centeryN]; 
for qN=1:lenyN 
    for rN=1:lenxN 
        nancheck = isnan(wN(qN,rN)); 
        if nancheck == 0 
            zsumN(qN,rN) = zsumN(qN,rN) + wN(qN,rN); 
            indexN(qN,rN) = indexN(qN,rN) + 1; 
        end    end    end 
zavgN=zsumN./(index+eps);[iiN jjN]=find(~isnan(zavgN)); 
iminN=min(iiN); jminN=min(jjN);imaxN=max(iiN); jmaxN=max(jjN); 
zavgN=zavgN(iminN:imaxN,jminN:jmaxN);[x_vectN,y_vectN]=get_xy(zavgN,1); 
ZZNEW=mask_circle(wN,centerN,ar); 
ZZNEWW=10^-4*POSITION_N_PAD(newm,newn,centt,centt,ZZNEW,padnum); 
ZZNEWA=RMTERMSISO(muu*(1170/512)*x_vectN,muu*(1170/512)*y_vectN,ZZNE
WW,[0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
ZDATA=POSITION_N_PAD(newm,newn,centt,centt,ZZNEWA,padnum);   
ZDATAA=mask_circle(ZDATA,cent_pos,ar); 
ZDATAAA=POSITION_N_PAD(newm,newn,centt,centt,ZDATAA,padnum); 
vsize= size(ZDATAA); 
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 [mr,ma] = zern_radius_angle(vsize,cent_pos,ar);num_zernsN = 36; 

viz = 1:1:num_zernsN; 
[vparN,rmseN,sparN,tparN,pparN] = zern_estim(ZDATAA,mr,ma,viz);zernsN = vparN  
ZZ=(ZDATAAA-ABBPLOTFF); % Interferometric bias is subtracted from the raw data  
ZZFF=mask_circle(ZZ,cent_pos,ar); 
ZFF=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,ZZFF,[0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
ZZF=mask_circle(ZFF,cent_pos,ar);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vsize= size(ZZF); %ZZF 
[mr,ma] = zern_radius_angle(vsize,cent_pos,ar); 
num_zernsF = 36;viz = 1:1:num_zernsF; 
[vparF,rmseF,sparF,tparF,pparF] = zern_estim(ZZF,mr,ma,viz); zernsF(:,gg) = vparF; 
ZZFINAL=POSITION_N_PAD(newm,newn,centt,centt,ZZF,padnum); 
writeopd(['BIASCORDATA_',num2str(bb),'.opd'],ZZFINAL,633,1,0.001103); end 
fid=fopen('FISBA_BIASCORDATA.xls','at');fprintf(fid,’format’,zernsF);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Zernikes from bias corrected OPD measurement data 
ZDC=zernsF(:,1:PP);    
A00=ZDC(1,1:PP); A11=ZDC(2,1:PP); A1m1=ZDC(3,1:PP); A20=ZDC(4,1:PP); 
A22=ZDC(5,1:PP); A2m2=ZDC(6,1:PP); A31=ZDC(7,1:PP); A3m1=ZDC(8,1:PP); 
A40=ZDC(9,1:PP); A33=ZDC(10,1:PP); A3m3=ZDC(11,1:PP); A42=ZDC(12,1:PP); 
A4m2=ZDC(13,1:PP); A51=ZDC(14,1:PP); A5m1=ZDC(15,1:PP); 
A60=ZDC(16,1:PP); A44=ZDC(17,1:PP); A4m4=ZDC(18,1:PP); A53=ZDC(19,1:PP); 
A5m3=ZDC(20,1:PP); A62=ZDC(21,1:PP); A6m2=ZDC(22,1:PP); 
A71=ZDC(23,1:PP); A7m1=ZDC(24,1:PP); A80=ZDC(25,1:PP); A55=ZDC(26,1:PP); 
A5m5=ZDC(27,1:PP); A64=ZDC(28,1:PP); A6m4=ZDC(29,1:PP); 
A73=ZDC(30,1:PP); A7m3=ZDC(31,1:PP); A82=ZDC(32,1:PP); A8m2=ZDC(33,1:PP); 
A91=ZDC(34,1:PP); A9m1=ZDC(35,1:PP); A100=ZDC(36,1:PP); 
% regenerate the OPD data from 36 Zernike coefficients 
for jj=1:PP 
getM=ceil(PP*rand); % getM=jj; 
X=muu*(1170/512)*x_vectz;   Y=muu*(1170/512)*y_vectz; 
  
X2=X.*X; Y2=Y.*Y; XY=X.*Y; X3=X2.*X; Y3=Y2.*Y; XY2=X.*Y2; X2Y=X2.*Y; 
r12=X2+Y2; X4=X2.*X2; Y4=Y2.*Y2; X5=X3.*X2; Y5=Y3.*Y2; 
X6=X4.*X2; Y6=Y4.*Y2; X7=X5.*X2; Y7=Y5.*Y2; X8=X4.*X4; Y8=Y4.*Y4; 
X9=X7.*X2; Y9=Y7.*Y2; X10=X8.*X2; Y10=Y8.*Y2; p14=r12.*r12; p16=p14.*r12; 
 
AA1=A00(getM)*ones(512,512)+A11(getM)*X+A1m1(getM)*Y+A20(getM)*(2*X2+2
*Y2-1)+A22(getM)*(X2-Y2)+A2m2(getM)*(2*XY)+A31(getM)*(3*X3+3*XY2-
2*X)+A3m1(getM)*(3*X2Y+3*Y3-2*Y)+A40(getM)*(6*r12.*r12-
6*r12+1)+A33(getM)*(X3-3*XY2); 
AA2=A3m3(getM)*(3*X2Y-Y3)+A42(getM)*(4*X2.*X2-3*X2+3*Y2-
4*Y2.*Y2)+A4m2(getM)*(8*X3.*Y+8*X.*Y3-
6*XY)+A51(getM)*(10*X3.*X2+20*X3.*Y2+10*XY.*Y3-12*X3-
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 12*XY2+3*X)+A5m1(getM)*(10*X2Y.*X2+20*X2Y.*Y2+10*Y3.*Y2-12*X2Y-

