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ABSTRACT
NEIL GARDNER. Precision geometric metrology of refractive mi@osles.
(Under the direction of DR. ANGELA DAVIES)

The accuracy of interferometric surface form measurementimited by
wavefront errors inherent in interference microscopes. In inbenietry, self-calibration
refers to separating the interferometer bias from the eomra test surface. Using a
medium grade spherical calibration artifact, the random ball(RBT) self-calibration
technique is useful for isolating systematic wavefront biasexhieve low-uncertainty
surface form measurements of the test surface. Thedratidaexperimental studies
revealed that the calibration result changes with artifact surfaceygamadi misalignment,
and the effect worsens when calibrating for micro-optics (kadiimm) measurements.
The curvature of the artifact leads to retrace errors, whiehaberrations caused by
altered ray paths after reflection from the test artifdccomprehensive optical ray-trace
software simulation was developed to model the RBT and explore alitration
dependence to various system parameters. Translational artifacgnmsait away from
null along the optical axis has a direct effect on the caldratesult, even when
simulating a perfect spherical artifact. Reducing theaattidlignment from %2 wave to
1/10 wave reduces the required number of measurements by one thirdRBTheas
tested on a custom interferometer built to test the geomepmiogkrties of refractive
micro-lenses. Derivation of a new equation to model the convergérhbe test to the
rms system wavefront bias was accomplished. Through modelingsimgtwe were
able to confirm the validity of the RBT, recommend an efficienethod of

implementation and understand the aspects impacting the calibration uncertainty.
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CHAPTER 1: INTRODUCTION

Electromagnetic radiation, or light, is defined as a self-propapatave in space
consisting of electric and magnetic field components. Wavelengtheisdistance
between repeating units of the oscillating wave pattern.ems Is a three-dimensional
device that forces light to converge or diverge, and is typicalipéd from a piece of
shaped glass. Miniaturization is currently a growing trend aeddémand on optical
component manufacturers to produce more powerful and smaller lanikesnore
precise tolerances has fueled the demand for precision non-contasurimga
instruments. For continued advancement in precision manufacturing teghnthe
ability to measure optical components must surpass the ability to fabricate them

Micro-optics is a term referring to a family of devices astisg of very small
lenses that enable the collection, distribution, and modification bf bg the micro-
scale. These tiny focusing elements, typically 5 um — 2 mdiameter with a radii of
curvature (ROC) of 0.25 — 2.5 mm, facilitate the imaging, focusingndhing, and
transmitting of light waves. Micro-lenses have emerged asngal components in
technology sectors such as optical communications, optical storagksafal systems,
and biomedical instruments [1]. Their ability to ‘steer’ and sHigiw depends on a few
key parameters such as material homogeneity, and surface foym éur research
focuses on metrology for form error, as this dominates micro{qemormance for

refractive components. Among the different types of micro-lensedace-relief



refractive lenses have excellent focusing characteristimcause of their

ideal spherical profiles.

Figure 1. Typical light wave having orthogonal electric and magnetitdmihponents [1].
The applications for micro-lenses are vast and ever-incgeasilicro-lens arrays
are used to increase the optical fill factor in CCD (charge-edugévice) sensors and
hence improve the sensitivity of the sensors. Sensitivity inelkfis the smallest change
that can be detected by a device [1]. These lens arrays faicusing and concentrating
light onto the photodiode surface, thus diverting and collecting lightibald otherwise
fall on the non-photosensitive regions of the device. CCDs are mishdital cameras,
optical scanners and video cameras as light-sensing deviceso-Ibhis arrays are also
widely used for fiber connectors and switches in optical netwgrkor micro-electro-
mechanical systems (MEMS) [2]. The use of micro-lenses is @opulbptical storage
technology as well, specifically where lens arrays fatdifparallel accessing of multiple
tracks in a system. The telecommunications industry, fompbe uses lens arrays to
couple optical signals with multi-fiber connectors. In optical mgnand laser disk
systems, a micro-lens is used to focus a laser beam down tpnadlameter spot,
permitting the reading of pulse signals to and from optical diskgro-lenses are used
in advanced fingerprint sensors for security applications like cgstdearance and

automobile anti-theft systems. They are currently being tseehhance cell phone



backlighting. Micro-lenses have become an important part bf lif@i and are in great

demand.

Fold
mirror

MEMS mirtar array

Figure 2. Three-dimensional MEMS optical switch uses a micro-leag far focusing and
collimating optical signals [3].

Refractive micro-lenses are usually fabricated by one of eauwf processes,
including electron beam lithography, ion exchange, electro-migrati@mmal reflow,
focused ion beam, chemical vapor deposition, diffusion polymerization, exdaser
irradiation, proton beam writing, and various other techniques origimahyduced for
fabricating optical fibers and dielectric waveguides [4]. Commmicro-lens materials
are sol gel glass, gallium phosphide, calcium fluoride, silicon and fsifed. The
optimization of micro-lens manufacturing to achieve sub-waveterigtm accuracy
specifications is a well-known objective of the fabrication industiyderstandably, the

measurement of micro-lens surface form errors with sub-mid¢esroacertainty creates a



unigue and challenging measurement task, especially when monitormgolerances
on the production floor. However, through detailed investigation, advancesrin-lemns

form metrology using interferometry can be realized.

1. Expose circles into a resist that is
coated on a substrate
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cylinders of resist

3. Heat the sample above T,. The resist
melts and surface tension forms spherical
micro lenses
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Figure 3. Processing steps for an array of lenses fabricated using protowtiiéag and a
thermal reflow technique [5].

Surface form error, also known as figure error, is defined aspaal frequency
dimensional error on a part. Form error can be measured both by contact and aon-cont
methods. Phase-shifting interferometry is a confirmed method elsting optical
components and systems, and is widely used for precision surfacg®lognet
applications. Phase, is the present position in the cycle of sowpetit changes
cyclically, like a wave. A wavefront is an imaginary planesuanface, of points in space
that are reached at the same instant by a wave propagatnogtita medium (i.e. points

with the same phase). In interferometry, two coherent wavefpoopagate one each to



a reference surface and the surface under test. Then inteefdyetween the reflected
test and reference wavefronts appears as a set of bright dnétidges and provides
information related to surface form errors.

The measurement quality depends on the quality of the interferoaredethe
reference optic [6]. The resolution and phase contrast arediritehe illumination
wavelength of the instrument. The rms (root-mean-square) isbugood single-value
description of the overall quality of a wavefront, as it staa#ificcharacterizes an entire
two-dimensional map. Interferometry is our chosen tool for mens-form metrology
because one can achieve sub-wavelength measurement accuragyge/suiface areas
without contacting the part [7]. Contact methods damage the clhjgate and are time
intensive. Our research focuses on using non-contact interferomsgtiology to

achieve low uncertainty measurements of micro-refractive lens stiofacerrors.

Figure 4. Microscopic image of surface-relief refractive micrsés [8].

Previously reserved for quality control in a laboratory environment, phaseghift
interferometry has become a necessary technology for moniteuiigce form on the
production floor [9]. Manufacturing tolerances for optical components aschell-
phone micro-lenses, require interferometric-level metrology inrenwients where low-
noise testing is not viable. The reproducibility, accuracy, apadsolution, vertical

resolution, speed, and flexibility of this technology have continuously owegr to



accommodate the increasing demands of the optical manufacturingtryndi@].
Presently, most interferometry is carried out using a lasethe light source. This is
primarily because of source brightness and the large temporakocke Light waves
are correlated, or coherent if they come from the same s@andehave a narrow
bandwidth. With a narrow bandwidth, the coherence length is long and the tw
interferometer path lengths do not need to be the same opticaépgth &s they would

if a short coherence length white light source was used.

Lens Sag ™
8 Radius of
. " Curvature
_____________________ .‘
Lens
Diameter
Substrate
¥ Thickneoss

Figure 5. Surface-relief refractive micro-lens with a sphesigeace profile.

It is often true in interferometric optical testing that theiréesmeasurement
uncertainty is of the same order or larger than the systeimascof the instrument in
guestion. Interferometric measurements are usually very sadpeattherefore
measurement results can be very misleading. When meastrsugla a demanding
level, often a high-quality calibration artifact is not availatdemeasure or assess the
system bias — often the part to be tested is as good er beh any calibration artifact
available. In this instance, one must use what are called abspksé#-calibration tests
[11]. In recent years, the demand for more accurate surfacelogy has increased [12,
13]; consequently much attention has been directed toward methodslitaating

interferometers.



Calibration is a mechanism for creating a controlled, tracqableess that meets
certification requirements and allows the measurement to be ipedowith well-defined
and guantitative uncertainty. Moreover, instrument calibration on theryaftoor in
general leads to lower uncertainties and increased systératign. In interferometry,
calibration is dominated by the need to assess the interferobiateradded to each
measurement. The bias dominates the measurement (as opposed to mars#o@r
factors contributing to repeatability) and must be removed fromsunements to
adequately lower measurement uncertainty.

A number of methods have been developed for absolute surface testindinig
the N-position, two-sphere, three-flat and random averaging tektsbakic principle is
that the reference wave error remains invariant when thespawtved. As a rule, these
tests require multiple parts and/or measurements at differatibpeg14]. For example,
the two-sphere method acquires two null confocal measurements withrd8M8ns
between them, as well as a null point focus (cat's eye) measntg¢ll]. The reference
and test wavefronts can then be uncovered analytically from thesBlelst The random
ball test (RBT) self-calibration technique uses a random averagiproach. It results in

a wavefront map of the interferometer bias when measuring spherical parts.
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Figure 6. Two-sphere test for absolute calibration [15].

The importance of surface metrology is often neglected and ifyusegarded as
a necessary evil if at all. In his bodlandbook of Surface and Nanometrolo@y J.
Whitehouse states: “Surface metrology cannot be regarded astamt to be added to
the general size measurement of a component. The smallnéssnaignitude does not
infer the smallness of its importance [16].” In keeping witls thieme, our hope is to
remove as much of the ambiguity related to micro-lens surfatelogy as possible.
The ultimate research objective is to confirm the validity ke RBT for micro-lens
metrology calibration, determine an efficient method for carrying the test, and
understand the aspects impacting calibration uncertainty.

The following sections describe the theory behind interferometryofical
metrology and the RBT, the implementation of the RBT on an in-houseo-mic
interferometer, and the development of a custom ray-trace sefsiaulation to model
the RBT. We will compare and contrast our results from simulation and evguetrin an

effort to reveal the functionality and limitations of this randaweraging technique.



Finally, we will summarize the indispensable knowledge gainedelyatimat calibration
artifact curvature and position misalignment greatly affeetinterferometer wavefront

bias, especially at the micro-optic level.
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Figure 7. Setup of a Twyman-Green interferometer. The deviation affteeted beam in the
test arm from a plane wave provides the information on the deviatamslie sphericity of the
micro-surface [17].



CHAPTER 2. SURFACE METROLOGY

2.1 Roughness, Waviness, and Form

Geometric metrology can be defined as the study of surface sfegmirements
which involves measuring quantities, calibrating instruments, and detegmthe
measurement uncertainty. Generally speaking, calibration snhleeact of quantifying
the accuracy of a measurement by comparison with a measurestemtard.
Measurement uncertainty quantitatively represents the confiderthe measured value
as an estimate of the true value. All physical measurenséotdd be reported as an
estimate of the true value of a measurand plus the uncertairdgicdsed with that
estimate.

The performance of a micro-lens is usually characterizedtdygaeometrical
properties such as ROC, surface texture, transmitted wavefrortamkdfocal length.
Surface texture is particularly interesting due to its wdee-nature and the varying
spatial frequency ranges that define it. Spatial frequenaydisaracteristic that means
the property is periodic across position in space. The three rhesners of surface
texture (or surface errors) are roughness, waviness anddodrihey are never found in
isolation [18]. In this context, error refers to the differebeéween the true surface
shape and the intended surface shape. Most surface errors areimatom of all three
spatial frequencies and it is common to assess them separB®elyghness consists of

the highest spatial frequencies and appears as process muhusgal by the fabrication
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process. The material structure can also play a role inadirghness characteristics.
Waviness is the special wavelength range beyond the roughnesgs rdvigviness is

typically produced by instabilities in the fabrication proceSserm, or form error, refers

to the coordinate-specific shape of a surface that differs fr@mmominal shape or flat
line. For refractive plano-convex micro-lenses (i.e. a lens wséutts a parallel beam
of light traveling along the lens axis and passing through thetdéeasspot on the axis),
form error implies deviations from the best-fit sphere for the surface.

In general, form error encompasses long wavelength, low spati@liency
deviations from the ideal surface shape. Form deviations from firedishape can be
the consequence of several factors, including excessive partrigaadtl over-clamping,
which introduce stress patterns in the component. Roughness and waanéisnit the

accuracy of a form measurement.

| | l
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Figure 8. Various spatial wavelengths for different surfaceifea [1].
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Figure 9. Relationship between surface roughness, waviness and form [19].

Refractive micro-lenses are continuous-relief spherical lefigeslenses whose
surfaces have curvature) with aperture diameters on theacidaum to small fractions
of a millimeter. Details of their dimensional shape strongifluence optical
performance. Often, a component may have a sub-micrometer farantcd, however
surface finish might not be critical. Tolerances on low-spéatejuency dimensional
surface form error for these lenses are considerably sniladlertheir largest dimension
and often approach tens of nanometers. For that reason, opticalometfoi optical
profiling) techniques are preferred to higher-uncertainty and-¢mnsuming contact
methods. Optical interference microscopes are commonly usedhigbrprecision
surface form analysis for micro-scale components [20]. Imterfetry establishes a
direct link to the definition of the metre, as the metre iseruly defined with respect to
laser radiation and is measured by metrologists to one partin 10

Even on the shop floor for measurements of micrometer-level fsature
interferometers are often the instrument of choice becauseiofitie accuracy and ease
of use. Their rapid full-aperture measurement capability, ahititycontour three-
dimensional surfaces, and non-contact measurement nature, are ofntgesst for

practical uses such as process control and quality assurantes [ Bofiling techniques,
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like coordinate measuring machines, are the chosen tool in some basessave
considerable drawbacks, including possible tip damage and part dap@geontacting
the part. Scanning microscopes can also be an effective chotdemitations include

lower acquisition speeds and a limited maximum image size.
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Figure 10. Various measurement tools for different spatial wavelefigths

Figure 11. Stylus profiling using a coordinate measuring machine.
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2.2 Optical Interference
Optical interferometry is based on the superposition principle foesva two
coinciding light waves with the same phase add constructively, whdewaves with
opposite phases will cancel each other out, assuming both have theasgiitede
[21,22]. Given two such waves,
(1) E =Egsin(at+a,) and E, =E,sin(at+a,) ,
where E, is the amplitudeg is the phase, and the waves have identical frequencies and
speed, the resultant wave is the linear addition of the waves, namely,
(2) E=E+E,.
Forming the sum and expanding using trigonometric identities, we obtain
(3) E=(E,cosa, +E,,cosa,)sinat +(E,y, sina; + E,, sina, )cosat .
Since the amplitude-related quantities are constant over time, we can let
(4) E,cosa=E,cosa, +E,cosa, and
(5) E,sina =E,sina, +Eg,sina, .
Recalling thatsin® a + cos’ a =1, we square the amplitude relations, take the sum, and
obtain the resultant wave’s amplitude
(6) EZ=EZ+EZ+2E,E,coda,-a,) .
To find the resultant phase, we simply divide the amplitude relations,

E,. sina, + Ey, sina,
E, cosa, + E,, cosa,

(7) tana =

and the resulting disturbance becomes

(8) E=E,sin(at+a).
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The resultant wave is harmonic and has the sangudrey as the individual waves,
while its phase and amplitude depend on detaiteetwo waves interfering. The phase
difference between the two interfering waves iskbg factor, as seen by the expression

2E,,E,, coda, —a,), which is known as the interference term.