12*Y3+3*Y); 
AA3=A60(getM)*(20*p16-30*p14+12*r12-1)+A44(getM)*(X2.*X2-
6*X2.*Y2+Y2.*Y2)+A4m4(getM)*(4*X3.*Y-4*X.*Y3)+A53(getM)*(5*X3.*X2-
10*X3.*Y2-4*X3-15*XY2.*Y2+12*XY2)+A5m3(getM)*(-
5*Y3.*Y2+10*X2.*Y3+4*Y3+15*X2Y.*X2-
12*X2Y)+A62(getM)*(15*X3.*X3+15*X2Y.*X2Y-15*X2Y.*Y3-20*X2.*X2+6*X2-
15*Y3.*Y3+20*Y3.*Y-6*Y2); 
AA4=A6m2(getM)*(30*X3.*X2Y+60*X2Y.*XY2+30*XY2.*Y3-40*X3.*Y-
40*XY2.*Y 
+12*XY)+A71(getM)*(35*X4.*X3+105*X4.*XY2+105*X3.*Y4+35*XY2.*Y4-
60*X.*X4-120*X2.*XY2-60*X.*Y4+30*X3+30*XY2-
4*X)+A7m1(getM)*(35*X4.*X2Y+105*X4.*Y3+105*X2Y.*Y4+35*Y4.*Y3-
60*X4.*Y-120*X2Y.*Y2-60*Y4.*Y+30*X2Y+30*Y3-4*Y)+A80(getM)*(-
(70*Y8+280*Y6.*X2 + 420*Y4.*X4 + 280*Y2.*X6 + 70*X8 -140*Y6 -420*Y4.*X2 -
420*Y2.*X4 -140*X6 +90*Y4 +180*Y2.*X2 + 90*X4 -20*Y2 -20*X2 +1)); 
AA5=A55(getM)*(X3.*X2-10*X3.*Y2+5*XY2.*Y2)+A5m5(getM)*(5*X2Y.*X2-
10*X2.*Y3+Y3.*Y2)+A64(getM)*(6*X3.*X3-30*X2Y.*X2Y-
30*X2Y.*Y3+6*Y3.*Y3-5*X2.*X2+30*X2.*Y2-
5*Y2.*Y2)+A6m4(getM)*(24*X3.*X2Y-20*X2Y.*X-
24*XY2.*Y3+20*XY2.*Y)+A73(getM)*(21*X4.*X3-21*X4.*XY2-105*X3.*Y4-
30*X4.*X+60*X3.*Y2+10*X3-63*XY2.*Y4+90*X.*Y4-
30*XY2)+A7m3(getM)*(63*X4.*X2Y+105*X4.*Y3+21*X2Y.*Y4-90*X4.*Y-
60*X2.*Y3+30*X2Y-21*Y3.*Y4+30*Y4.*Y-10*Y3); 
AA6=A82(getM)*(-(-56*Y8 -112*Y6.*X2 -112*Y2.*X6 +56*X8 +105*Y6 
+105*Y4.*X2 -105*Y2.*X4 -105*X6 -60*Y4 +60*X4 +10*Y2 -10*X2)); 
AA7=A8m2(getM)*(-(112*Y7.*X +336*Y5.*X3 +336*Y3.*X5 +112*Y.*X7 -
210*Y5.*X -420*Y3.*X3 -210*Y.*X5 +120*Y3.*X +120*Y.*X3 -20*Y.*X)); 
AA8=A91(getM)*(-(126*Y8.*X +504.*Y6.*X3 + 756*Y4.*X5 + 504*Y2.*X7 + 
126*X8.*X -280*Y6.*X -840*Y4.*X3 -840*Y2.*X5 -280*X7 +210*Y4.*X 
+420*Y2.*X3 + 210*X5 -60*Y2.*X -60*X3 +5*X)); 
AA9=A9m1(getM)*(-(126*Y9 +504.*Y7.*X2 + 756*Y5.*X4 + 504*Y3.*X6 + 
126*Y.*X8 -280*Y7 -840*Y5.*X2 -840*Y3.*X4 -280*Y.*X6 +210*Y5 +420*Y3.*X2 
+ 210*Y.*X4 -60*Y3 -60*Y.*X2 +5*Y)); 
AA10=A100(getM)*(-(252*Y10 +1260.*Y8.*X2 + 2520*Y6.*X4 + 2520*Y4.*X6 + 
1260*Y2.*X8 +252*X10 -630*Y8 -2520*Y6.*X2 -3780*Y4.*X4 -2520*Y2.*X6 -
630*X8 + 560*Y6 +1680*Y4.*X2 +1680*Y2.*X4 +560*X6 -210*Y4 -420*Y2.*X2-
210*X4 +30*Y2 +30*X2 -1)); 
AATEST=AA1 + … + AA10; 
AATESS=mask_circle(AATEST,cent_pos,ar); 
AAATES=POSITION_N_PAD(newm,newn,centt,centt,AATESS,padnum); % centering 
AAATEST=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,AAAT
ES,[0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36); 
writeopd(['BIASCORDATAZERN_',num2str(jj),'.opd'],AAATEST,633,1,0.001103); end 
 
% uncertainty in slope and offset of the first sixteen Zernike coefficients 
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 A22xy=mean(A11.*A22)-mean(A11)*mean(A22); 

A22xx=mean(A11.^2)-(mean(A11)).^2; 
alpha221=A22xy/A22xx;%slopealpha222=mean(A22)-alpha221*mean(A11); 
N22=length(A22);    U221= sqrt(dA22.^2/(N22*A22xx));   
dA22=std(A22);      U222= sqrt((dA22.^2*mean(A11.^2))/(N22*A22xx));                     
 
A31xy=mean(A11.*A31)-mean(A11)*mean(A31); 
A31xx=mean(A11.^2)-(mean(A11)).^2; 
alpha311=A31xy/A31xx;  alpha312=mean(A31)-alpha311*mean(A11);  
N31=length(A31);    U311= sqrt(dA31.^2/(N31*A31xx));   
dA31=std(A31); U312=sqrt((dA31.^2*mean(A11.^2))/(N31*A31xx));                       
 
A33xy=mean(A11.*A33)-mean(A11)*mean(A33); 
A33xx=mean(A11.^2)-(mean(A11)).^2; 
alpha331=A33xy/A33xx;  alpha332=mean(A33)-alpha331*mean(A11);  
N33=length(A33);    U331= sqrt(dA33.^2/(N33*A33xx));   
dA33=std(A33);      U332= sqrt((dA33.^2*mean(A11.^2))/(N33*A33xx));                       
 
A42xy=mean(A11.*A42)-mean(A11)*mean(A42); 
A42xx=mean(A11.^2)-(mean(A11)).^2; 
alpha421=A42xy/A42xx;  alpha422=mean(A42)-alpha421*mean(A11);  
N42=length(A42);    U421= sqrt(dA42.^2/(N42*A42xx));   
dA42=std(A42);      U422= sqrt((dA42.^2*mean(A11.^2))/(N42*A42xx));                       
 
A51xy=mean(A11.*A51)-mean(A11)*mean(A51); 
A51xx=mean(A11.^2)-(mean(A11)).^2; 
alpha511=A51xy/A51xx;  alpha512=mean(A51)-alpha511*mean(A11);  
N51=length(A51);    U511= sqrt(dA51.^2/(N51*A51xx));   
dA51=std(A51);      U512= sqrt((dA51.^2*mean(A11.^2))/(N51*A51xx));   
                     
A2m2mxy=mean(A1m1.*A2m2)-mean(A1m1)*mean(A2m2); 
A2m2mxx=mean(A1m1.^2)-(mean(A1m1)).^2; 
alpha2m21m=A2m2mxy/A2m2mxx; 
alpha2m22m=mean(A2m2)-alpha2m21m*mean(A1m1);  
N2m2m=length(A2m2);U2m21m=sqrt(dA2m2m.^2/(N2m2m*A2m2mxx)); 
dA2m2m=std(A2m2); 
U2m22m= sqrt((dA2m2m.^2*mean(A1m1.^2))/(N2m2m*A2m2mxx));                       
 
A3m1mxy=mean(A1m1.*A3m1)-mean(A1m1)*mean(A3m1); 
A3m1mxx=mean(A1m1.^2)-(mean(A1m1)).^2;alpha3m11m=A3m1mxy/A3m1mxx;  
alpha3m12m=mean(A3m1)-alpha3m11m*mean(A1m1);  
N3m1m=length(A3m1); U3m11m=sqrt(dA3m1m.^2/(N3m1m*A3m1mxx));   
dA3m1m=std(A3m1); 
U3m12m=sqrt((dA3m1m.^2*mean(A1m1.^2))/(N3m1m*A3m1mxx));     
 
A3m3mxy=mean(A1m1.*A3m3)-mean(A1m1)*mean(A3m3); 
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 A3m3mxx=mean(A1m1.^2)-(mean(A1m1)).^2; 

alpha3m31m=A3m3mxy/A3m3mxx;   
alpha3m32m=mean(A3m3)-alpha3m31m*mean(A1m1);  
N3m3m=length(A3m3); U3m31m= sqrt(dA3m3m.^2/(N3m3m*A3m3mxx));  
dA3m3m=std(A3m3);    
U3m32m= sqrt((dA3m3m.^2*mean(A1m1.^2))/(N3m3m*A3m3mxx));                       
 
A4m2mxy=mean(A1m1.*A4m2)-mean(A1m1)*mean(A4m2); 
A4m2mxx=mean(A1m1.^2)-(mean(A1m1)).^2; 
alpha4m21m=A4m2mxy/A4m2mxx;   
alpha4m22m=mean(A4m2)-alpha4m21m*mean(A1m1);  
N4m2m=length(A4m2); U4m21m= sqrt(dA4m2m.^2/(N4m2m*A4m2mxx));   
dA4m2m=std(A4m2);    
U4m22m= sqrt((dA4m2m.^2*mean(A1m1.^2))/(N4m2m*A4m2mxx));   
 
A5m1mxy=mean(A1m1.*A5m1)-mean(A1m1)*mean(A5m1); 
A5m1mxx=mean(A1m1.^2)-(mean(A1m1)).^2; 
alpha5m11m=A5m1mxy/A5m1mxx;   
alpha5m12m=mean(A5m1)-alpha5m11m*mean(A1m1);  
N5m1m=length(A5m1); U5m11m= sqrt(dA5m1m.^2/(N5m1m*A5m1mxx));   
dA5m1m=std(A5m1);    
U5m12m= sqrt((dA5m1m.^2*mean(A1m1.^2))/(N5m1m*A5m1mxx));   
 
A40xy=mean(A20.*A40)-mean(A20)*mean(A40); 
A40xx=mean(A20.^2)-(mean(A20)).^2; 
alpha401=A40xy/A40xx;   
alpha402=mean(A40)-alpha401*mean(A20);  
N40=length(A40);    U401= sqrt(dA40.^2/(N40*A40xx));  % uncertainty in the slope 
dA40=std(A40);      U402= sqrt((dA40.^2*mean(A20.^2))/(N40*A40xx));   
                     
A60xy=mean(A20.*A60)-mean(A20)*mean(A60); 
A60xx=mean(A20.^2)-(mean(A20)).^2; 
alpha601=A60xy/A60xx;   
alpha602=mean(A60)-alpha601*mean(A20);  
N60=length(A60);    U601= sqrt(dA60.^2/(N60*A60xx));   
dA60=std(A60);      U602= sqrt((dA60.^2*mean(A20.^2))/(N60*A60xx));   
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for LL=1:ITER  % number of iteration to get a distribution say 100   
getRN=randn;    
Newalph221=alpha221+U221*getRN;Newalph2m21m=alpha2m21m + U2m21m*getRN;   
Newalph222=alpha222+U222*getRN;Newalph2m22m=alpha2m22m + U2m22m*getRN;   
Newalph311=alpha311+U311*getRN;Newalph3m11m=alpha3m11m + U3m11m*getRN;   
Newalph312=alpha312+U312*getRN;Newalph3m12m=alpha3m12m + U3m12m*getRN;   
Newalph331=alpha331+U331*getRN;Newalph3m31m=alpha3m31m + U3m31m*getRN;   
Newalph332=alpha332+U332*getRN;Newalph3m32m=alpha3m32m + U3m32m*getRN;   
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 Newalph421=alpha421+U421*getRN;Newalph4m21m=alpha4m21m + 