A maximum amplitude is obtained when the waves iargphase, while a
minimum results when they are out of phase by 180suming the waves are initially

in-phase, and setting,, X, to be their respective distances from the soweecan also

define the phase differenc,as

© 5=(@-a)=Znlx -x) .

0

where A, is the wavelength amalis the refractive index in the medium. The expi@s

n(xl - x2) is referred to as the optical path difference (QRID wavefront error, of the

interfering optical waves. This information is cial to the success of an interferometric
test. Comparing reference and test wavefrontsigesvan interferogram (contour map)
of the phase differences between the two wavefroatsl enables high resolution
measurements of the structure of the test surfackens, assuming good temporal
coherence. Recall that light is emitted in undatesl wave-trains with random phase
jumps between, and the average length of a waweiz&nown as the coherence length
of the source. If the optical path difference begw two light beams is larger than this
length, then an interference pattern cannot berebdeor recorded. Hence, the optical
path difference between the beams must be lesdlirazoherence length of the source in
order to observe interference. For helium-neoeriaghe coherence length is typically 1

metre [1]. In optical testing with interferometsystem aberrations and reference surface
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errors contribute to the OPD map and are a biashen measurement [21]. The
significance of the bias must be assessed. Icgpaberrations are defects of a lens
system that cause its image to deviate from thesrof paraxial imagery. Electronic
phase-measurement techniques can be used in rotedeers, such as the Twyman-
Green, where the phase distribution across thefentggram is measured. Phase-shifting
interferometry makes use of these measurementse sinprovides for rapid precise

assessments of the phase distribution.

(@ S

Figure 12. (a) Two waves in phase (bottom left) combine and interfereusiinvaly to form a
larger resultant wave (top left); (b) two waves out of phaseqgfinatight) interfere destructively
and cancel out (top right) [23].

2.3 Twyman-Green Interferometry

Phase-shifting Twyman-Green interferometry is tihefgred configuration for
measuring refractive micro-optics [9]. The Twym@reen is similar to the Michelson
interferometer, except that it is illuminated wahpoint source instead of an extended
source. Laser light from a point source is inctidem a 50/50 beam splitter, and part of
the wave is reflected while part is transmittedbttBwaves have smaller amplitudes than
the original wave, therefore it can be said tha Tiwyman-Green is an amplitude-
splitting interferometer configuration. Interfecenbetween the waves reflected from the
test surface and the reference mirror are deteatedhe detector array. In an

interferometer which uses a reference surfacemiasured surface heights correspond to
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the difference between the test and referencesfat the very least. Error sources for
phase-shifting measurements include phase-step, enechanical vibration, thermal
drift, and air turbulence. All of these sources t& identified and minimized in most
cases. In their papéfibration Insensitive InterferometryMillerd et al. assert that the
largest limitation of phase-shifting interferomefor optical testing is the sensitivity to
the environment, both vibration and air turbuleri@d]. They explain that an
interferometer using temporal phase-shifting isyveensitive to vibration because the
various phase shifted frames of interferometricadate taken at different times and
vibration causes the phase shifts between the fdatzes to be different from what is
desired. Vibration effects can be decreased bgrdany all of the phase shifted frames
simultaneously, while turbulence effects can beuced by averaging many
measurements. For the most precise and accusatistenstruments must be placed in a

temperature-controlled space.
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Figure 13. Twyman-Green Interferometer used to test a sphericf2®jart
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Phase-measurement is achieved by varying the mfdke reference wave in the
interferometer in a known manner [25]. Typicatlyis is done by mounting the reference
mirror on a piezo-electric transducer (PZT). Umddde properties of the PZT, such as
hysteresis and nonlinear motion, must be removéardieand via calibration in optical
software [26]. By changing the voltage in the sdurcer, the reference mirror is moved
in small steps by a known amount to alter the plaisthe reference wave a known
amount. A detector array (CCD) detects the intgrdistribution across the interference
pattern. The intensity pattern is fed into a cotapsoftware program three or more
times (depending on the specified algorithm), aativeen each intensity measurement,
the phase of the reference beam is stepped a kaavaunt. The wavefront phase is
encoded in the variations in the intensity pattefrihe recorded interferograms, and a
point-by-point calculation recovers this phase.

Finally, the optical path difference map is obtdingy unwrapping the phase
profile to remove phase discontinuities and corngrphase to height by multiplication
of the wavelength divided byr2 Phase unwrapping resolves tlreghase ambiguity. In
an interferometer that uses a reference surfaeepptical path difference between the
test and reference wavefronts nominally correspandse measured test surface height.
Phase-shifting techniques are especially advantegkeecause good results are obtained
even with low contrast fringes [26]. It is impartdo note, however, that the wavelength

of the laser source affects the phase contrasspaiial resolution of the instrument.
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Figure 14. Phase-shifting waves; by stepping the path length by a number of knovenitakase
possible to recover the phase of the interference signal [27].

Most Twyman-Green interferometers utilize polargzioptics to allow for easy
access to an amplitude balance between test aptemek waves, and to reduce the
contribution of false reflections [17]. Virtualgil optical imaging systems suffer from
stray light or unwanted light, i.e. light from aidirt source shining into the front of the
system and reaching the image as unwanted light [28tray light can never be
completely eliminated, and is manifested in two svaghost images (due to refractive
optics and windows) and scattered light (from flee surfaces). Stray light is
sometimes referred to as optical noise. Typicatyanti-reflection coating is applied to
each lens surface to reduce the ghosting probl8oattered light can be minimized by
eliminating straight shots in the optical systenthvapertures. Using a rotating piece of
ground glass can also be effective in averaginguoutanted contributions by reducing
the spatial coherence of the laser beam.

Aside from stray light, there are other problemsthwusing this optical
measurement method. When performing a measureragntjuch as possible of the
interferometer's pupil should be used in order &ximize the number of data points. An

optical zoom system is key to providing pupil matgh and the resolution of the optical
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measurement system is dependent upon the numepedlure (NA — cone of light) of

the objective lens, as seen in Figure 15. Magatiie is another important criterion.

The magnification determines the relative lateiaé f the surface under test in the
image plane (at the detector). However, the higiher magnifying power of the

objective, the more the depth of focus is limitaxd it becomes difficult in many cases to
clearly image all parts of a three-dimensional ohjeuch as a micro-lens surface [29].
The accuracy of a form measurement of a steepcauvidll be affected if the depth of

focus is not sufficient.

A Twyman-Green interferometer set in confocal mode useful for the
measurement of the surface deviations of a miare-feom an ideal spherical shape, as
well as for the measurement of the radius of cuneadf the surface. The null confocal
mode is set by positioning the micro-lens where itteeddent spherical wavefront rays
reflect from the test surface back onto themselwe®axial fashion. In other words, the
spherical test wavefront nests into the surfacethef part at confocal, picking up
deviations on the part, and is reflected back th®interferometer. At this position, the
center of curvature of the test part is coincideitih the focus of the objective lens being
used. In geometrical optics, an idealized narr@anb of light, or ray, is an abstract
object that is perpendicular to the wavefront. fRaye used to model light propagation
through an optical system by dividing the real figeld into distinct rays that can be

computationally propagated through the system teglanique known as ray-tracing.
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Figure 15. The dependence of system resolution on the aperture olgtsiyE9].

Some important limitations of phase-shifting iniogk testing appear as random
noise in the measurement, including the impact mfirenmental disturbances like
vibration and air turbulence. Phase-shifted iet@grams are taken at different times
and vibration causes the phase shifts betweenatzefihmes to be inaccurate. Vibration
effects can be counter-balanced by taking all thasp shifted frames simultaneously,
while turbulence effects can be removed, to somgrede by averaging several
measurements [24]. Another drawback is the tectasginability to measure optically
rough surfaces. Surface roughness leads to dapoulr and sharp spikes where local
high surface slopes scatter light away from theatet. To decrease the effect of surface
roughness, longer wavelengths should be used althgppropriate detectors. Another
technique is image the interferogram onto a ragagiround glass to blur the interference
fringes and filter out the higher harmonics or Bois
2.4 Sdf-Calibration

Using interferometry as a form error characteraatiool also introduces biases

(or noise) to the measurement. Random noise exparimental uncertainty that can be
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revealed by repeating a measurement and can beeckdy averaging [30]. Systematic
biases, unlike random noise, are repeatable eamdscannot be revealed in this way.
Repeatable errors lead to measured values thaysiematically too high or too low and
can be intrinsic to the instrument or introducechbynan influence [31]. In many optical
testing applications, the systematic instrumensdsaare comparable to or larger than the
form errors on the lens under test, therefore aroigs calibration method is necessary
[11]. Current practice typically involves measigria high quality part, such asA&0
artifact, and measured errors are equated to gteiment bias. An alternative is to use a
multi-orientation self-calibration method, suchths random ball test (RBT) [13, 32].
Self-calibration is commonly used in optical tegtiand in general refers to the use of an
imperfectly calibrated measuring instrument and omnemore imperfectly calibrated
artifacts to improve the calibration of the instemhand the artifacts [33].

The random ball test is based on averaging and#gphe spherical symmetries
of a sphere. Averaging techniques are often usedduce random noise, and variations
of this method have been used for self-calibratioRor example, measurements of
random patches of a large optical flat can be @estdogether to estimate systematic
biases in flatness measurements, and a similanitget using subaperture patches on a
ball has been used to calibrate interferometerstréssion spheres and Twyman-Green
interferometers used for micro-refractive lens measents [34]. These methods treat
the errors in the calibration artifact as statatcindependent noise that is reduced by
averaging. The result is a calibration of the eystvith an uncertainty that decreases by

the inverse square root of the number of randontipos sampled.
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Figure 16. Systematic and random errors.

The random ball test (RBT) is an averaging techaigpplied to a series of sphere
surface patches for the purpose of determinindiae that the interferometer itself adds
to a given micro-lens form error measurement. Quetermined, the bias can then be
subtracted from future measurements to reduce measat uncertainty. This technique
is based on the observation that the errors onharspare zero on average. This is
supported by the fact that the shape of a spherdealescribed by a linear combination
of spherical harmonics, and that the integral ahespherical harmonic over the sphere is
zero (aside from the first terms which represembastant and the base radius of the
sphere) [11, 32]. When the measurements of randaelected surface patches are
averaged, the sphere form error contribution apprately drops out and the average

converges to the bias introduced by the interfetem@4]. The sphere contribution to
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the average identically goes to zero only in thaitliof an infinite number of
measurements, thus a finite number of measurenienits the uncertainty of the
calibration. In previous work, we demonstrated #pplication of the RBT to the
calibration of a scanning white light interferontedémd a Twyman-Green interferometer
using a 1 mm diameter steel sphere [34]. The teshbwed biases on the order of a few
hundred nanometers peak-to-valley for both instnisie

To improve our understanding of the RBT, considathgring a collection of
measurements of the surface profile of a spheregravithe sphere is randomly
repositioned between measurements. We can wiate ma@asurement (indicated by the
subscript) as,

(10) W =W, +W,

i instrument

where the measurement is a simple sum of the forarseon a given patch of a micro-
sphere and the errors introduced by the instruntesif (the instrument bias). When the
measurements are averaged, the sphere surfacecemoibution approximately drops

out and the average converges to the errors inteatlhy the instrument as follows,

0

(11) ZVVi - all + ZVvinstrument )

SW,
N /N N

Therefore, using a random ball averaging technigonables the determination of a

system bias in the instrument, namely,

SW
(12) W :

—_ i
instrument N '

This result can then be subtracted from future onessents to achieve a better estimate

of surface form errors,
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W

(13) Wsurface = Wmeasuremetn_vvinstrument = Wmeasuremem_ N

As previously mentioned, the random ball test isellaon the fact that the errors

on a ball can be described by spherical harmomsidslws,

2101 o oepyeme
A (I +m) ’

(14) AG.9=>a™"@.9=>a"

where P™(cosf) are the Legendre polynomials and the coefficienfs, represent the
magnitude of each term. WheX(é, ¢) is integrated over all values é6fand ¢, only the

aJ (constant) coefficient survives and this refletbis radius of the ball. This shows that

the departures from a best-fit sphere on a ballzare on average. Interferometric
measurements of regions on the ball surface refbeattly this, departures from a best-fit
sphere. In practice, the conditions just descriaesl never perfectly realized though.
Because an interferometer measures data over ar{@rpatch), the measurement areas
will tend to overlap as the number of measuremgrdw/s over the surface of the sphere,
which could lead to correlations in the samplirgis also untrue that the measured area
represents the form error with respect to the besphere for the whole ball surface.
Actually, it only represents the departure from tbeal best-fit sphere. Even so,
simulation suggests that this is valid in the pneseof the shortcomings encountered in
an experimental setting.
2.5 Aberration Theory

A perfectly corrected optical system images a pwirthe object plane as a point
in the image plane and transforms an incident $pdlewavefront into an emerging

spherical wavefront. We call this a first-ordergaal, or small-angle, approximation



26

which is never exactly attainable. Rays that makenall angle with the optical axis and
travel close to the axis are called paraxial raysripheral rays interact with the edges of
the components in an optical system. We can agdhat deviations from the paraxial
analysis provide a convenient measure of the qualit an optical device. Such
departures from the ideal conditions are knownlasrations, and are embodied in five
primary aberration terms, namely, spherical abematcoma, astigmatism, field

curvature and distortion.

Reference
spherical wavefront

Reference
plane wavefront

Aberrated

wavefront
7

=

Wave aberration

Figure 17. Wave aberrations result from defects in the components of cal spstem.

Wavefront (or wave) aberrations are third-orderiaons in optical path length
between the actual and ideal wavefronts causethpgrifections in the components of an
optical system (i.e. beam-splitter, objective legts,..). In the context of interferometry,
aberrations can appear as a direct instrumenibif® measurement. System aberration
leads to blurring of the image in a conventionahgimg system, and instrument-makers
must correct optical systems to compensate forrafben. Seidel polynomials are used

to mathematically describe the primary aberratiohgher-order terms also exist, and
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are frequently described by Zernike polynomialsjciwvhunlike Seidels, are orthogonal
polynomials, meaning the contribution of each potymal to the linear combination
description of the wavefront is unique. In inteci@etry, a microscope objective lens
transforms a test beam into a well-defined spheweaefront which is useful for testing

spherical surfaces and lenses.

o @2

Figure 18. First ten Zernike polynomials [15].
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There are two dominant naming and ordering coneestfor the set of Zernike
polynomials in optical testing. We follow and peat here the University of Arizona’s
description in the form of a table of thirty-sixteas. The orthogonality of the Zernike
polynomials leads to several useful properties whew are used to describe a wavefront

within a circular pupil. Orthogonality also simidis the task of fitting polynomials to
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the measured data points. When aberration polysermare used to represent a
wavefront, the purpose of the fit is to find thdypmmial coefficients that best represent
the measured data. A minor inconvenience with ehpslynomials, is that non-

rotationally symmetric aberrations, like coma arnstigmatism, are split into two

components.
z0 =1; Piston or Bias
zl = p Cos[@8]; Tilt x
z2 = p Sin[e]; Tilty
z3 =-1 +2p2; Power
z4 = p? Cos [2e]; Astigx
z5 = _02 sin[2 @8] ; Astigy
zb=p (-2 +3_02)Cc:s[9]; Coma x
2zl =p (-2 +3p2)Sin[9]; Comay
z8=1-46 92 +6 ;:.r‘1 H Primary Spherical
z9 = p° Cos [3e]; Trefoill x
z10 = pa Sinf[3 8] ; Trefoil y
z11 = p? (-3 + 4 p%) Cos[28]; Secondary Astigmatism x
z12 = _02 (-3+4 ;}2) sin[2 8] ; Secondary Astigmatismy
z13 =p (3-12p° +10 p*) cos[0]; Secondary Coma x
z14 =p (3-12p° +10 p*) sinfe]; Secondary Coma y
z15 = -1 +12 g% - 30 p* + 20 p%; secondary Spherical
zl6 = _<}'L Cos[48]; Tetrafoil x
z17 = pt Sinf[4 e]; Tetrafoil y
z18 = pa (-4+5 92) Co=[30]; Secondary Trefoil x
z19 = p° (-4+5 92) sin[3 8] ; Secondary Trefoily
z20 = p° (6-20p° + 15 p*) cos[2 0] ; Tertiary Astigmatism x
z21 = p? (6-20p° + 15 p%) sin[2 0] ; Tertiary Astigmatismy
222 =p (-4 + 30 pZ-60pt+35 pG) Co=[0]; Tertiary Coma x
z23 =p (-4 +30 % - 60 p* + 35 0%) sin[e]; Tertiary Comay
z24 =1 -20p% + 90 p* - 140 p% + 70 p%; Tertiary Spherical
z25h = ,05 Cos[be]:; Pentafoil x
226 = p° Sin[5 8] ; Pentafoil y
z27 = ;:.r'1 (-5 +6 pz) Cos[40]; Secondary Tetrafoil x
z28 = p! (-5+ 6 pz) Sinf[d4 8] ; Secondary Tetrafoily
z29 = % (10-30p% + 21 p*) Cos[3 0] ; Tertiary Trefoil x
z30 = p° (10-30p% + 21 p%) sin[3 8] ; Tertiary Trefoil y
231 = p? (-10+ 60 p° - 105 p* + 56 %) Cos[2 8] ; Quatenary Astigmatism x
z32 = p° (-10+ 60 p? -105p* + 56 pG) sinf[2 8] ; Quatenary Astigmatismy
z33 =p (5 - 60 p° + 210 p* - 280 p° + 126 p%) cos[0]; Quatenary Coma x
z34 =p (5 - 60 p° + 210 p* - 280 p® + 126 %) sin[e]; Quatenary Comay
235 = -1 + 30 p? - 210 p* + 560 p° - 630 p° + 252 p17; Quaternary Spherical

Table 1. U of A description of Zernike aberrations [35].
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Poorly-corrected objective lenses often exhibitesmal aberration which causes
light passing through the periphery of the lendotmus at a different location than light
passing through near the lens center. Consequentipherically-aberrated lens has no
well-defined focus. Spherical aberration is alwgyssent for lenses with spherical
surfaces. The use of symmetric doublets or asphenises greatly reduces spherical

aberration.

Figure 19. Spherical aberration; a perfect lens (top) focuses ragéngle point, but a real lens
(bottom) focuses to different points depending on the radial position of eachifmgcray [36].

Astigmatism is said to be present when an optigatesn has different foci for
rays that propagate in two perpendicular planeghtlrays lying in the tangential and
sagittal planes refract differently, which resultsthe different focal lengths for each

plane. Astigmatism depends very strongly on tH&ob angle of the light beam.
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sagittal image
tangential Image (focal line)
(focal line] -

principal ray
tangential plane
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'optiml system paraxial
focal plane

object point

Figure 20. Rays existing in meridian and sagittal sections afteg befracted by the optical
system do not gather in one point due to astigmatism [37].

Coma is a result of refraction differences by lighys passing through the various
lens zones as the incident light angle increa3éss aberration is encountered with off-
axis light and is most severe when the opticalesyss out-of-alignment. In other words,
coma is a variation in magnification over the emtea pupil and it makes off-axis point

sources appear distorted.

Figure 21. Coma aberration [38].
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Field curvature is an aberration in which the fochanges from the center to the
edge of the field of view. This aberration causékat object to be imaged onto a curved

surface rather than a plane.

L]
~l
L _;;.. {:{_‘l‘-‘.,p

Figure 22. Field curvature [39].

When an image differs geometrically from its objedistortion is said to be
present. There are two types of distortion, pesitind negative, and both are caused by
variations in the magnification of the optical &yst A common cause of distortion is
the use of a stop, or aperture, to reduce spheimtation or astigmatism. As distortion
increases, the image appears in focus over theediatid, but the image size differs at the

center compared to the periphery of the field efai

Dbject Barrel shaped Cushich shaped

Distorted mage
Figure 23. Distortion aberration [40].
As previously mentioned, aberrated wavefronts cae bepresented

mathematically using the set of Zernike polynomialhe Zernike representation of the
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wavefront is then a set of best-fit coefficientattreach embody the fundamental

aberrations [40]. Even and odd Zernike terms exi$te odd polynomials are defined as

(15)  Z7(p.9)=R(p)codmg) ,

and the even Zernike polynomials as
(16)  Z;"(p.9) =R (p)sin(mg) .

Them andn are nonnegative integens £ m), gis the azimuthal angle in radians, anid
the normalized radial distance. The radial polyiasn R have no azimuthal

dependence, and are defined as

I ~1)“(n-k) il
17) R(o)= ; k!((n+m)§21—)k()!((n—)m)/2—k)!p

if n-m is even, and,

(18) RT(p)=0

if n —mis odd. A pre-defined set of thirty-sev&ernikes is commonly used to describe

typical wavefront aberration.

"Piston", equal to the mean (or constant) value of
the wavefront

"X-Tilt", the deviation of the overall beam in the
sagittal direction

"Y-Tilt", the deviation of the overall beam in the
tangential direction

"Defocus”, a parabolic wavefront resulting from
being out of focus

{1y

a; X pcos(f)

a; X psin(f)

as x (2p° — 1)
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"X-Astigmatism", a horizontally oriented
cylindrical shape
"Y-Astigmatism", a vertically oriented cylindrical

ay x p’cos(26)

as x p°sin(26)

shape
2 "X-Coma", comatic image flaring in the horizontal
ag X (3p" —2)pcos(t) | girection ’ ’
2 : "Y-Coma", comatic image flaring in the vertical
ar X (3p" —2)psin(¥) direction ) )

(g X {ﬁpJ‘ — Gpg + 1) | "Third order spherical aberration”

Table 2. The first nine Zernike polynomials. The normalized pupil radpsngh 0<p < 1,60 is
the azimuthal angle around the pupil, witk 8 < 277 and fitting coefficients, throughag are
the wavefront errors in units of wavelengths [40].

Defocus, or wavefront curvature, is representethen Zernike description with
the polynomial 2% — 1 and the coefficient for defocus is labeled @he parameter;das
units of length but is commonly reported in wavdsaoh is a dimensionless number that
is the number of wavelengths of light. Defocusresponds to the parabola-shaped
optical path difference between two spherical wanrgb that are tangent at their vertices
and have different radii of curvature. Defocusergfto a translation along the optical
axis away from the plane or surface of best focudefocus typically reduces the
sharpness and contrast of an image, and sharpchighast edges become gradual

transitions. Almost all optical devices utilizens® form of focus adjustment to minimize

defocus and maximize image quality. Defocus ie asmmonly referred to as power.

Figure 24. Defocus (power) aberration.



CHAPTER 3: CUSTOM INTERFEROMETER

3.1 Micro-Optic Reflection and Transmission Interferometer (MORTI)

We have developed a flexible and compact micreriatometer that can be used
to measure micro-lens form and transmitted wavéfremors, as well as radius of
curvature and back focal length. MORTI is cond&dcon a Mitutoyo® microscope
body and operates with a 633 nm helium-neon lalser input as the light source.

For form measurements, MORTI is designed to workeffection in a Twyman-
Green configuration. The input arm contains aim@ting element and a pair of lenses
arranged in an afocal configuration to expand e diameter. One of a series of high
guality Mitutoyo microscope objectives (0.28 < NA)<9) is used as a diverging element
in the test arm of the interferometer. The refeeebeam is reflected from a mirror
mounted on a piezo-electric transducer (PZT) foageghshifting. Interference of the
recombined beams is analyzed on a CCD camerasyistem of 4f relay lenses.

The instrument has the capability to measure memses with radii of curvature
between 15Qm and 3 mm. Surface data is acquired and analyged Intellivave"
data acquisition software made Bygineering Synthesis Design, In€igure 27 shows
all the components of the interferometer instatbedthe microscope body. MORTI is
unigue from other commercial interferometers fdew reasons, including the fact that it
can measure multiple properties of refractive aifffadtive lenses. Furthermore, the

optical setup is fiber-based and makes use of aer-tasfiber coupler,
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whose internal surfaces are angle polished andedot minimize back reflections.
Also, it is well-known that association of the maasl wavefront with the surface errors
of the part requires that the phase of the wavefabrihe detector (CCD array) be the
same as the phase profile at the test surface. uhigue focusing ability of the
instrument can account for this issue, by varying dlistance between the two afocal
systems that make up the 4f imaging leg, via admgifold-mirror-assembly (FFMA).
In addition, diffraction effects stemming from ddedpass configurations may be
remedied by imaging the optical pupil onto the CCDhe term diffraction, implies
diverse phenomena related to wave propagation, agcthe bending, spreading and
interference of waves emerging from an aperturdfration can also be thought of as
the breaking up of light as it passes around aeablyr through a hole.

While diffraction is always said to be present, itspact is typically only
observable for waves where the wavelength is onotder of the feature size of the
diffracting objects or apertures. Due to diffractieffects, a lens cannot take a point
object and image it as a perfect point image, Imly as a pattern of concentric rings.
Consequently, there is a diffraction limit on thenitmum separation of two adjacent
points that even a perfect optical system can vesaind there is little need for designing
or testing an optical system to better than tmsitli Rayleigh has shown that for a
wavefront to be diffraction-limited, it must not\date from a true sphere by more than a

quarter of a wavelength [1].
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Figure 26. Actual imaging leg of MORTI.
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Figure 27. Micro-interferometer in Twyman-Green configuration faracterization of micro-
lens form errors.

Choosing the proper microscope objective for ouerferometer can have a
beneficial effect on the measurement result. Thenerical aperture (NA) is a
dimensionless measure of the diameter of a lendumpecompared with its focal length
and is one of the main factors that affect the ggarnce of a microscope objective.
Numerical aperture is an important quantity becatuseveals the resolving power of a
lens. The larger the cone of light that can beught into the lens, the higher its
numerical aperture. As previously mentioned, tiggdr the NA of a lens, the better the

resolution of a specimen will be. The size ofsheallest resolvable detail is proportional
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to A/NA, wherel is the wavelength of the light. A lens with agar NA can detect finer

details than a lens with a smaller NA. Also, lensgth larger NAs collect more light

and typically yield brighter images. The equationcalculating NA is the following:
(19) NA=nsing ,

wheren is the index of refraction, and the andlgor 1) is half the angular aperturé,

In selecting the best objective lens to measurévengpart using MORTI, two
criteria needed to be met. First, the radius ofature (ROC) of a convex test surface
must be smaller than the working distance of theailve. Second, the ROC of the test
surface divided by the clear aperture should batgréghan the f/# of the objective. The
fi# of a lens is the ratio of its focal length toetaperture diameter. For very low
numerical aperture lenses, the f/# is equal tartherse of twice the NA. Low f/# lenses
are quite sensitive to defocus and have very stepths of focus, while high f/# lenses
are very tolerant of defocus, and thus have laggpths of focus.

Given the vertical translation range of our micayse stage and the size of the
parts we wanted to measure, we selected a MitutdyioRlan Apo objective with a NA
of 0.42 based on all of the factors outlined aboVée objective has a magnification of
20X, a resolving power (or angular resolution) of m, a depth of focus equal to 1.6
pm and a 20 mm working distance. Microscope objestiare usually designed with a
short working distance, which is the distance fitvn front lens element of the objective
to the closest surface of the coverslip when thexigpen is in sharp focus. In general,
the objective working distance decreases as thenifiegion and numerical aperture

both increase.
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Figure 28. Resolving power of objective lenses.
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Figure 29. ZEMAX simulation of interferometer test arm showing howabmis of curvature
(ROC) of a convex test surface must be smaller than the back flogti & the objective.

Most interferometer configurations are orientedhwtite optical axis horizontal

and mounted on a vibration isolation optical tabRIORTI however, was built on a
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microscope frame with the interferometer’s test amented vertically. This unique
setup allows for ergonomic, repeatable and fash@és of test pieces via mechanical
cage assemblies and tubes (rigid construction), us®&s$ less space than a horizontal
interferometer setup. Also, it allows for quickaclges between a reflection Twyman-
Green setup, and a Mach-Zehnder transmission s&iuptransmitted wavefront
measurements. MORTI also takes advantage of astralmstical translation stage for
positioning the test part along the optical axig] a Sony® BS-77 optical displacement
gage (or laser scale) to monitor the vertical mowd the stage. Fixtures were kept as
rigid as possible to minimize vibration.
3.2 MORTI Alignment

We have found that a well-calibrated Twyman-Greemase-shifting
interferometer is useful in measuring the form ewbrefractive micro-lenses (ROC >
400pum) with 10’'s nm uncertainty. Following optiaignment of all components, the
instrument is calibrated using a random averagaeriique called the random ball test
(RBT). But first, setup of the Twyman-Green ingedmeter on the microscope body on
a vibration isolation table must be done carefwliyh high attention to detail. This
includes positioning all lenses and mirrored congmas on the main breadboard (BB1),
angular alignment of the laser beams, and the rakegn of the optical axis to the vertical
motion axis of the stage. Some of the alignmeepsstare not intuitive and require

practice and repetition for proper implementation.
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Figure 30. MORTI configuration for alignment procedure.

The main breadboard (BB1) holds the microscopé&isdular head, as well as the
laser input, test, reference and imaging armsefriterferometer. A turret with multiple
objective lens slots is mounted below BB1l. The @anstage sits below BB1 and
includes a large custom tip/tilt mount below thenstard microscope translation stage,
allowing for small angle and position adjustment3hese degrees of freedom are
important when measuring components and are alioatrfor the initial alignment

process to align the optical axis to the vertication axis of the stage.
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Figure 31. Optical flat assembly on microscope stage.

For the first stage of the alignment, a part knaasnthe optical flat assembly
(OFA) is positioned on the stage. The OFA consistn optical flat mounted in a vise-
like apparatus with kinematic positioners to alléov repeatable and fine rotational
adjustments. A mechanical beam-splitter sits fluslthe surface of the flat, secured with
glue. Also, a small piece of paper with a crogstieawn on it, is affixed to the flat. Just
below the stage, the Sony laser scale is mount®ice calibrated, the laser scale
(resolution = 0.Jum) offers highly repeatable measurements of thgestissplacement in

Z.
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Figure 32. Sony laser scale for accurate positioning.

Aside from the Twyman-Green components, a secondatyument, a Hewlett-
Packard® 5528 heterodyne (two frequencies) displaoé-measuring interferometer
(DMI) is setup on a secondary breadboard (BB2) tmpad that sits on a rubber-footed
table. This instrument is required for completadrthe initial alignment steps. A second
breadboard (BB2) contains the DMI laser head, aaging interferometer consisting of a
flat reference mirror and a CCD, as well as a D fold mirror to redirect the beam
down to BB1 and the test arm. Also, a DMI inteofeeter is attached to a slot in the
turret of BB1. The DMI interferometer consistsagpolarizing beam-splitter (PBS) and a
flat reference mirror so that the DMI beam retuttghe laserhead on the same path,
while the laserhead detection option is set orstteeghtness setting.