U4m21m*getRN;   
Newalph422=alpha422+U422*getRN;Newalph4m22m=alpha4m22m + U4m22m*getRN;   
Newalph511=alpha511+U511*getRN;Newalph5m11m=alpha5m11m + U5m11m*getRN;   
Newalph512=alpha512+U512*getRN;Newalph5m12m=alpha5m12m + U5m12m*getRN;   
Newalph401=alpha401+U401*getRN;Newalph601=alpha601+U601*getRN;  
Newalph402=alpha402 + U402*getRN;Newalph602=alpha602 + U602*getRN;   
NewA221=Newalph221*A11 + Newalph222; NewA2m21m=Newalph2m21m*A1m1 + 
Newalph2m22m; 
NewA311=Newalph311*A11 + Newalph312;NewA3m11m=Newalph3m11m*A1m1 + 
Newalph3m12m; 
NewA331=Newalph331*A11 + Newalph332;NewA3m31m=Newalph3m31m*A1m1 + 
Newalph3m32m; 
NewA421=Newalph421*A11 + Newalph422;NewA4m21m=Newalph4m21m*A1m1 + 
Newalph4m22m; 
NewA511=Newalph511*A11 + Newalph512;NewA5m11m=Newalph5m11m*A1m1 + 
Newalph5m12m; 
NewA401=Newalph401*A20+Newalph402;NewA601=Newalph601*A20+Newalph602; 
getR=ceil(PP*rand); 
      NewA221A=NewA221(:,getR); NewA2m21Am=NewA2m21m(:,getR);  
      NewA311A=NewA311(:,getR); NewA3m11Am=NewA3m11m(:,getR); 
      NewA331A=NewA331(:,getR); NewA3m31Am=NewA3m31m(:,getR); 
      NewA421A=NewA421(:,getR); NewA4m21Am=NewA4m21m(:,getR); 
      NewA511A=NewA511(:,getR); NewA5m11Am=NewA5m11m(:,getR); 
      NewA401A=NewA401(:,getR); NewA601A=NewA601(:,getR); 
       
x=muu*(1170/512)*x_vectz; y=muu*(1170/512)*y_vectz; 
x2=x.*x; y2=y.*y; xy=x.*y; x3=x2.*x; y3=y2.*y; xy2=x.*y2; x2y=x2.*y; r2=x2+y2; 
x4=x2.*x2; y4=y2.*y2; x5=x3.*x2; y5=y3.*y2; 
x6=x4.*x2; y6=y4.*y2; x7=x5.*x2; y7=y5.*y2; x8=x4.*x4; y8=y4.*y4; x9=x7.*x2; 
y9=y7.*y2; x10=x8.*x2; y10=y8.*y2; p4=r2.*r2; p6=p4.*r2; 
 
ANEW1A=(NewA221A)*(x2-
y2)+(NewA2m21Am)*(2*xy)+(NewA311A)*(3*x3+3*xy2-
2*x)+(NewA3m11Am)*(3*x2y+3*y3-2*y)+NewA401A*(6*r2.*r2-
6*r2+1)+(NewA331A)*(x3-3*xy2); 
ANEW1B=(NewA3m11Am)*(3*x2y-y3)+(NewA421A)*(4*x2.*x2-3*x2+3*y2-
4*y2.*y2)+(NewA4m21Am)*(8*x3.*y+8*x.*y3-
6*xy)+(NewA511A)*(10*x3.*x2+20*x3.*y2+10*xy.*y3-12*x3-
12*xy2+3*x)+(NewA5m11Am)*(10*x2y.*x2+20*x2y.*y2+10*y3.*y2-12*x2y-
12*y3+3*y)+ NewA601A*(20*p6-30*p4+12*r2-1); 
              MIS_map=ANEW1A + ANEW1B;  
              MIS_mapp=mask_circle(MIS_map,cent_pos,ar);  % aberration map 
              MIS_mapc=POSITION_N_PAD(newm,newn,centt,centt,MIS_mapp,padnum);  
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ZMISS=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,MIS_mapc
,[0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36);        
ZMIS=mask_circle(ZMISS,cent_pos,ar); 
 
vsize= size(ZMIS); 
[mr,ma] = zern_radius_angle(vsize,cent_pos,ar); num_zernsOPDM = 36; 
viz = 1:1:num_zernsOPDM; 
[vparOP,rmseOP,sparOP,tparOP,pparOP] = zern_estim(ZMIS,mr,ma,viz); 
zernsMISCD = vparOP;  
MIS_mapcc=POSITION_N_PAD(newm,newn,centt,centt,ZMIS,padnum); 
writeopd(['MISCORDATA_',num2str(LL),'.opd'],MIS_mapc,633,1,0.001103);  
fid=fopen('MISCORDATAA.xls','at');fprintf(fid,’format’',zernsMISCD);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% generate height profile  
rcr=SigR*randn;   % uncertainty in R based on Radius Rm 
apr=SigRHOP*randn; % uncertainty in aperture aperture radius 
KR=0;  
    RR=(Rm+rcr);  CR=1/RR; 
    S=(sqrt((512*X1).^2 + (512*Y1).^2));  Smax=max(S(:)); Smin=min(S(:));rr2 = ar+apr; 
    if S < RR 
        Zsurf=-CR*S.^2./(1+sqrt(1-(KR+1)*CR^2*S.^2)); 
    [ZC_height] = mask_circle(Zsurf,cent_pos,rr2); % centt_pos 
     else   nan;    end 
ZCC=ZC_height-min(ZC_height(:)); 
ZPROFIL=POSITION_N_PAD(newm,newn,centt,centt,ZCC,padnum);  
ZZZ=mask_circle(ZPROFIL,cent_pos,rr2);  vsize= size(ZZZ); 
[mr,ma] = zern_radius_angle(vsize,cent_pos,rr2);num_zernsPRO = 36; 
viz = 1:1:num_zernsPRO; 
[vparP,rmseP,sparP,tparP,pparP] = zern_estim(ZZZ,mr,ma,viz); 
zernsPRO = vparP; 
ZPROFILEE=POSITION_N_PAD(newm,newn,centt,centt,ZPROFIL,padnum);  
writeopd(['SPHEREPROFILE_',num2str(LL),'.opd'],ZPROFILEE,633,1,0.001103);  
fid=fopen('FISBA_SPHEREPROFILE.xls','at');fprintf(fid,’format’',zernsPRO);fclose(fid); 
 