As seen in Figure 33, the output beam from the tteguency DMI laser source

contains two polarizations with frequencies F1 &2d and the beat frequency between
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them is (F2 — F1). The polarizing beam-splittdlects the light with frequency F1 into

the reference path, and light with F2 passes thrdbg splitter into the measurement
path where it strikes the moving optical flat cagsthe frequency of the reflected beam
to be phase-delayed and Doppler shifted WF+ The reflected beam is then combined
with the F1 light at the interferometer, and retgno the laser detector unit with a new
beat frequency of (F2 — F1) &. Finally, high-resolution position sensing isdea

possible using a comparator device, which allows stable measurements of signal
phase. Deadpath error associated with environmeonaitions over large distances can

often be corrected and removed.

Frequency of retumed
ream from moving
Hee: ) reflector is Doppler shifted
Frequency by + §F
‘F2 D Fﬂ,‘ EE
brfg‘;g? ry Note: Stationary Maving
F,=F, interferometer reflector
—

Figure 33. Typical heterodyne interferometer setup [41].

The overall alignment can be performed once theNM&RTI components are in
their approximate locations. The major alignmetgps include the following: (1)
mechanical alignment of the optical test flat te ¥y, z motions of the stage, (2) optical
alignment of the imaging interferometer, (3) optiabgnment of the DMI test beam to
the z-motion of the stage (4) optical alignmentha DMI interferometer, (5) calibration

of the displacement laser scale to the z motiothefstage, and (6) optical alignment of
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the Twyman-Green interferometer setup. Co-linéignment of the DMI test beam with
the z-motion axis of the stage is crucial for rdouc of abbé offset and cosine
displacement errors.

Beginning with mechanical alignment to the stagdiomo we assume that the
vertical faces of the mechanical beam-splitterpengendicular to the optical flat surface.
First, we fix a mechanical indicator (fn resolution) to the vibration isolation table, and
indicate with a mechanical indicator off of the yxpeam-splitter sides as the stage is
translated along its x and y axes. We align the wertical faces of the beam-splitter to
the x, y motions of the stage by translating inxthg directions while we execute small
rotations of the optical flat in its assembly urthile indicator reading stays constant.
Next, we align the x, y vertical sides of the besplitter to the z motion as the stage is
moved up and down. To do this, we tip and tilt ét&ge until the indicator reading is
constant during z translation.

Once the beam-splitter on the OFA is parallel ® riotion axis, the optical flat
of the OFA is approximately perpendicular to thetiomaxis. The goal of the next step
is to align the DMI beam to be perpendicular to @fA. This is accomplished by first
aligning a temporary ‘imaging interferometer’ teetl®@FA. The first step is to add a
retro-reflector (or corner cube) to the OFA (adstlee imaging interferometer test arm)
to reflect the DMI beam back along its initial patiipping and tilting the imaging
interferometer’s reference mirror to null the imeeence fringes from the two DMI
beams, as seen by the CCD in the imaging interferern aligns the imaging
interferometer reference mirror perpendicular te DMI beam. This establishes a

reference for the DMI beam’s direction out of thedr head.
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The next step is to effectively tip/tit the DMI darhead and imaging
interferometer by tip/tilting the DMI fold mirrorsée Figure 34) to align the DMI beam
perpendicular to the OFA and therefore paralleheomotion axis of the stage. The first
step is to remove the retro-reflector so that th&l Beam now reflects off of the optical
test flat on the OFA, and swinging in the DMI irfegometer in line with the beam
(below BB1) so and wedge in the DMI beam splitteloly BB1 is taken into account.
We then tip/tiit the DMI fold mirror to null the ifiges between the imaging
interferometer reference beam (aligned to the lheest) and the DMI beam reflecting
from the OFA. Once the fringes are null, the DMbIn is effectively now parallel to the
motion axis of the stage. Next we swing in the 2fective lens into the beam in place

of the DMI interferometer, and we use the locatdrithe focus point to define our x, y

origin (0, 0) for the system.

DMI Fold
~ Mirror

ek RSN &

Figure 34. BB2 equipped with DMI laser source, optics and fold mirror.
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Figure 35. BB2 and tripod; directs beam to MORTI.

We are then ready for the next major step whictoiglefine and calibrate the
Sony laser scale by calibrating it against the DMhis requires first aligning the DMI
interferometer located beneath BB1. The DMI intexfeeter itself and its reference
mirror must now be adjusted to get the DMI beamkbato the input hole in the laser
head and to maximize the splitting of the two paka beams. The reference mirror
angle controls the direction of the return DMI beamnd the entire DMI interferometer
assembly is rotated around the optical axis tonupé the splitting of the two polarized
beams. Once aligned, the DMI digital readout shives the returning beam signal is
strong and values reported by the DMI representvédrécal motion of the stage along

the DMI beam and can be used to calibrate the &msyscale.
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The Sony scale calibration involves moving the stagz and recording the stage
position using both the DMI and the displacemenettescale. Laser scale readings are
displayed on a nearby computer using software knasve-counter. Calibration results
are shown in Figure 36, where the red data reptesesing the fine stage translation
knob, while the blue represents using the coaeseskation knob. Taking the average of

the slopes of the two linear lines yields our firalibration multiplication factor of

0.88881.
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Figure 36. Calibration curves for Sony laser scale and DMI readings.
(20) Actual “z” displacement = (SONY reading)3.88881
Once the scale is calibrated, we can align the Tans@reen interferometer
components on BB1. We begin by removing the DMuUge&and BB2 to make room for
the fiber He-Ne laser input arm of the Twyman-Greenfiguration.
Before this alignment begins, it is important tegare the afocal lens pairs and
optimize their position using an optical shear @lat a separate interferometer. We used
a commercial Veeco® laser phase-shifting Fizegarfierometer for this alignment. We

aligned a return mirror in front of the Veeco amert null the transmitted wavefront
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through the afocal system by adjusting the distdrate/een the two lenses. The FFMA
is also aligned on the Veeco. This involves ahgrihe two fold mirrors approximately
to the horizontal translation stage of the FFMA &méach other. A beam splitter is first
mechanically attached to the front edge of thestedion stage and the beamsplitter face
then represents a surface approximately perperdicia the translation axis and
therefore can be used to align the translation axithe Veeco interferometer. After
nulling fringes off of the front face of this beanplitter, we then adjust the pitch and yaw
of the mirrors to null those fringes which thenthar aligns the fold mirrors in the FFMA
to 90 degrees to each other. Adding a small opagretwith a hole in it to the front of
this setup, we translate the FFMA stage to checkriotion of the spots as seen on the
CCD. Rotating the mirrors until the spots stayl sliiring stage translation is the final
step. Improper alignment of this 90-degree prida-apparatus (as seen in Figure 37)

will cause the Twyman-Green beam to walk as intenfeeter focus is adjusted.

/>\< € = angle error

N

0O = beam *

deviation
Figure 37. FFMA mirrors; focusing.
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Figure 38. Actual FFMA with reference BS and 45 degree mirrors.

Having prepared the afocal systems and the FFMAaneg¢hen ready to begin the
Twyman-Green interferometer alignment. The fitspss to mount the Twyman-Green
input arm and the trinocular head on BB1, and tedesn addition to tip and tilt so the
beam is colinear with the z motion axis of the soope stage and x, y centered on the
focal point of the objective lens. Coarse alignmmust be done first before beginning
with the detailed alignment procedure. This stethmclude ensuring that the incoming
beam fills the objective lens and is parallel vilik axis of the objective. This is done by
adjusting the xy position and angle of the objextissing translation and tip/tilt stages
that attach the objective to the underneath sid@Bif. The detailed procedure is similar
to the DMI alignment. First, after removing thejesttive lens and blocking M, we

adjust the direction of the incoming beam so thegflects back on itself after hitting the
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optical test flat on the OFA. We then put a rateflector on the OFA and use the
reflected beam to center the beam through the mgagystem (FFMA and afocal

systems) by setting the appropriate orientatiothefbeam-splitter (BS1). With the beam
and imaging optics centered and effectively paratieghe motion axis, we replace Mref
and orient it to null fringes between it and théicgd test flat.

To summarize, we have made the Twyman-Green bedenfarometrically
parallel to the z motion. Also, Mref is perpendauto the beam and our beam is
centered well in the imaging leg. In addition, #&MA mirrors are aligned so that the
beam does not walk on the CCD upon focusing.

Also, it is important to note that the focal lengthnd position of all imaging
lenses as a part of the 4f system are pre-detednogieperforming a paraxial thin lens
analysis in software (Excel) as seen in Figure 40sing the spreadsheet, we are
attempting to recreate the conditions for focusinghe test lens aperture given different

size lenses. The thin lens equation allows fopathmeters to be tabulated.
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Figure 40. Imaging system calculations.

52



53

Figure 41. Twyman-Green setup.

Once assembled and aligned, the Twyman-Greerfandeneter is now ready for
calibration, followed by measurements of opaqueespal parts. The overall system can

be seen in Figure 42.
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Figure 42. MORTI overview.



CHAPTER 4: SOFTWARE MODELING

4.1 RetraceErrors

A micro-refractive lens form error measurementpeformed at the confocal
position with the interferometer in reflection mod&4]. The wavefront in the
interferometer reflecting from the test surfaceeir@mtly has aberrations at some level,
and reflection from an imperfect test surface cadggher deviation. Consequently, the
ray takes a different path back through the interfester, thereby accumulating a
different aberration. In general, this effectaerred to as a retrace error. In terms of the
ray model for double-pass geometry, the functioarofdeally spherical test surface is to
return an incoming ray back upon itself so thévliows the same path back through the
interferometer on the second pass as it did offitste This happens exactly only when
the incoming beam (the interferometer wavefrontpasfect, i.e. a spherical wavefront.
But, as aberrations accumulate on the first padiection off of the test surface leads to
an angle change and the incoming and return ragsnarlonger coincident. When
analyzing the resulting fringe pattern, it is nader the case that we can divide the result
by two to obtain the single-pass wavefront abesmatiln general, the interferometer bias
is a complicated function of the optical details thie instrument, and this effect
significantly impacts measurements and calibrafié]. Ray-mapping (retrace) error
introduces non-axially symmetric aberrations likena and astigmatism in addition to

axially symmetric aberrations like low-order splatiaberration [9].
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Given that the actual interferometer cannot be heoddébecause detailed
information of the optics and their configuraticeinaot be accurately known, we moved
forward with a very simplistic model of the testraof the interferometer to investigate
the general trends and possible order of magnibethkavior. Modeling the retrace error
phenomenon in the ray-tracing software, ZEMAX®, sisted of defining the test arm
only of a Twyman-Green configuration, assuming téerence arm to be perfect. A
paraxial lens is set as the aperture stop, whifermike phase surface is added to the
diverger so aberrations to the wavefront (and tbhezean interferometer bias) can be
simulated. Aberrations can be defined on the Zeraurface in the ZEMAX ‘Extra Data
Editor’ dialog box. The test surface is taken &aperfect spherical, reflective object.
ZEMAX traces rays through the diverger, then theflect from the spherical test surface
and propagate back through the diverger. The agedf the second pass through the
diverger is set to the same diameter as the apestap so rays are properly vignetted. A
paraxial lens is then used to focus the light. THBoétware can then evaluate the
wavefront error (optical path difference (OPD) cawgul to a perfect wavefront) at the
exit pupil of the system. This captures the wawgfrat the aperture stop in the system,
which is the last diverger in this case — this dates focusing the interferometer on the
aperture stop, as is done in the experiment. &tdngy-tracing in ZEMAX makes use
of paraxial beam propagation and follows the latvgemmetrical optics. Gaussian beam
propagation makes use of advanced ZEMAX featunegd,ig an expansion of paraxial
optics that provides a more accurate model of @heladiation and partially accounts
for diffraction effects. However, for most opticaystems and for our purposes, the

paraxial model is adequate. Figure 43 depictsralyetrace model, showing the angle
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deviation which leads to the retrace error for asomably prescribed wavefront

aberration and test lens radius for a simulatedoyoptic measurement.
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Figure 43. ZEMAX ray trace model of an aberrated interferometeefnant reflecting from the
surface of a perfect micro-sphere with a radius comparable to that of@lenis.

By using a perfectly aligned and perfect sphergtaface as the spherical test
surface in the simulation, the simulated measurémesult is an exact measurement of
the instrument bias. Simulated measurements déqibr aligned, perfect lenses, show
that the total instrument bias depends on the sairfarvature of the test lens because of
retrace errors, discussed above. The resultirgf@artbmeter bias changes dramatically
with the test lens surface curvature and beconggsfisant in the micro-optic range.
This is shown in Figure 44. The fact that retrao®rs depend on the radius of the test
part implies that when calibrating the instrumeven with a nominally perfect artifact,
the calibration is valid only when measuring pavith the same radius as the calibration
artifact. The ZEMAX simulation revealed that thegrace errors can become so extreme
with poorly corrected interferometer optics andyvemall radii test parts that the cat’s
eye and confocal locations become ill-defined. M/Hhhe results will be system
dependent, in general the calibration will be irss@&re to retrace errors only for large

radius parts. Simulations show that for reasoneibésferometer aberrations, the system
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calibration can be modified by the retrace errdrsha level of several percent in the
micro-optic range. This indicates that the setectof the micro-sphere for self-
calibration must be done with care for measuremehtsicro-lenses with demanding
form tolerances.

An example of the potential order magnitude of éffect is shown in Figure 44
whereA/5 peak-to-valley (PV) of spherical aberration égdled to an otherwise perfect
(paraxial) microscope objective to simulate a sa@lidiffraction limited objective [43].
Reflection from the test lens and the subsequératae errors back through the objective
lens lead to a total wavefront aberration thatolssimply twice the aberration of a single
pass. The simulation shows that if an instrumeas,wWor example, calibrated with a
large convex or concave radii artifact and thers ttalibration file used to correct a
measurement of a very small radii micro-lens, tlEasarement result could be as much

as 10% or more in error.
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Figure 44. Simulated retrace error data for interferometesrasithn with a perfect sphere [43].
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Through simulation, we have shown that instrumenasds in micro-
interferometry depend strongly on the curvature tlié part under test and this
dependence can be significant in the sub-millimesetius range. If the curvature
changes, the wavefront takes a slightly differeamthpback through the interferometer,
picking up slightly different aberrations. Consenqtly, calibration must be done with
care. lIdeally, the calibration should be execut#ti a calibration artifact who's radius
closely matches the radii of the test lenses. Megéhis requirement in order to reduce
the impact of retrace errors, however, will nevercbmpletely realized given that radius
measurements themselves have considerable amégyuilihis size-matching technique
could also be impractical if measurements of lenséh largely different radii are
desired. Given all of this knowledge, reducing tihéuence of retrace errors on
interferometric form error measurements as statedeawill only be approximately valid
and future work is required in view of lesseningithmpact.

4.2 Artifact Misalignment

Recall that the random ball test (RBT) self-calilmma technique is useful for
isolating systematic wavefront biases to achiewveuacertainty interferometric surface
form measurements. In this technique, a seriaploére surface patch measurements are
averaged, which leads to an estimate of the inmtmrieter bias [34]. Previous work
shows that the quality of the ball surface (rmstleé form error on the ball) has a
considerable effect on the rate of convergencéetdst. Furthermore, sensitivity of the
bias to test surface curvature motivated a morailddt investigation of misalignment
during the RBT calibration. Misalignment in thentexing of the ball appears as off-axis

propagation back through the interferometer andbdhices changes to the wavefront
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aberration. Lateral misalignment of the ball causé in the wavefront. Vertical
misalignment leads to curvature (defocus) in theefrant.

For example, the wavefront sensitivity to misaliggnh can be observed by
intentionally misaligning the ball in x, y, and/ar The tip, tilt, and defocus Zernike
coefficients indicate the degree of misalignmerflots of higher-order coefficients
versus tip, tilt, and power coefficients reveal @xmmately linear relationships. The
slopes of the lines indicate the sensitivity to alighment. Perfect alignment during a
RBT calibration is experimentally not possible,rdfere the impact of these additional
aberrations on the calibration procedure must Ibsidered. To accomplish this task, we
have developed a virtual model of the RBT using MAB® and ZEMAX. ZEMAXis
used to simulate the retrace error consequenceMaTdAB® is used to generate the
misaligned and imperfect spherical test surfacenfuehich the wavefront reflects. The
simulation is versatile, allowing for parameter<lswas sphericity, radius, numerical
aperture (patch size), number of patches, and igmsaént to be varied. It allows for a
detailed investigation of the sensitivity of the Rih a relatively short time period.
MATLAB is at the forefront, where all coding andnaputational work is executed, while
ZEMAX imports data and returns results to MATLABr feurther calculation via a

central dynamic data exchange (DDE) software iaterf44,45].
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Figure 45. Example of calibration artifact misalignment from the cohfmsition, where a
spherical beam from an objective lens ideally nests into the surface

The basis for the model hinges on defining a sphethematically in terms of a
set of spherical harmonic functions, and varying #mplitudes and the number of
functions to adjust the form error on the sphe3pherical harmonics are the angular part
of an orthogonal set of solutions to Laplace's &qnadefined in a system of spherical
coordinates [46]. The fact that any polynomial nieey written in terms of Legendre
polynomials allows us to use Legendre polynomialsejpresent our radial data. After
determining the Legendre polynomials, we may stuistitrigonometric arguments into

the Legendre polynomials and obtain the spherigahbnic functions.
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Figure 46. Spheres created by coding and spherical harmonic functions.

Hence, we have our spherical surface upon whicbhhpat can be chosen and
averaged. An imperfect sphere is created simplywdying the number of harmonic
functions and their multiplication constants™(coefficients). This is summarized in
equation 14,

21+1 (1 -m)!
4 (I +my!

(14) s@.p=Yav"@.9=>a" R™(cosd)e™,

where Y™ are the spherical harmonics aRd are the associated Legendre polynomials

[47]. Having defined our sphere, repeated randampding of surface patches is then
achieved by choosing a solid angle with randomnbaigon on the sphere. Spherical
coordinate equations facilitate this task, leadimg determination of sag data for each
patch [48]. Sag, ar, data is a requirement for describing and impgrtnstom surfaces
in ZEMAX.

To simulate experimental conditions, misalignmeftao patch can also be
specified and added to the simulation. This sedoy randomly choosing a combination
of X, y, and z offsets of small magnitudes and ryitj the orientation of the patch
accordingly. The sag data is then mapped ontafarangrid and written to a file which
is sent to ZEMAX for interpretation. ZEMAX readket data as a ‘gridsag’ surface,

interpolates the data and generates a smooth cusidiace from which the rays are
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reflected. ZEMAX traces rays through the interfeeter model to the surface, reflecting
from the surface and heading back through thefermmneter to a detector plane where
the wavefront is analyzed and sent back to MATLABdnalysis. The DDE commands
programmed in MATLAB allow for all data transfersetiveen the two software
packages, and finally the RBT averaging can beopadd on the N wavefront matrices
in MATLAB. ZEMAX contains a built-in DDE server paitting other Windows®
applications, including MATLAB to access it. TheDBE is an interprocess
communication system built into the Windows operatsystem. It is a feature of
Windows that allows two programs to share dateeadsommands directly to each other
[49].

In our case, ZEMAX acts as the server while MATLASBthe client. Links are
initiated in the client application and are manpglogrammed. One advantage of
sharing data between programs is the ability tatereustom surfaces for use in ray-trace
models. Another advantage is that we can modifgoguire many ZEMAX parameters
using MATLAB commands and unique MATLAB tools, likdhe random number
generator to simulate random ball misalignment,rimatveraging for wavefront post-
processing, and statistical functions like standdeViation to analyze calibration
uncertainty. The same ZEMAX interferometer modehgain used, but in this case, the

test surface is taken to be an imperfect misaligpdebre patch generated in MATLAB.
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Figure 47. ZEMAX model of test arm of interferometer.

Figure 48. ZEMAX 3D model of test arm of interferometer.

Programming our unique random ball simulation resplicareful consideration
before execution and frequent debugging through&etwv literary sources documenting
the DDE coding technique are available and noneribesour particular application.

Having described the basis for the model, let u8 nwve to a discussion of the
major road blocks encountered in the programmifig@r example, when creating our

sphere in terms of spherical harmonic functionswiés necessary to use spherical



65

coordinates, and hence have a grid that varied nadius and angle. However, ZEMAX
can only interpret data contained in a uniform grgl. The solution was the ‘griddata’
function in MATLAB, but it also had requirementk testing the function we discovered
that ‘griddata’ was not robust when applied to éamgatrices with duplicate or near
duplicate elements. This brought about the needafoadditional MATLAB function
called ‘consolidator’, which we modified for commlity with our software version
[50]. The ‘consolidator’ function solves interpbéan problems by allowing a tolerance
to be specified on how close two values need totdode considered duplicates.
Remedying the duplicate data points issue, unfglthe x, y, and z matrices into vectors
and creating a uniform x-y grid with the ‘meshgricbmmand allowed the ‘griddata’
function to effectively convert spherical data ictrtesian data. Writing the sag data to a
file in the format specified by ZEMAX was tediousdarequired considerable syntax.
Finally, specifying any base radius for the custmface in ZEMAX yielded incorrect
data. The answer was to simply set the radiubefdridsag’ surface to infinity before

sending custom data from MATLAB.

] Lens Data Editor =13l x|
Edit Solves Options Help
Surf:Type Conment Radius Thickness Class Semi-Diameter Conic :I
0BT Standard Infinity 100, 000000 0.000000 0.000000
1 Paraxial Z00.000000 30.000000 (0
ETO0* Paraxial 0.o000000 Z0.000000| U
3*| Eernike Frin_ Infinity 18993437 | 7| 30.000000| 17| 0.000000
4* Grid Sag Infinity -18.995437 | P MIRROR 15.000000 (0 0.000000 _II
E*| Zernike Frin.. Infinity 0.000000 20.000000| U 0.000000
[ Paraxial —E0_000000 30.000000| 17|
7 Paraxial —-1l00._000000 20.000000| U
IML Standard Infinity El.€£532354 0.000000

iy

) Extra Data Editor =10l x|
Edit  Solves Tools Help
surf: Typs Zernike 4 Zermike § Zermike & Zermike 7 Zernike & Zarnike & ;I
OEJ| Standard|
1 Paraxiall
STO*| Paraxial
27| Zernike Frin.. 0.000000 0.000000 0.000000 0.000000 0.000000 m:_—l
47 Standard] B
£7| Zernike Frin.. 0.000000( P 0.000000( P 0.000000( P 0.000000| P 0.000000| P 0.z50000| P
&% Paraxiall
ki Paraxiall
hairl standard |

Figure 49. ZEMAX data editors for prescribing variables and biase
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Having established data transfer, we then testedintitations, starting with a
large radius ball (R = 25 mm) where retrace ermoslld be negligible. We began by
running one iteration with no test arm aberratigres a perfect system) and a perfect
custom spherical patch, and expected to see ayritdrbutput OPD wavefront map. To
our surprise, the resulting map contained considenasidual aberration, on the order of
1 part in 16 waves rms (0.0110 waves). This was caused bypivigion problems in
ZEMAX with treatment of the gridsurface. But thdscovery in ZEMAX was useful.
ZEMAX uses an iterative method to find the ray-aud intersection in the case of the
‘gridsag’ surfaces, and there seem to be conveggenwors for custom surfaces with
steep slopes. Consequently, ‘gridsag’ data shooide used to model surfaces of large
sag, but rather to model small deviations fromamaard surface. Setting the radius of
curvature of the ‘gridsag’ surface to that of thestsfit sphere instead of infinity, and
sending OPD sag data (small deviations normal teeclisurface) instead, resulted in an

output wavefront rms close to 1 part ir’ #aves (0.000817 waves).
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Figure 50. Different techniques for sending sag data to ZEMAX.

Increasing the grid density for the sag data deson of the spherical patch from
101x101 to 201x201, and programming ZEMAX to perfdbicubic instead of linear
interpolation, further improved the rms results ¢aen in Figure 51) to nearly 1 part in
10°> waves (0.0000158 waves) without significantly midg computational time. With
bicubic interpolation, the value of a function gi@nt is computed as a weighted average
of the nearest sixteen samples in a rectanguldr(gridx4 array). The resulting output
wavefront is flat to within the diffraction limitAdditional structure is still present in the
map due to residual computational noise. Thisendimit must be considered when
drawing conclusions from the simulation resultshe ultra-precision limit. It is also
important to note that ZEMAX cautions that one dtlocalways expect some residual
deformation with the ‘gridsag’ model. Using theittpag’ template was not intuitive,

and in doing so, we required much assistance fl@MZEMAX customer support help
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desk. Perhaps it is not a coincidence that ZEMAa§ Inecently made considerable

changes to their ‘gridsag’ help file in their sofire manual.
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Figure 51. Map showing resulting rms values indicates the sensitivitg airmulation.

Prescribing an imperfect ball and increasing thalmer of iterations was the next
step to confirming that the RBT was performing gpeeted. We chose a realistic rms
form error of 1/5 of a wave (0.18 waves) for thdl bad raised the number of iterations
to N = 100. The resulting wavefront map had an rms residalue of 0.00171 waves.
Next, we programmed 500 iterations and obtainedna of 0.000350 waves. Finally,
using N = 3000, the simulation ran for a couplenofirs and revealed good results - a
virtually flat map with residual rms of 0.000069hwves. The result map for = 3000 is

seen in Figure 52.
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Figure 52. Map showing resulting rms values for a typical random ball test.

As previously mentioned, our desire to concentaatehe positioning/alignment
of the calibration artifact was driven by the datand that we observed in studying
retrace errors. To summarize that study, we leathat the return angle of inherently
misaligned rays depended greatly on the locationhath they were reflected from the
calibration sphere and the local slopes at thosatilins. We hypothesized that other
calibration-artifact-related effects could play ignficant role in affecting the system
wavefront bias (i.e. the result of the RBT). Baifstematic and random misalignments
of the spherical calibration artifact were includeaur study.

In an effort to simulate realistic experimental dibions, we focused on random
(Gaussian distributed) misalignment of our artifagt large, and then small amounts
(average = 0), in the positive and negative dioesti The goal was to intentionally
introduce defocus (optical axis misalignment) iotor optical model. Initially we used

the 25-millimeter-radius ball and the 0.18 waves tmall error as before, and specified
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0.25 waves of spherical aberration as our systamihiZEMAX. The range was defined
by the maximum possible displacement in millimetdrghe ball that yielded 1/2 wave of
defocus in the output OPD map. Later we testedligisment that results in 1/10 wave
of misalignment in the output OPD map. One-hal¥evan the OPD map corresponds to
about 3 visible fringes in the interferogram, whil&l0 wave corresponds to about 1
fringe. For a large radius ball, 1/2 wave of d@efresulted in 0.2668 waves rms for the
output wavefront, and 1/10 wave of defocus resuitedan rms of 0.0770 waves
(assuming no system bias). Using MATLAB'’s randommiber generator, pseudorandom
scalar values for displacement within the allowadges were drawn from a normal

(Gaussian) distribution with a mean of zero.

0

Figure 53. The Gauss function is bell-shaped and centered Onois the width, and is defined
as the distance from the center of the curve to the point where théucerstaanges sign.

We graphed the rms RBT results for both large andllsamounts of calibration
artifact misalignment, results obtained in the abseof misalignment, and those
obtained in the absence of ball errors. For ead®,cthe simulation was repeated 10
times for N values of 50, 100, 200, and 300, s¢ bloéh a mean and standard deviation
could be computed. The standard deviation obseimed specific value oN gives us
uncertainty bars for our plots to carry out a mogorous comparison with a model.
Creath and Wyant showed, using statistical err@lyars, that the standard deviation

uncertainty ;) of the rms result of the RBT (the rms resultim@y the rms value of the
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final averaged surface) depends on the rms ofdha £rror on the calibration artifact

and decreases as the inverse of the square rdwt atimber of patches averaged [51]; or

g
(21) uc - ball ,

JN

We plotted the rms result versusyM for each case outlined above, and observed that
each case described a nearly linear trend withingrglope. One can see that Ms
increases, the rms of the RBT result approacheadh&l system bias rmB & 0.2215
waves) that we prescribed by adding 0.25 wavegpluérscal aberration into our ZEMAX
model. We also observed that both misalignmentatiform error impact the apparent

linearity of the data.

Ball Radius Z Mis (Defocus) Interp Grid Sys.Bias Repeat

0.18wv rms 25 mm 1/2 or 1/10 wv bicubic 201x201 0.25wv aso 10X
(0.2215 rms)
0.235

y = 0.0823x + 0.2185

ball+Li2mis Linear fit

r0.2325

y = 0.066x +0.2177

1/2mis g¢nly
+0.23

y =0.0333x + 0.2171
ball only

t0.2225
y =0.00532x + 0.2179
1/10mis only

+0.22

N=10 N=50 N=100 N=200 N=300

0.2175

0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

1/sqrt(N)

Figure 54. R = 25 mm; plot of rms versus the inverse square root of the numb@saivesaged
(N). Plot shows resulting rms values converging to the actual systsrfobiarious test
conditions in apparent linear fashion. Each data point is the average ofasurements. The
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term ‘ball’ implies 0.18 wv rms form error on ball, ‘1/2mis’ implies nligaing the ball by %2
wave along the optical axis, and ‘1/10mis’ is 1/10 wave of misalignment.

We began with a postulation that the data was flinéen plotted versus 4N :

_ A
(22) Opias — W +B )

where the slopéh, of the line is approximately equal to some corabon of o, and
0,.; andB is the system bias in the limit of larte This model appears consistent with

the simulated data with uncertainty bars, howeteere is a systematic difference
between the simulated data and the linear model shggests the model is only
approximate. We looked to a theoretical analysimvestigate the relationship in more
detail.

Based on the concepts surrounding the RBT, we kimaw an estimate of the
instrument bias map can be generated by averdgisgrface form measurements of a
smooth calibration ball. The ball surface usedidothe averaging does not need to be
extremely spherical, but the more spherical iths, fewer measurements are needed for
the average. Once the estimate of the instrumiast rbap is obtained, it can then be
subtracted from subsequent measurements of a&tesslirface.

We begin with the reasonable assumption that oresurement in the collection
of N measurements can be written as [51]:

(23) single meas(x) actual ball form error(x)+ act. ball misalignment(x)+ act. instr. bias(x)

or

(24) meagx). =ball(x), +mis(x), +biagx), . -
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This equation is for a single pixglon theith surface map wherevaries from 1 ta\.