% Now add misalignment corrected OPD to Radius(sphere) to generate surface profile 
PROFILE=ZPROFILEE + MIS_mapcc;  % the final generated profile 
vsize= size(PROFILE); 
[mr,ma] = zern_radius_angle(vsize,cent_pos,rr2); num_zernsPROF = 36; 
viz = 1:1:num_zernsPROF; 
[vparPF,rmsePF,sparPF,tparPF,pparPF] = zern_estim(PROFILE,mr,ma,viz); 
zernsPROF = vparPF;ZZPROF=stat_rms(PROFILE) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The intended surface profile 
Rr=1375;   C=1/Rr; K=-2.1;        
      S=(sqrt((512*X1).^2 + (512*Y1).^2));  Smax=max(S(:)); Smin=min(S(:)); 
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    if S < Rr  

    Zsurff=-C*S.^2./(1+sqrt(1-(K+1)*C^2*S.^2));  
    ZZF_height = mask_circle(Zsurff,cent_pos,ar);   else  nan;   end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% deviation from the intended shape 
max(ZZF_height(:)); ZFF_height=ZZF_height-min(ZZF_height(:)); 
PRROFILE=PROFILE - min(PROFILE(:)); 
  ZF_height=POSITION_N_PAD(newm,newn,centt,centt,ZFF_height,padnum); 
  PPROFILE=POSITION_N_PAD(newm,newn,centt,centt,PRROFILE,padnum);   
ZDIN=PPROFILE-ZF_height;   
ZZDIN=POSITION_N_PAD(newm,newn,centt,centt,ZDIN,padnum); 
ZDINNZ=RMTERMSISO(muu*(1170/512)*x_vectz,muu*(1170/512)*y_vectz,ZZDIN,[
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],36);       
ZDDINZ=mask_circle(ZDINNZ,cent_pos,rr2); 
vsize= size(ZDDINZ); 
[mr,ma] = zern_radius_angle(vsize,cent_pos,ar); num_zernsINTDZ = 36; 
viz = 1:1:num_zernsINTDZ; 
[vparDZ,rmseDZ,sparDZ,tparDZ,pparDZ] = zern_estim(ZDDINZ,mr,ma,viz); 
zernsINTDZ = vparDZ; 
ZDDINZZ=POSITION_N_PAD(newm,newn,centt,centt,ZDDINZ,padnum); 
writeopd(['GENPROFILE_',num2str(LL),'.opd'],PPROFILE,633,1,0.001103);  
writeopd(['DEVFINTENDED_',num2str(LL),'.opd'],ZDDINZZ,633,1,0.001103);  
writeopd(['INTENDEDSHAPE_',num2str(1),'.opd'],ZF_height,633,1,0.001103);  
 
fid=fopen('FISBA_RHOANDRADA.xls','at'); 
fprintf(fid,'%0.8f\t%0.8f\t%0.8f\t%0.8f\t%0.8f\t%0.8f\n',Rm,rcr,RR,ar,apr,rr2); 
fclose(fid); 
fid=fopen('FISBA_GENPROFILE.xls','at');fprintf(fid,’format’,zernsPROF);fclose(fid); 
fid=fopen('FISB_DEVFINTENDED.xls','at');fprintf(fid,’format’,zernsINTDZ);fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 APPENDIX F: SURFACE PROFILE MEASUREMENT SIMULATION 

% The program does the following 
    % request different inputs like conic constant, radius, NA, Misalignment, etc 
    % find the gradient of the part to set a condition for applied NA 
    % adds noise when necessary 
    % get the surface data with the conditon set 
    % this is the simulated measurement data using SWLI approach 
    % plot the surface and save it as an .opd file 
padnum = nan; 
k=input ('conic constant of the part ='); ks=0;   
r1=input('radius of curvature (um)of the part='); 
dia=input('diamter (um) of the part='); 
NAo=input('NA used in the measurement'); % numerical objective used  
(0.3 for 10X objective) 
ThetaO=asin(NAo)*180/pi; ThetaM=13.82;do=2*r1*NAo;  
Mask=input ('mask in % (80,etc) ='); 
d=(Mask/100);  
ThetaX=input ('rotation angle of the part about X in CCW (+ve) or inCW (-ve)'); 
ThetaY=input ('rotation angle of the part about Y in CCW (+ve) or inCW (-ve)'); 
ThetaZ=input ('rotation angle of the part about Z in CCW (+ve) or inCW (-ve)'); 
    A=[-640/2:1:640/2];  B=[-480/2:1:480/2]; 
    [x1,y1]=meshgrid(A,B); 
    lenx1=length(x1(1,:)); leny1=length(y1(:,1));  
    newm=leny1;  newn=lenx1; WPS=0.01*ones(newm,newn); 
    x_cent=newm/2; y_cent=newn/2; 
Rx=[1 0 0; 0 cos(ThetaX*pi/180) sin(ThetaX*pi/180); 0 -sin(ThetaX*pi/180)  
cos(ThetaX*pi/180)]; 
Ry=[cos(ThetaY*pi/180) 0 -sin(ThetaY*pi/180); 0 1 0; sin(ThetaY*pi/180) 0  
cos(ThetaY*pi/180)]; 
Rz=[cos(ThetaZ*pi/180) sin(ThetaZ*pi/180) 0; -sin(ThetaZ*pi/180)  
cos(ThetaZ*pi/180) 0; 0 0 1]; 
R1=Rx*(Ry*Rz);  R2=Rx*(Rz*Ry);  R3=Ry*(Rx*Rz);  
R4=Ry*(Rz*Rx);  R5=Rz*(Rx*Ry);  R6=Rz*(Ry*Rx); 
RR=input('rotation order(RR): (R1=XYZ, R2=XZY, R3=YXZ, R4=YZX, R5=ZXY,  
R6=ZYX) ='); 
    c=1/r1; s=sqrt(x1.^2 + y1.^2); 
if s < r1                         
    Zs=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))))+r1; % the part (convex) surface  
equation 
    [ZX ZY]=GRADIENT(Zs,1,1); 
alphaX=(180/pi)*atan2(ZX,1);alphaY=(180/pi)*atan2(ZY,1); 
alMAX=ceil(max(alphaX(:))); alMIX=ceil(min(alphaX(:))) 
alMAY=ceil(max(alphaY(:))); alMIY=ceil(min(alphaY(:))) 
if max(alphaX(:)) >= ThetaM & max(alphaY(:)) >= ThetaM 
[I J]=find(tan(-ThetaO*pi/180)<= ZX <= tan(ThetaO*pi/180)); 
imin=min(I);imax=max(I);jmin=min(J);jmax=max(J); 
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 [II JJ]=find(tan(-ThetaM*pi/180)<= ZY <= tan(ThetaM*pi/180)); 