The instrument bias estimaléas(x) is given by

estimate

(25)bias(X)egimae = (Meagx), ). = —Z meagx), = —Z[ball -+ mig(x), +bias(x), ]

i=1
where each pixek on the ball map is averaged owrseparate measurements of the
surface. Performing this averaging on each piela us to build up a surface map of
our bias estimate. We need to connect this biama® with the rms of the resulting bias
estimate which is what is plotted in Figure 54 useid. Thus, we begin by calculating
the variance of the data over the collection ok[s»on this averaged map. This can be

written as

i=1

N 2
(26) <b|as(x)83tlmate> :<|:%Z[ba”(x)l +miix)i +biadx)actual]:| > !
but this time, the angle brackets indicate an ae@verx (all the pixels on one map),
and we have assumed that all the variables hawerzean inx. Distributing the average

over N through to each term and carrying out the squaskiphcation, we obtain the

following:

2

27)  (bias() ) = <K%Z’;ball(x)i jz +(%§N1: mis(x), jz + [%iblas(x)acwa,j "

bias(x)m.m

The ball surface error contributions and misalignteere independent, uncorrelated, and

X

identically distributed. Consequently, cross temesulting from the squaring operation
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are uncorrelated, likely small, and therefore igaor This follows because it is equally
likely to have positive and negative average cbaotrons from the misalignment and the
ball contribution on individual pixels. Next, givehat the system bias does not vary
between th&l maps, the variance equation reduces to the fatigwi

@0 (), =[5 000 | ) ([ 2 [ | i),

X X

Again, the ball surface error contributions andatggmments are uncorrelated between
the N measurements, with equally-likely positive and aie@ values for each
measurement, therefore the cross-terms of thesarisguoperations also lead to

negligible cross terms and we have

@9) (b)), = i 32 b2l )), #1153 {ris), + (il en),

or

1 1
(30) <b|aS( )est|mate> Naﬁall - N Jmls +0b|as actual ?

where thed® terms are defined to be the expected variance @lVguixels for a single

measurement. Re-writing in terms of rms, we obthefollowing for the rms result of

the RBT:

2 2
g g .
31 0- las_ estimate el + = +02ias actual 1
( ) bi timat \/(mj (m] bias_ actual

or

2

Jball Jmis 2
(32) Jblas estimate — \/( N +Jbias_actual



75

The g,,, term can be estimated in the simulation, it isptynthe rms of the ball
form errors. To estimate,  for the simulation, we prescribe a perfect bgeafy a
system bias and choose a misalignment of 1 signthafier one ray-trace iteration we
read-off the resulting rms of the output wavefrantl use this value as an estimate of our
O s -
Equation 32 for the rms result of the RBT revealsiam-linear relationship

betweeno, .. csimae aNdN. We now return to our simulated rms RBT resuliadand

compare it to this model. To do this, we perforn@edhi-square minimization to the

model by finding the best-fit variables,,,, 0, and g, ... IN equation 32 for the

data. The best-fit model curves are shown in Edi%. The best-fit model parameters
are close to our estimated model parameters (dstimftom the simulation input
parameters).

We carried out a chi-square test to more rigogouslestigate the goodness of
the fit. In general, theX? test evaluates statistically significant differeschetween
proportions for two or more groups in a data Sétus, the chi-square statistic is the sum
of the square of the distances of the simulated paints from the model curve, divided

by the predicted standard deviation at each valdg o

(33) )(2 — Z (yi ;zy) .

The X? statistic indicates the likelihood that our mo(euation 32) provides a good fit
to our simulated (or later experimentally) dataegi the uncertainty in the data. If the
model is correct then on average each term inuhe & equation 33 is one. Since each

curve corresponds to 5 data points (for 5 valueNpfand we are estimating two
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parameters, the calculatey® value may be tested against the chi-square diitit
with

(34) k-1-p=(5-1)-2=2degrees of freedom .

For this distribution, the critical value for a B.8ignificance level is 5.99.

We have simulated RBT rms result values for thgdaadius case (case I: R = 25
mm; lower curves in Figure 55), as well as the oyaptic case (case II: R = 1 mm;
upper curves in Figure 55). Across the board, dimeulation converged to a higher
overall system bias rms value for the case whelreran radius ball was used. The data
points correspond to RBT rms results, while thevedrlines represent the fit to the

model. Model fit variables and the actual simudadata are also listed in Table 3.

0.242
1 F=1rmtn F =25 mm
A /2wy def, ball || *® 1/2wv def, ball o=
& 1/2vey def only ® 12wy def only
& 1710wy def, ball - 0.237
‘ ® hall anly
® 151 Dwee dEf only - 0.235

F 0232

r0.230

rms [wv]
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F o227

F0.225

F 0222

F0zz20
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Figure 55. Chi-square minimization of mean values to the model, plottingBmsd3ult versus

number of maps averagdd, The term ‘1/2wv def’ implies misaligning the ball by max % wave

along the optical axis, ‘1/10wv def’ implies max 1/10 wave misalignment atfitlifbplies 0.18
waves rms surface form on the ball.
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misalignment ball surface systern bias
IS mis  rms mis rms ball  rms ball mns bias rms bias  chi square
sim data fit sim data fit sim data fit
1/2 wv def, hall 0.2515 01728 0.2254 208
1/2 wv def only 0.2604 2.5E08 0.2266 1.14
rr;]m 1/10 wv def, hall 0.0719 0.1743 0.2273 1.53
-7.3E-08 01797 0.2269 1.66
0.0748 -1 4E-07 0.2278 0.95
1/2 wv def, hall 0.2567 015828 0.2220 1.39
1/2 wv def only 0.2599 2BE09 0.2201 1.22
25
0.0752 01822 0.2205 1.58
Tyl
hall only -2.9E-08 0.1813 0.2207 1.13
1/10 wv def only 0.0763 1.6E-08 0.2211 1.44

Table 3. Model fit variables compared with actual simulated vatiesguare statistic for each
case; rms values in waves. The term ‘%2 wv def’ implies a max balligniseent of %2 wave
along the optical axis, ‘1/10 wv def’ implies max 1/10 wave misalignment atitifbglies 0.18
wv rms form error on the ball. The term ‘sim data’ refers to a predlirms value, while fit’
implies the (actual) resulting rms value following minimization.

Our chi square value for each case is less tha Supporting the use of this model at
the current level of uncertainty in our simulation.

Evidently, the actual system bias rms (convergeotdhe curves) changes
considerably as we move from a large radius bal tomm radius ball. Based on the
retrace error simulation, we expect even more chasgwe select radii less than 1 mm.
For the 1 mm case, the functions converge to adfi®s2279 waves rms, while the 25
mm curves approach 0.2215 waves rms. It can @&sotéresting to re-write equation 32

and graph the mean squared (ms) data as follows:
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1
2 — 2 2 2
(35) Jbias_estimate - (Jball + Jmis)ﬁ + Jbias_actual .

0.059
F=1rmm F=25mm

& 12wy def, ball ® 12wy def, ball

& 1/ 2y def anly ® 12wy def anly

& 1710w def, ball - 0.057
® ball only
® 1010w def only

\ - 0055
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Figure 56. Chi-square minimization to the model for mean values; assunsimgsyand x is N.
The term /2 wv def implies a max ball misalignment of %2 wave along the bpiisa ‘1/10 wv
def implies max 1/10 wave misalignment and ‘ball’ implies 0.18 wv rms faror en the ball.

Steeper slopes mean that it takes longer (averagorg maps) to approach the actual
bias result. Here, the square of the actual sydteas rms changes strongly with
misalignment for the smaller radius ball. The éineonvergence slopes appear similar in
comparing the 25 mm case to the 1 mm case, howeseverall increase in slope from
the bottom curve to the top curve was greatertiert mm ball (case Il). The relative
increase of the bias value between cases can alsotbd, and consideririgj= 100 for
the %2 wave misalignment + baline versus thdall only line, case | revealed a percent
increase of 0.7 percent while case Il showed arease of 1.3 percent. The largest

deviation from the model is observed when simutptine 1 mm ball and the largest
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amounts of misalignment. Given the severity ofréteace error effect in the micro-optic
range (high surface curvature), it is not surpgsthat our simulated data begins to
deviate from the model. An exponential increassystem bias for radii less than 1 mm
could yield unpredictable results given our chosenel. More work is needed to clarify
the nature of the departure from the model for Emedii.

In summary, based on the model, using the bestitgubhbll and least
misalignment will result in the need for fewer measnents to approach the best
estimate of the system bias. Assuming that mosilable calibration balls will be of
medium quality (as prescribed in the simulatiohg, data also reveals that decreasing the
ball misalignment from %2 to 1/10 wave reduces #mguired number of measurements
(N) by approximately one third to achieve the santienase.

Based on the error-propagation equation, we canmfald the uncertainty in the

“averaged” estimate by describing the standardadiewi at each pixel [30]:

(36)

where the angle brackets again indicate an averagex. The ball measurements are
still assumed to be uncorrelated and identicallstrdiuted. Also, all of the partial
derivatives give the same resultN}, the summation yields a factor Nfand the actual
instrument bias is unchanged for each measurementhebias(X)ctwa term drops off)

yielding the uncertainty resultd),

(37) uc = \/N(i a.ballj + N[i Jmisj
N N
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or

2 L2
(38) u, :\/N%(Ugau +0iis):\,% .

Hence, the uncertainty equation can be rewritteéenms of standard deviation (or rms),

(39) u :\/Ulfall_i-ariis
c m )

where g, is the rms of the form error on the calibratiofi,end o, is the rms of the

ball misalignment. Note that this equation doet depend on the specific probability
distribution of the individual random variables.
Also, a standard deviation based pixel-by-pixelastainty map for a given RBT

calibration can be computed as seen in Figure 57.

mean = 1.5e-10 wv

Figure 57. RBT simulation uncertainty map for an average of 300 maps using a Orh8 ballr
form error and 1/10 wv of defocus misalignment.
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The uncertainty map for an average of 300 mapgyuamimperfect ball, a maximum of
1/10 wave of defocus misalignment and 0.25 wavespbérical aberration (system bias),
reveals some residual spherical aberration. Gitleat positively and negatively
defocused spherical aberration maps appear aswbese of each other, we can conclude
that applying random amounts of z misalignmenth® simulated RBT and inputting
spherical aberration as the system bias, leach#aazero mean misalignment result and
residual spherical aberration. Figure 58 illugisapositively and negatively defocused

interferograms in the presence of spherical akerrat

Spherical aberration

o

inside focus

focused

outside focus

Figure 58. Spherical aberration and defocus [36].

In a physical experiment, we would expect moreatsaim in the uncertainty map, given
that a real-life calibration would be subject thatnoise sources.

We also examined alignment sensitivity of the mdaelexecuting a systematic
misalignment test, and discovered that we couldergsgly predict the residual
aberrations in the result of a random ball teshwaitsimple initial alignment-sensitivity
test. To demonstrate this, we vary defocus) (@ the simulation over a range and plot
the resulting spherical aberrationdla The resulting plot, as seen in Figure 59, dbssr
a linear relationship and equation that we use¢dipt ao. Using a perfect ball (R = 25

mm), no system biasN = 60 and a maximum magnitude of % wave of random
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misalignment in the z-direction (along the optiaals), we ran an RBT for comparison.
The RBT reveals a residuapoavalue of -0.0352 waves and ap @f 0.0004 waves.
Using the equation defined by the systematic ngeafient, we insert -0.0352 waves for
ao (or X’) and obtain a residuals@(or ‘y’) of 0.0003 waves. Hence, an alignment
sensitivity test is effective in predicting resitlsgstem aberrations due to misalignment

contributions without the need for repeated avergdy the RBT simulation.

0.020
-
E. 0.015 -
— 0.010 1
o y = 0009505255 - 0.00003389
840 O 0,005
T
@ 0.000 7
o 0.005 -
@ om0
0.015 4
0,020 . : : L . : .
20 45 40 05 00 05 10 15 20
Defocus [wv]
Figure 59. Plot of spherical aberration versus defocus for a systendlgmment test for R =
25mm.

Furthermore, the systematic misalignment test ¢sm lae applied to predict the
residual rms wavefront bias of the optical systamseen in Figure 60. Prescribidg
0.2215 waves of rms bias to our ZEMAX model, weiagaary defocus (@) in a
controlled fashion over a range and, this time,t gle residual rms. While the
relationship is not linear, we can still arriveaatelatively unbiased prediction of the rms
error. The red line indicates that for perfecgmainent, the rms residual is equal to the

added system bias. Realistically, in an experialeseétting, the rms bias value for
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perfect alignment includes ball and system biad,amsequently, isolation of the system

bias is impossible without RBT averaging.

y= 0552320 0042x +0 2309

-0 -0.6 0.4 -0.2 on oz 04 og os
Defocus [ww]

dog

Figure 60. Plot of the resulting rms versus defocus for alignmentigignsest of R = 25 mm.



CHAPTER 5: EXPERIMENTAL SETUP AND RESULTS

5.1 Retrace Error Effect

The RBT exploits the symmetry properties of a musphere, resulting in a low-
uncertainty estimate of the instrument biases ofRMO By measuring a collection of
random patches on the surface of this sphericddrasibn artifact and then averaging the
results, the contributions from the sphere go t@ Zeaving only the systematic biases
due to the instrument. Careful selection of tlpkesical calibration artifact is required,
however. It is important to select a calibratiatl lvith a high enough surface quality so
as to end up with the desired calibration uncetyaimAccordingly, we tested several 1
mm balls and chose the one with the lowest RMS fernor so as to minimize the
number of measurements required. The surfacehfiaisd form errors are strongly
dependent on the ball material and grade. Pafecifinish causes data dropout in the
measurements and must be avoided. We used theshigtade (“3”, rms form error =
100 nm = 0.15 wv) of hardened stainless steel raptwere for our random ball tests.
Small pits in the surface led to some data droplouit,bad pixels were not propagated
through the average and it yielded acceptable teesult is also important to use an
opaque micro-sphere, particularly for a phase-isigifinterferometer calibration, to avoid
stray light reflections from the back surface af #phere. All of the micro-spheres were
obtained through thBal-tec™ company, and balls of varying radii can be seefiguire

61.
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Figure 61. 440-steel micro-spheres; radii 0.5 — 3 mm [52].

Random re-positioning of the ball between measargs is another crucial
aspect. The key is to randomly bump for re-origoteand then replace the micro-sphere
in its original measurement position. To do thi® developed a simple fixture that
consists of a sandwiched sheet of brass betweettatge aluminum washers. A small
indentation in the center of the sheet providec@raducible position for the micro-
sphere. A small puff of air easily displaced tfad,lbcausing it to roll around inside the
fixture before returning to its original center pims. Interference fringes re-appear after
the ball settles and little realignment is necessdihe room temperature is kept close to

21°C throughout the data gathering process.
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Figure 62. Random ball re-orientation fixture.

Figure 63. He-Ne beam reflecting from the micro-sphere when positiottesl @infocal
location.

Recall that in interferometry, a circular and/ftiet fringe pattern is present when
the spherical test surface is not perfectly aligrnvelile only straight fringes are present
when testing a nominally flat surface that is digimisaligned. For the simple case of

straight fringes,
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(40) height_error —(Ej[gj ;

whereA is the inspection wavelength,is half the fringe width an&is the fringe-center

spacing.
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Figure 64. Fizeau fringes.

In our experiment, phase-shifting is used insteadliectly calculating fringe

deviations. By shifting the phase in incrementsu@ and gathering a few frames of

intensity data, we can accurately calculate thghtesrror for a given x, y location using

a previously chosen algorithm as follows:

(% y)=15(xy)

and

41) ¢xy)= tan‘{ (0 y) =15 (x y)}

) A
42 h ht y -— ] ]
(42) height_error(x, y) 47T¢(x y)

where gis the phase [35]. Calibration of the phase-siyftevice is also important and

was tested before beginning the experiments. @btagood surface measurements also
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requires occasionally adjusting the light intendtyavoid over-saturation, and varying
the modulation threshold in software. The He-Nsetahat we are using has a very high
spatial and temporal coherence, and allows for gomdrast and visibility of fringes.

The modulation threshold determines the contrastired for a pixel to be considered
valid in the data analysis. To gather the mostadat our instrument we set the

modulation threshold below 1% in most cases.
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Figure 65. Phase plot obtained during PZT calibration.

Figure 66. Actual circular fringe pattern from micro-sphere sarfac
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Following Phase | of construction and alignment MDRTI, initial self-
calibration tests were performed using two micrbesps with different radii. Figure 67
illustrates the RBT calibration result that wasaited using a 1 mm radius sphere, while
Figure 68 is the result using a 0.5 mm sphere pradicted by the simulations, the peak-
to-valley instrument wavefront bias is higher foe tsphere with the smaller radius. A
difference of approximately 300 nm was observedveenh the two results. The RMS
values are 50 nm and 97 nm, respectively. The fr@vemaps in Figures 67 and 68

indicate our best estimate of the bias in our imaént.

Figure 67. Phase | experimental RBT system bias result using 1 mmmadiassphere (PV =
361 nm = 0.57 wv).
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Figure 68. Phase | experimental RBT system bias result using a 0.5dmmmacro-sphere (PV
=553 nm = 0.87 wv).

These experimental results support the statememtrétrace errors significantly affect
form error self-calibration at the micro-optic léveFurthermore, calibration should be
performed with an artifact of similar radius to ttlwdt the micro-lens to be tested. Some
measurements traditionally used for precision nhegno of large-scale components can
be simply extended to the micro regime; howeverptaperties or systems that can be
measured are limited and measurement uncertaiatiesoften inadequate. For a
gualitative assessment of the RBT wavefront bias, aan fit the data to Zernike
polynomials which emphasizes the low spatial fregyecontributions, as seen in Figures

69 and 70.

Figure 69. Experimental RBT result Zernike generation for R = 1 mm.
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Figure 70. Experimental RBT result Zernike generation for R = 0.5 mm.

The dominant aberrations are more visible in thesages, and judging by the maps,
coma and astigmatism appear to dominate. Comemgmased based on examining the
central region of the maps, and observing thatratvene half of the map appears high
(green) while the other appears low (blue). Tlusreation is encountered with off-axis
propagation through an optical system, which oceuren the optical system is out-of-
alignment. Examining the edge regions of the m#pstwo high-sloping regions (red)
coupled with the pair of low regions (green) shtw presence of astigmatism. Recall
that astigmatism is said to be present if an opsigatem is not axisymmetric, either due
to an error in the shape of the optical surfacegoonon-optimal alignment of the
components. A faint circular pattern in the magso amplies the presence of some
spherical aberration in the system. Comparing o to the other, the aberrations
appear to be more extreme for the case where tlalesmadius ball was used. For
further diagnosing, one could also examine thefmerts of the Zernikes to identify the

major players in the aberration map.
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The retrace errors and their sensitivity to swefaarvature obviously impact the
system bias. Retrace errors will also impact b curvature measurements [43].
Radius measurements require the identificationnoingerferometric null position when
the lens under test is at two positions - the coaifposition where the radius of curvature
of the test lens coincides with the focus of théesggal wavefront exiting the
interferometer and the cat's eye position where wawefront retro-reflects from the
surface of the lens. Aberrations in the interfeeten and retrace errors introduce a bias
in the apparent location of these two positionee $ame simple ray-trace simulation can
be used to explore the order of magnitude of theffects. Again, errors in the

measurement become significant in the micro-oggme.

- |

Figure 71. SEM photo of micro-lenses of various ROC [53].

5.2 Effectsof Misalignment on MORT]I

There are many parameter combinations that catedted with our simulation.
We chose a set of parameters to emphasize the dmpsn of calibration on
misalignment during the RBT and on test surfaceature. Previous published work on
the RBT only considers the effect of the ball foemor on the convergence rate of the

calibration procedure [34]. Our simulation demoasts that misalignment of the ball
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along the optical axis as small as 1/10 wave hagmificant effect on the calibration
result, even when simulating a perfect spherictiaat. During Phase Il of alignment
and calibration of MORTI, we demonstrate the mggaient effect by experimentally
calibrating the instrument again using a 1 mm radall and a 0.5 mm radius ball. We
then compare observed trends without simulationlies

For the Phase Il calibration, we record the rms besults and plot this as the
number of patch measurements is increased. Eaclomaaverage d measurements
was repeated 10 times to estimate error bars foamalysis. Also, the experimental data
is fit to our rms model (Equation 32) using a ofirgre minimization process. We
include the error bars for this fit analysis toesssthe quality of the fit. In the future, we
recommend repeating the test to tighten the eraws land arrive at a more rigorous

evaluation of the fit to the data.
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Figure 72. Phase Il RBT data for MORTI with 0.5 (red points) and 1 mm gloiines) radii balls.
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The fit variables for the experimental data areetisn Table 4. Initial guesses for,,
and o, based on experimental data were used as thengtéttparameter values for the
chi-square minimization process. To estimate the of the form error on the baty, ,,,
we subtract any two patch measurements to giye. The system bias is the same in
any two measurements and therefore cancels witeubgaction, leaving an RMS value
that is on average/2 o, - We can also take several difference maps anchgeehe

results to improve the estimate fay,,. The estimate ob,, is then

_ <Jdiﬁ >
(43) Op = 2

The initial estimate folo, ;; is based on the decision that, in nulling thedes for the

s
confocal measurement, we will allow no more thaa wisible fringe (which translates to
1/10 wave of defocus misalignment) to be visibléVe estimate that this results in
approximately 0.1 waves rms after the measurensetakien. This is more difficult to

clearly estimate compared to the rms of the bélie variableo,,; .., is estimated by

taking the rms result of the average of all 100 snap

migalignment ball surface gystemn hias
rms mis rms mis  mms ball rms ball  rms bias rms bias  chi square
BXp fit BXp fit Bip fit
R=0.5 mm .
1410 wv def, ball 0.1165 0757 0.1431 8.14
R=1mm 0.0910 0.'625 0063 | 385
1/10 wr def, ball ' ' ' '

Table 4. Model fit variables compared with experimental variablasquare statistic for each
case; rms values in waves.
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After minimization, the chi square values both falow the critical value of 14.07 for a
5% significance level and 7 degrees of freedom thedbest-fit parameter values are
quite close to the independent experimental estisnat Technically, the degrees of
freedom may be less here because all the dataasndfrom the same set of 100
measurements for differeNtvalues. This could potentially affect the statetanalysis,
and should be studied in future work. Therefavethe level of our current measurement
uncertainties, the fit and therefore model appeadequately describe the experimental
calibration dependence on both misalignment anddyah errors.

As predicted by the simulation and seen in thébcatiion of MORTI on Phase |,
the smaller radius ball results in a different egsbias. Also, on average, the error in the
knowledge of the best system bias estimatéNfer10 compared witlN = 100, increased
from 0.02 to 0.03 as the ball size was increadeidure 73 and 74 are RBT calibration

results for both cases, R=1 mm and R = 0.5 mm.

PV = 0.4041 wv -
rms = 0.0573 wv

Figure 73. Phase Il experimental RBT result for R = 1 mm on MORTI (R¥6=1m, rms = 36
nm).
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Figure 74. Phase Il experimental RBT result for R = 0.5 mm on MORTI (B31=1m, rms =
113 nm).

Several changes to MORTI were made between Phaset|l to improve the quality of
the optics and the alignment. For Phase Il, trmiltieg RBT maps again reveal
astigmatism as well as some coma aberration, andxpgected, the overall PV and rms

values are higher for the smaller radius ball dueestrace errors in testing micro-spheres.

Figure 75. Phase Il experimental RBT result Zernike generation fat Rim.
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Figure 76. Phase Il experimental RBT result Zernike generation fdd.B mm.

Examining these RBT result maps more closely, @ameabserve that non-axially
symmetric aberrations still dominate the systens,biat to a lesser extent than with the
Phase | calibrations. Recall that ray-mappingrereme mainly to blame for this type of
aberration (coma and astigmatism); therefore MORIiBly again be exhibiting beam
alignment issues such as light entering and exitamges off axis. We expect that
spherical aberration would be the dominant abemataused by the high-quality
Mitutoyo objective lens. While spherical aberratie present, it is not dominant and this
suggests the system bias is limited by misalignmétite instrument itself, rather than a
fundamental limitation from the quality of the otiige. It is therefore likely that
MORTI’s bias can be further reduced through imptbakgnment.

As in the simulation, we can compute a pixel-byebiMncertainty map for our
experimental RBT on MORTI. Using = 100 and the R = 0.5 mm ball, our uncertainty

map is seen in Figure 77.
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PV =0.012 wv mean = 0.043 wv

Figure 77. Uncertainty map for R = 0.5 mm on MORTI.

The map shows a mean uncertainty level over thasdabf 0.043 waves (27 nm) and a
variation in the uncertainty around this mean vatRV of 0.012 waves (7.9 nm). We
find that the uncertainty shows a spatial variatoyaracteristic of astigmatism, as was
present in the RBT wavefront bias map. Examinimg Zernike polynomials for this
uncertainty map shows a small contribution of siglaéraberration and coma as well.
We can consider either residual ball or misalignh@sncauses for the spatial variation in
uncertainty. If the ball contribution to each gatmeasurement is truly random, a
residual ball contribution would be the same foergwixel, leading to a flat uncertainty
map. This may not be true for the misalignmenttidoation, however. To appreciate
this, consider for example only the presence ofedddpherical aberration with
misalignment. Spherical aberration has nodes atidaales at specific locations. As the
amount of spherical aberration randomly varies framdom misalignment, the variation
at the node locations would be identically zerolevkie variation would be a maximum

at the antinode locations.
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The sensitivity of the instrument bias to test pamtsalignment can be
experimentally evaluated by recording measuremastthe test part is systematically
misaligned. We can then plot, for example, the mrep value versus the Zernike
defocus coefficient (a measure of optical axis tgeanent). In such a plot, the rms
values include contributions from misalignmanid the form error of the calibration ball.
But the shift in rms with misalignment reflects thesalignment dependence. Future
work is required to isolate the instrument bias from the ball contribution for this type
of experimental misalignment test. Ideally, the Ipoint of the curve would correspond

to the actual system bias of the instrument, gav@erfect calibration artifact.
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Figure 78. Actual systematic misalignment on MORTI for 1 mm ball

One can also plot Zernike coefficients for the leigbrder aberrations versus defocus, as
shown with the spherical aberration versus defgtwsvn in Figure 79. This allows for a

more detailed assessment and is useful for conppM@RTI to other interferometers.
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Figure 79. Actual systematic misalignment: defocus versus spherical

Comparing this data with that obtained using a 26 rpall on the XCALIBIR

interferometer from the National Institute of Stardk and Technology (NIST) lab,
MORTI shows promising results [54]. The slope dinaar fit to the data represents the
sensitivity of the interferometer to misalignmen®he slope for spherical aberration
versus defocus for the XCALIBIR was 0.023, indingtithat our custom instrument is

less sensitive to optical axis misalignment.



CHAPTER 6: DISCUSSION

In this section, we present several disjoint boteworthy comments with the
purpose of completing (1) an interpretive discussad how the simulated models
performed in comparison with the physical experitaeand how our custom instrument
performed compared with similar instruments; (2)amgument as to what the various
calibration trends convey in light of other opticatasurement technologies, how their
presence will impact future metrology, and whairtkheawbacks are; and (3) thoughtful
recommendations for implementation of a highly eifee RBT calibration technique.

Through simulation, our goal was to gain insightt@ which variables are most
important to the calibration process, and laterifyethis in the experiment. The
underlying objective was to imitate the internabqgasses and not merely the results of
the RBT. For one, we have demonstrated that eeteaors play a significant role in
contributing to the instrument bias for small (leébsin 1 mm) radii spheres. The
simulation plainly showed that for small radii grthe retrace errors become extremely
sensitive to the ball curvature. In extreme caseBace errors cause the confocal
location to be ill-defined. The calibration baites must be chosen with care, given the
characteristics of the part to be measured. Addosture to hold the ball and a means of
random re-orientation must be considered. If caret taken, the ball could settle into a

non-random motion pattern and lead to samplingheflall surface with a non-uniform
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probability density and hence an undesirable abe calibration. In future studies, it

would be interesting to see how much smaller (naablpration balls affect the RBT, but

finding smaller balls may be a challenge. Oneghm certain, the measurement and
inspection of miniature parts will continue to demanew approaches and new
technologies in the coming years.

We would have liked to run the RBT calibration egpeentally on our custom
interferometer repeatedly and ramp up the numbenezsurements averaged to observe
data trends and understand how some variableend&ispecific phenomena. However,
given time constraints, we chose to focus on th@mance of ball size and the impact of
misalignment, as these had not been studied anexpected them to be important for
micro-optics metrology. In the future, it would beneficial to automate the random ball
re-orientation process to average more surface urgagnts. It is conceivable that the
lengthy process of manual calibration may influenice operator to make too few
measurements and compromise the calibration, ataimation would eliminate this
possibility. Previous research involved settinfarge ball on a three-point mount and
rotating it manually between measurements. Thifirtgue is not advisable, as the
operator is required to touch the ball and thisseawa change in temperature of the ball
and possible surface contamination with dust adves

Having created and tested our customized RBT stmoulamodel to study
misalignment, it became apparent that on top ofstmeptibility to retrace errors for
small optics, the effectiveness of the RBT is deljeem upon several pre-defined system
parameters. Clearly, the RBT result will be diéietr for every set of test conditions and

recall that we derived the following equation foe rms result of the RBT:
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2 2
g +0 is
(32) Jbias_estimate: \/(%]+Jéas_actual .
Evidently, the rms result of the RBT depends on tims of the form error of the
calibration ball, the rms of the positional z-migament of the ball and the number of
measurements taken. This relationship shows #waerf measurements are required if

O, and o, are small. Some researchers would argue thatwieqnéhe defocus (z-

displacement) aberration term from each map befaveraging eliminates the
misalignment contribution. Of course, residualodes, tip, and tilt in the averaged map
represents the amount of pure residual misalignmbuat these are not the only
consequences of misalignment. Higher order abensatresult from misalignment and
these are not removed by simply removing the lodeomisalignment Zernike terms.
Also, future work is necessary to examine the ¢ffe€ other misalignment terms such as
x-tilt and y-tilt, and how x, y and z positionalers interact.

The question then becomes, how many measurentenikide averaged to leave
a sufficiently low uncertainty in wavefront bias libaation? In a paper by UIf
Griessman, he suggests that the number of measotesteould be large enough so the
calibration uncertainty is less than the rms regimbty of the measurement where the
ball remains fixed [55]. This certainly is a reaable target. To estimate repeatability,
we take a number of form measurements in a shoiwgef time with the ball in the
same orientation, plot the results for the rmshef maps and take the standard deviation
of the data. We found that during our experimémg, rms repeatability of MORTI was
about 0.002405 waves (~1.5 nm). Comparing MORThan in-house Wyko RTI 4100

laser interferometer, we found its rms repeatabilias 0.002867 waves (~1.8 nm).
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Based on these figures and the simulation valueth®RBT (we calculated the
difference between the estimated bias for variduend the actual prescribed bias), we
recommend collecting at least 100 maps for avegadint 150 to 200 would be ideal, if
time permits. FoN = 100, the rms uncertainty in the system bias.092P65 waves,
while for N = 200, the rms uncertainty is 0.0009 waves. Tdépeatability data for
MORTI and the Veeco are seen in Figures 80 and@ten the RBT data from MORTI,
we can calculate the difference between the RBUltes$or variousN (chooseN = 60
here) and the absolute best estimate value we (hNawel00), for the two different radii

cases and estimate an rms uncertainty in the systesriorN = 60 of 0.0054 waves.
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Figure 80. MORTI repeatability.
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Figure 81. Wyko repeatability.

Figure 82. Wyko RTI 4100 laser Fizeau interferometer.
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Traditionally, RBT theory considers the behaviooaé pixel and shows that the
convergence follows a simple~IN description. Plottingms vs N, our research, and

previous work, have shown that the convergenceecdeviates from the 4N behavior
as we approach lardge values. In the past, this was not fully explainedt given our
data and our derivation of Equation 32, we can sigation the tendencies of the random
averaging convergence.