iimin=min(II);iimax=max(II);jjmin=min(JJ);jjmax=max(JJ); 
ZZSSS=Zs(imin:imax,jjmin:jjmax); else 
[I J]=find(tan(alMIX*pi/180)< ZX < tan(alMAX*pi/180)); 
imin=min(I);imax=max(I);jmin=min(J);jmax=max(J); 
[II JJ]=find(tan(alMIY*pi/180)< ZY < tan(alMAY*pi/180)); 
iimin=min(II);iimax=max(II);jjmin=min(JJ);jjmax=max(JJ); 
ZZSSS=Zs(imin:imax,jjmin:jjmax); end 
lenxx1=imax-imin+1; lenyy1=jjmax-jjmin+1; 
ZZS=POSITION_N_PAD(lenxx1,lenyy1,ceil(lenxx1/2),ceil(lenyy1/2),ZZSSS, 
padnum);  
newzsss=ZZS-min(ZZS(:)); newzss=newzsss./max(newzsss(:)); 
for ii=1:2 
   if ii==1    newzs=max(newzsss(:))*newzss;    end 
    if ii==2 
    newzs=max(newzsss(:))*imnoise(newzss,'gaussian',0,0.000002);    end  
x_center = lenyy1/2;y_center = lenxx1/2; 
center_pos = [x_center y_center]; rr=220; 
[zzz_heights] = mask_circle(newzs,center_pos,rr);   
ZZZ=WPS; 
centerr_pos = [x_cent y_cent]; rr1 =(y_cent);   
[z_heights1] = mask_circle(ZZZ,centerr_pos,rr1);   
      

z_heightss=POSITION_N_PAD(newm,newn,floor(x_cent),floor(y_cent),zzz_heights, 
padnum); 
      figure(ii)  surf(x1,y1,z_heightss);  colormap hsv   shading interp axis equal axis 

off 
         writeopd(['SWLISIMU_',num2str(ii),'.opd'],z_heightss,633,1,0.00103);  % 

1.014 
     end   else    nan;   end 
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 APPENDIX G: OPD MEASUREMENT SIMULATION 

% The program does the following 
    % request different inputs like conic constant, radius, NA, Misalignment, etc 
    % find the gradient of the part to set a condition for applied NA 
    % adds noise when necessary 
    % get the surface data with the conditon set 
    % calculate OPD along the radius of the reference sphere direction 
    % plot the OPD and save it as an .opd file 
padnum = nan; 
k=input ('conic constant of the part ='); ks=0;   
r1=input('radius of curvature (um)of the part='); 
dia=input('diamter (um) of the part='); 
NAo=input('NA used in the measurement');  
ThetaO=asin(NAo)*180/pi; ThetaM=19.87;   
NAL=(dia/2)/r1; do=2*r1*NAo; dop=do/512;  
Mask=input ('mask in % (80,etc) =');d=(Mask/100);disp('d*dop') 
ThetaX=input ('rotation angle of the part about X in CCW (+ve) or inCW (-ve)'); 
ThetaY=input ('rotation angle of the part about Y in CCW (+ve) or inCW (-ve)'); 
ThetaZ=input ('rotation angle of the part about Z in CCW (+ve) or inCW (-ve)'); 
 A=[-511/2:1:511/2]; B=[-511/2:1:511/2]; fa=1170/512; 
 [x1,y1]=meshgrid(fa*A,fa*B);lenx1=length(x1(1,:));leny1=length(y1(:,1)) 
 newm=leny1;  
newn=lenx1;WPS=0.01*ones(newm,newn);x_cent=newm/2;y_cent=newn/2; 
Lx=input ('translation along X or Y='); 
Rx=[1 0 0; 0 cos(ThetaX*pi/180) sin(ThetaX*pi/180); 0 -sin(ThetaX*pi/180)  

     cos(ThetaX*pi/180)]; 
Ry=[cos(ThetaY*pi/180) 0 -sin(ThetaY*pi/180); 0 1 0; sin(ThetaY*pi/180) 0  
cos(ThetaY*pi/180)]; 
Rz=[cos(ThetaZ*pi/180) sin(ThetaZ*pi/180) 0; -sin(ThetaZ*pi/180)  
cos(ThetaZ*pi/180) 0; 0 0 1]; 
R1=Rx*(Ry*Rz);  R2=Rx*(Rz*Ry);  R3=Ry*(Rx*Rz);  
R4=Ry*(Rz*Rx);  R5=Rz*(Rx*Ry);  R6=Rz*(Ry*Rx); 
RR=input('rotation order(RR): (R1=XYZ, R2=XZY, R3=YXZ, R4=YZX, R5=ZXY,  
R6=ZYX) ='); 
i=6;j=6; 
for gg =6:Lx   
   q=gg*1; 
    c=1/r1; rz=r1+5*((q-1)-5);C=1/rz;La=0.6328;I0=1;    s=sqrt(x1.^2 + y1.^2); 
    dr=sqrt(r1^2 - 2*r1*5*((q-1)-5))-r1; drz=sqrt(rz^2 - 2*rz*5*((q-1)-5))-rz; 
    X=(1+(dr/r1))*x1;    Y=(1+(dr/r1))*y1;     S=sqrt((X).^2 + (Y).^2);  
    Xz=(1+(drz/rz))*x1;    Yz=(1+(drz/rz))*y1;  Sz=sqrt((Xz).^2 + (Yz).^2);    
  if r1 <= rz &  s < r1  & S < rz      
   xt=X+2*((i-1)-5);  yt=Y+2*((j-1)-5);                           
   Zss=-(c*s.^2./(1+sqrt(1-(k+1)*c^2*(s.^2))))+r1;  
            xsp=RR(1,1)*xt + RR(1,2)*yt + RR(1,3)*(Zss);  
            ysp=RR(2,1)*xt + RR(2,2)*yt + RR(2,3)*(Zss);   
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             zsp=RR(3,1)*xt + RR(3,2)*yt + RR(3,3)*(Zss); 

    sp=sqrt(xsp.^2 + ysp.^2);  
   if sp < r1        
Zs=-(c*sp.^2./(1+sqrt(1-(k+1)*c^2*(sp.^2))))+r1; % the part (convex) surface 
 equation 
[ZX ZY]=GRADIENT(Zs,1,1); 
alphaX=(180/pi)*atan2(ZX,1);alphaY=(180/pi)*atan2(ZY,1); 
alMAX=(max(alphaX(:)));alMIX=(min(alphaX(:))); 
alMAY=(max(alphaY(:)));alMIY=(min(alphaY(:))); 
if max(alphaX(:)) >= ThetaM & max(alphaY(:)) >= ThetaM  
[I J]=find(tan(-ThetaO*pi/180)<= ZX <= tan(ThetaO*pi/180)); 
imin=min(I);imax=max(I);jmin=min(J);jmax=max(J); 
[II JJ]=find(tan(-ThetaM*pi/180)<= ZY <= tan(ThetaM*pi/180)); 
iimin=min(II);iimax=max(II);jjmin=min(JJ);jjmax=max(JJ); 
ZZSSS=Zs(imin:imax,jjmin:jjmax); else 
[I J]=find(tan(alMIX*pi/180)< ZX < tan(alMAX*pi/180)); 
imin=min(I);imax=max(I);jmin=min(J);jmax=max(J); 
[II JJ]=find(tan(alMIY*pi/180)< ZY < tan(alMAY*pi/180)); 
iimin=min(II);iimax=max(II);jjmin=min(JJ);jjmax=max(JJ); 
ZZSSS=Zs(imin:imax,jjmin:jjmax); end 
 lenxx1=imax-imin+1; lenyy1=jjmax-jjmin+1; 
 ZZS=POSITION_N_PAD(lenxx1,lenyy1,(lenxx1/2),(lenyy1/2),ZZSSS,padnum); 
     ZRef=-(c*s.^2./(1+sqrt(1-(ks+1)*c^2*(s.^2))))+rz;  
            xsp=RR(1,1)*xt + RR(1,2)*yt + RR(1,3)*(ZZS);  
            ysp=RR(2,1)*xt + RR(2,2)*yt + RR(2,3)*(ZZS);   
            zsp=RR(3,1)*xt + RR(3,2)*yt + RR(3,3)*(ZZS);        
   W= -sqrt(x1.^2 + y1.^2 + ZRef.^2) + sqrt((xsp).^2 + (ysp).^2 + (zsp).^2);  
newzsss=W-min(W(:)); 
newzss=newzsss./max(newzsss(:)); 
for ii=1:2 
   if ii==1    newzs=max(newzsss(:))*newzss;    end 
    if ii==2 
    newzs=max(newzsss(:))*imnoise(newzss,'gaussian',0,0.000002); end  
x_center = lenyy1/2;y_center = lenxx1/2; 
center_pos = [x_center y_center]; rr=110; 
[zzz_heights] = mask_circle(newzs,center_pos,rr);  %masking the data to a circle 
Zsss=mask_circle(zsp-min(zsp(:)),center_pos,110); 
ZSAAG=max(Zsss(:))-min(Zsss(:)) 
ZZZ=WPS; 
centerr_pos = [x_cent y_cent];rr1 =(y_cent);         
[z_heights1] = mask_circle(ZZZ,centerr_pos,rr1);   
z_heightss=POSITION_N_PAD(newm,newn,(x_cent),(y_cent),zzz_heights,padnum);  
figure(ii) surf(x1,y1,z_heightss); colormap hsv shading interp axis equal axis off 
        writeopd(['SIMUOPDT_',num2str(ii),'.opd'],z_heightss,633,1,0.001103);   
     end   else    nan;   end  end   end 
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 APPENDIX H:  ZERNIKES FROM RESIDUAL ERRORS BASED ON SWLI 

  Residual surface error (Stitched) 

  Data from intended Data from best fit Intended from best fit 

Zernikes mean one sigma mean one sigma mean one sigma 

a00 1.75 5.86 1.4 5.75 -0.35 0.47 

a11 -51.31 843.38 -52.15 843.47 -0.85 0.95 

a-11 -219.06 472.85 -219.91 472.85 -0.85 0.95 

a20 -86.77 52.08 -37.04 76.61 49.73 55.35 

a22 14.03 100.17 14.03 100.17 0 0 

a2-2 -30.26 111.03 -30.27 111.03 0 0 

a31 -1.68 54.45 -1.62 54.45 0.06 0.08 

a3-1 7.83 42.78 7.89 42.79 0.06 0.08 

a40 -147.51 8 -149.17 8.44 -1.66 2.21 

a33 2.84 56.2 2.84 56.2 0 0 

a3-3 20.58 76.44 20.58 76.44 0 0 

a42 -4.29 44.65 -4.29 44.65 0 0 

a4-2 4.37 30.11 4.37 30.11 0 0 

a51 2.51 31.72 2.51 31.72 0 0 

a5-1 -7.41 31.65 -7.41 31.65 0 0 

a60 14.63 6.73 14.63 6.73 0.01 0.01 

a44 13.88 21.45 13.88 21.45 0 0 

a4-4 2.22 31.51 2.22 31.51 0 0 

a53 3.62 13.47 3.62 13.47 0 0 

a5-3 -3.59 15.02 -3.59 15.02 0 0 

a62 -3.61 15.53 -3.61 15.53 0 0 

a6-2 -2.34 11.76 -2.34 11.76 0 0 

a71 0.06 10.9 0.06 10.9 0 0 

a7-1 0.4 11.78 0.4 11.78 0 0 

a80 8.07 3.44 8.07 3.44 0 0 

a55 7.22 25.67 7.22 25.67 0 0 

a5-5 -0.86 24.39 -0.86 24.39 0 0 

a64 -6.29 12.32 -6.29 12.32 0 0 

a6-4 2.19 15.01 2.19 15.01 0 0 

a73 -1.79 6.4 -1.79 6.4 0 0 

a7-3 -2.64 7.22 -2.64 7.22 0 0 

a82 2.38 9.24 2.38 9.24 0 0 

a8-2 1.46 13.12 1.46 13.12 0 0 

a91 -1.27 6.31 -1.27 6.31 0 0 

a9-1 2.8 7.79 2.8 7.79 0 0 

a100 -4.49 3.69 -4.49 3.69 0 0 

 
Note: units are in nm 

 
 



 

 

154  
  

 
  Residual surface error (Not Stitched) 

  Data from intended Data from best fit Iintended from best fit 

Zernikes mean one sigma mean one sigma mean one sigma 

a00 0.8 1.66 0.57 1.65 -0.22 0.42 

a11 227.42 102.81 226.88 102.56 -0.54 1.02 

a-11 -146.52 95.88 -147.06 95.96 -0.54 1.02 

a20 -178.25 90.85 -147.28 109.54 30.97 59.95 

a22 12.2 59.31 12.2 59.31 0 0 

a2-2 -5.43 68.89 -5.43 68.89 0 0 

a31 25.39 210.78 25.39 210.79 0 0.09 

a3-1 -37.49 178.95 -37.49 178.96 0 0.09 

a40 -113.77 13.57 -113.84 13.65 -0.07 2.47 

a33 -15.97 43.67 -15.97 43.67 0 0 

a3-3 0.66 40.21 0.66 40.21 0 0 

a42 4.77 21.81 4.77 21.81 0 0 

a4-2 -0.78 19.61 -0.78 19.61 0 0 

a51 -19.36 50.66 -19.36 50.66 0 0 

a5-1 14.53 39.73 14.53 39.73 0 0 

a60 39.56 11.91 39.56 11.91 0 0.01 

a44 1.66 6.92 1.66 6.92 0 0 

a4-4 0.37 10.21 0.37 10.21 0 0 

a53 -1.96 20.56 -1.96 20.56 0 0 

a5-3 4.02 19.32 4.02 19.32 0 0 

a62 2.95 7.73 2.95 7.73 0 0 

a6-2 -5.2 5.4 -5.2 5.4 0 0 

a71 -9.82 7.19 -9.82 7.19 0 0 

a7-1 4.89 7.62 4.89 7.62 0 0 

a80 1.41 8.68 1.41 8.68 0 0 

a55 -6.35 29.21 -6.35 29.21 0 0 

a5-5 -4.3 26.63 -4.3 26.63 0 0 

a64 1.52 3.3 1.52 3.3 0 0 

a6-4 -1.12 3.49 -1.12 3.49 0 0 

a73 -0.78 10.91 -0.78 10.91 0 0 

a7-3 -3.78 11.57 -3.78 11.57 0 0 

a82 0.14 9.05 0.14 9.05 0 0 

a8-2 0.86 9.81 0.86 9.81 0 0 

a91 -7.42 7.85 -7.42 7.85 0 0 

a9-1 7.21 8.65 7.21 8.65 0 0 

a100 19.04 4.4 19.04 4.4 0 0 
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 APPENDIX I: ZERNIKES FROM RESIDUAL ERRORS BASED ON PSI 

  Residual surface error 
  Data from Intednded Data from Best fit Intended from best fit 

Zernikes mean stdev mean stdev mean stdev 
a00 36.64 7.97 22.13 11.97 -14.50 12.25 

a11 6.23 1.96 3.26 2.14 -2.97 2.20 

a-11 10.68 1.71 7.71 2.01 -2.97 2.20 

a20 -166.13 109.28 -118.91 106.91 48.81 60.33 

a22 -0.81 0.19 -0.81 0.19 0.00 0.00 

a2-2 -18.71 0.40 -18.71 0.40 0.00 0.01 

a31 3.36 1.03 3.34 1.54 -0.02 1.10 

a3-1 -16.12 0.49 -16.14 1.23 -0.02 1.10 

a40 -111.55 5.30 -111.13 30.42 0.42 30.42 

a33 -10.90 0.50 -10.90 0.50 0.00 0.00 

a3-3 -14.69 0.45 -14.69 0.45 0.00 0.00 

a42 -1.39 0.16 -1.39 0.16 0.00 0.00 

a4-2 0.18 0.20 0.18 0.20 0.00 0.00 

a51 5.64 0.47 5.64 0.48 -0.01 0.02 

a5-1 1.26 0.46 1.25 0.46 -0.01 0.02 

a60 0.50 2.89 0.62 2.89 0.13 0.39 

Note: units are in nm 

 