Comparing our most recent system bias data from WIOKth that from two
commercial interferometers, MORTI was as good dtebe Previously, we calibrated a
Zygo® Micro-LUPI phase-shifting interferometer aadZzygo NewView 5000 scanning
white light interferometer (SWLI) using the RBT keique (R = 1 mm). We found that
the Micro-LUPI has a system bias PV value of 211 wile the SWLI exhibited a PV
of 390 nm forN = 100. RBT results obtained using a 1 mm radialé ¢tn MORTI
totaled 361 nm. The NewView 5000 and the Micro-L@Re pictured in Figures 83 and

84.

Figure 83. Zygo scanning white light interferometer.



107

Figure 84. Zygo Micro-LUPI phase-shifting interferometer [56].

Caution is implied when using such non-common patarferometers, as the
reference and test beams follow widely separatdtispand are, hence, differently
affected by mechanical vibrations and temperatiuetfations. If the effects are large
enough, the fringe pattern can become unstablareasurements will not be possible.
Mechanical vibrations and turbulent air flow intum@ significant problems for most
interferometric test methods. The problem is tHata is taken sequentially over a
relatively long time period. Commercial interfereters can take four or five frames of
data to compute a phase map, which means thaintbderence pattern must remain
stable for almost 200 milliseconds. Using fasi@meras, measurements can be made
with almost any magnitude of vibration or air tudnce. Although MORTI is isolated
from vibration via an air floatation table, itswgtture is large enough that low-frequency,
high-amplitude vibrations could be present. Howeva our case, vibration and
turbulence effects were minimal and did not distingt phase-shifter calibration process.

A number of vibration-tolerant phase-shifting smuos have been developed by other
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researchers, including gathering four frames om tiectors, gathering four frames on
one detector, random data acquisition and activeation compensation [57].

Given our demonstration of the RBT and its limiticgses, we believe strongly
that the technique is as effective and more easilylemented than other absolute
calibration techniques such as the N-Position tesitrticularly for calibrating an
instrument for micro-optics metrology. The N-p@sit test requires accurate test part
rotation about the test part center and this wadoed difficult to implement on a
microscale. In contrast, random re-orientatioa emall ball is not very difficult.

In future research, we anticipate the need to stixdyrole of the NA more
closely. The NA of the objective affects the saitgle of the measurement (the patch
size) and a smaller NA will measure smaller paizess For typical form errors on a
ball surface where the largest form errors corredpo longer spatial wavelengths, this
likely will cause the ball to behave as thougtsiof higher quality. Also, NA will affect
the size of the measurement patch on the ball, hwimcturn would likely affect the
convergence rate of the RBT to the system biasevalu

Another subject of future study is how surface wags and roughness affect a
phase-shifting optical form measurement. Previessarch has confirmed that these two
frequency components will limit the accuracy ofnfiomeasurements, but it would be
interesting to quantify the effect for our type ©fstem. We have seen how surface
roughness (with its deep pits) can cause data dtggolight is not reflected back to the
detector. Also, the contribution of x and y migalnent to the RBT remains to be

investigated.
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Overall, we believe that the techniques developedthis research assist
manufacturers in identifying and collecting quaattite data on large and small test parts,
both during and after the manufacturing procedsis ¢ontribution to the development of
new non-contact testing procedures will improveligpiand reduce cost in industry. The
continuous advancement of tools and concepts fuglele demands of the marketplace
require advances in faster and more accurate ragirolWith growing options in terms
of scanning speed, accuracy, and measurementseifacturers will be able to select a

solution that is tailored to their needs.



CHAPTER 7: CONCLUSIONS

Lenses are probably the most widely used optic@mehts and micro-
interferometry is the best approach for measurimgymmicro-refractives, however, the
component size makes the measurements susceptibdystematic biases. Micro-
refractive lenses are critical components in maayiags, yet characterization remains
challenging. Micro-interferometry is the best measent approach and was pioneered
in the mid 1990’s by Schwider’s group in Germab§][and Hutley’'s group in the U.K.
[59]. In micro-interferometry, interferometer béscan be of the same magnitude or
greater than the deviations on the micro-lens uteldr therefore, a rigorous calibration
and estimated uncertainty is necessary. In sitgphas, interferometer calibration means
removing instrument wavefront biases before meaguaitest piece, much like clearing
out a calculator before beginning computations.

We have developed calibration methods for micreffierometry to improve form
error and reduce measurement uncertainty. Ounatllé goal was to contribute to the
advancement of surface metrology for process cbranol quality assurance of the
manufacture of high-end optical lenses. Much & thsearch is based on mathematical
modeling, computer simulation, statistical estimati of measurements, while

experimental techniques also play a major role.
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Micro-lenses are discrete or array-based sphesphgaes and other optics used in
a wealth of applications, including focusing lighto fibers for optical networking [60].
Despite advances in various metrology tools, ieterhetry remains the method of
choice for measurements of optical surfaces, inetudefractive micro-lenses. There is
also significant demand for fast and precise nama 3-D profile measurements in
product design, industrial manufacturing, commérciaultimedia, and information
technology fields. Phase-shifting interferometersasure the surface height of very

smooth, continuous surfaces with nanometer resoiuti

Figure 85. Result of an interferometric micro-lens height profile oreasent [61].

With the goal of optimizing the micro-lens measuestn calibration, we
performed a rigorous study of the random ball (88T) in theory and practice. Our
first conclusions are that the calibration restiareges with calibration artifact surface
guality and misalignment, and the effect worsengmtesting micro-optics (radius less
than 1 mm) due to retrace errors. Translationgblignment away from null, along the
optical axis as small as 1/10 wave has a direetetin the convergence of the calibration

result, even when simulating a perfect sphericalaat. The curvature of the artifact
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leads to retrace errors, which are aberrationsethby the specific path the rays take
back through the interferometer following reflectivom the test artifact.

The RBT self-calibration technique averages a sariesurface subapertures on a
medium quality micro-sphere to identify the intedimeter biases that can later be
subtracted from any individual measurement. By sugag a collection of random
patches on the surface of a sphere, and then avgrég results, the contributions from
the ball go to zero leaving only the systematisésadue to the instrument. Our spherical
surface is inspected for surface form errors (demnarom the best-fit sphere) by making
its center of curvature coincident with the focdigh® objective lens. A self-centering
element holder contains the spherical calibratioifaat. An investigation into the
dependence of test part radius and misalignmenimno-lens form-error-measuring
interferometer wavefront bias data have been cdeduboth experimentally and by
software simulation. A comprehensive geometric-trage software simulation was
created to closely model the test arm of the playsigstem and this allowed us to study
all factors impacting the calibration. Resultsaclg indicate that the retrace error
increases with test lens surface curvature. The tfeat retrace errors depend on the
radius of the test part implies that when calilmgtihe instrument even with a perfect
artifact, the calibration is nominally valid onlyhen measuring parts with the same
approximate radius as the calibration artifact.

As previously mentioned, the RBT is a random ayiegatechnique applied to a
collection of circular patches on the surface ofiedium quality sphere that replaces the
micro-lens under test. Each interferometric meam@nt of a patch contains information

on the form error on the ball and also a bias duth¢ wavefront traveling through the
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imperfect instrument. The basis for our simulatibmged on defining a sphere
mathematically in terms of a set of spherical hammdunctions, and varying the
amplitudes and the number of functions to adjustftnm error on the sphere. Spherical
harmonics indicate that the average of all theatens on the surface of a ball (sphere)
is zero; therefore the result of averaging manghmes yields the wavefront bias due to
our instrument, with some uncertainty related te ttumber and size (NA) of patches
averaged. The RBT eliminates the need for an estpenhigh-quality concave
calibration artifact, such as those used to cakbmmmmercial optical profilers. The
RBT takes more time than calibration with a higlalgy artifact, but reduces uncertainty
compared with calibrating by a single measuremdna dnigh-quality artifact. The
biggest advantage of using RBT is overcoming a laic&vailability of traditional high
quality artifacts for a range of micro-lens ROCaeocounting for retrace errors. It is
much easier to buy a collection of balls of differeadii.

Clearly, the RBT result will be different for evesgt of test conditions and we

derived the following equation for the rms resdltree RBT given z misalignment:

2 2
Opa O i
(32) Jbias_estimate = \/(%] + Jljzias_actual .
We found that the rms result of the RBT dependshenrms of the form error of the
calibration ball, the rms of the positional z-migament of the ball and the number of
measurements taken. This relationship shows #waerf measurements are required if

O, ando, . are small. Based on the model, using the bedityball surface and the

least amount of misalignment (best null) will reésal the need for fewer measurements

to approach the best estimate of the system biassuming that most purchasable
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calibration balls will be of medium quality (as peeibed in the simulation), the data
reveals that decreasing the ball misalignment ftérto 1/10 wave, reduces the required
number of measurements)(by approximately one-third to achieve the santenese.
Furthermore, a systematic misalignment test caafpdied to predict the residual rms
wavefront bias of a simulated optical system, botenwork is required before this can
be applied in practice.

We validated the trends observed in the simulabigrcarrying out calibration
procedures on our custom designed micro-interfesgnORTI. MORTI stands for
micro-optic reflection and transmission interferaene(MORTI) and is built from a
Mitutoyo microscope body and fiber laser input. eTtexible and compact micro-
interferometer that can be used to measure forntrandmitted wavefront errors, as well
as radius of curvature. Following optical alignmehall components, the instrument is
calibrated using the RBT. Results of the calilmraindicating MORTI system bias were
as good if not better when compared with other censral interferometric instruments.
Repeatability also compared well.

More and more, instrumentation is being soughtitprove measurements of the
conformity of parts to their tolerances and detisfiects directly on the manufacturing
line [62]. Metrology enables manufacturers to hooperating efficiencies and
production yields gathering quantitative data ort pafects, both during and following
the manufacturing process. The shrinking of higghtgadgets is ever-present, and as
parts continue to shrink and become increasinglyjnptwated, micro- and nano-
metrology will take on a greater role [63, 64]. Welieve that isolating systematic

wavefront biases to achieve low-uncertainty surféoen measurements will help
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advance optical metrology, and will assist futuiferés of other researchers in this field.
Furthermore, self-calibration could be useful ipkgd to removing the discrepancies in
other measurements such as transmission measugeofelens arrays, or even contact

lenses.
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APPENDIX

The following pages contain the detailed MATLAB eogenerated for simulating

the random ball test.

%Create a sphere with low-frequency surface form er rors using
%spherical harmonic functions. Randomly re-orient t he sphere and pick
%a random patch. Remove a best-fit sphere from the data to isolate form
%errors only. Describe sag data for the patch and s end to Zemax.
clear all

close all

%time start
TIC

%Initiate Link

zDDElInit

%Define matrix sizes

zavg = zeros(128);

W = zeros(128);

psum = zeros(128);

%name = num2str(N);

%eval(['p' name ' = zeros(128);)

%%%% % %% % % %% % % %% % % %% % % %% % % %% % % %% % % %% 0%%%
%Number of patches to pick and send to Zemax in a | oop
N=1;
%Define sphere base size
R = 25;
%Define IRREGULAR SPHERE harmonic parameters & mult iplication constant
degree = 6;
order = 1;
M =.008; %used for ref sphere too
%Define grid sizes
sg = 201; %spherical coordinate grid (should be denser than g 0)]
gg = 101; %griddata grid...MUST ALSO CHANGE line 327

0%%%

969%6%%%%%%%%%%% % %% % % % % %% %% %% %% %% % %% %%
for i=1:N
wW = zeros(128);

% Create a grid in spherical coordinates
delta = pi/(sg-1);

theta = 0 : delta : pi; % altitude
phi = 0 : 2*delta : 2*pi; % azimuth
[phi,theta] = meshgrid(phi,theta);



122

% Calculate the harmonic functions
Ymn = legendre(degree,cos(theta(:,1)));
Ymn = Ymn(order+1,:)";
yy = Ymn;
for kk = 2: size(theta,1)
yy = [yy Ymn];
end;
yy = yy.*cos(order*phi);
order = max(max(abs(yy)));
rho = R + M*yy/order;

% Apply spherical coordinate equations
r = rho.*sin(theta);

X = r.*cos(phi);

y = r.*sin(phi);

z = rho.*cos(theta);

%V = X2 +yN 2 + 2.2,

%% Rotate sphere to new random angle
alpha = rand*pi;

beta = rand*pi;

gamma = rand*pi;

% define the rotation matrix

a =[1 0 0;0 cos(alpha) sin(alpha);0 -sin(alpha) co s(alpha)]*[cos(beta)
0 -sin(beta);0 1 O;sin(beta) 0 cos(beta)]*[cos(gamm a) sin(gamma) 0;-
sin(gamma) cos(gamma) 0;0 0 1];

for i=1l:sg
for j=1:sg
a=J[a(1,1) a(1,2) a(1,3);a(2,1) a(2,2) a(2,3);a( 3,1) a(3,2) a(3,3)];
% result of above long equation
b = [x(i,));y(0.,1);z(i,)I; % want to rotate all x's, y's and z's
A = a*b; % do the rotation of every (x,y,z) point
x(i,)) = A(1,1);
y(ij) = A(2,1);
z(i.j) = A(3,1);
end
end

% Exclude data

maxz = 0.564112 * R;

nodata = find(z <= maxz); %finds indices where z <= maxz
z(nodata) = 0.564112 * R; %uses those indices
x(nodata) = 0.564112*R;

y(nodata) = 0.564112*R;

C =min(2);

B = sort(C);

d = max(B);

z=z-d;

z(isnan(z)) = 0;




%Use griddata to change to a uniform grid

% Fit data to an evenly spaced Cartesian grid to pr
exporting to Zemax

Xprime = x';

yprime =",

zprime = z';

newx = xprime(:);

newy = yprime(:);

newz = zprime(:);

[XI'YI] = meshgrid(-R:((2*R)/(g9-1)):R, -R:((2*R)/(
%[newxnewy,newz] =
consolidatorl1d([newx(:),newy(:)],newz(:),'mean’,1.
%newx=newxnewy(:,1);

%newy=newxnewy(:,2);

Z| = griddata(newx,newy,newz, XI,YI);

Zl(isnan(Zl)) = 0;

%
% Create a reference sphere

%Define REFERENCE SPHERE harmonic function paramete
degree = 1;
order = 0;

deltar = pi/(sg-1);

thetar = 0 : deltar : pi; % altitude
phir = 0 : 2*deltar : 2*pi; % azimuth
[phir,thetar] = meshgrid(phir,thetar);

% Calculate the harmonic functions
Ymnr = legendre(degree,cos(theta(:,1)));
Ymnr = Ymnr(order+1,:)";
yyr = Ymnr;
for kkr = 2: size(thetar,1)
yyr = [yyr Ymnr];
end;
yyr = yyr.*cos(order*phir);
order = max(max(abs(yyr)));
rhor = R + M*yyr/order;

% Apply spherical coordinate equations
rr = rhor.*sin(theta);

xr = rr.*cos(phi);

yr = rr.*sin(phi);

zr = rhor.*cos(theta);

%V =X 2 +y."2 +z272;

% Exclude data
maxzr = 0.564112 * R;
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99-1)):R);

e-12);

nodata = find(zr <= maxazr); %finds indices where z <= maxz

zr(nodata) = 0.564112 * R; %uses those indices
xr(nodata) = 0.564112*R;

yr(nodata) = 0.564112*R;

C = min(zr);



B = sort(C);
d = max(B);
zZr=1zr-d;

zr(isnan(zr)) = 0;

%
%Again, use griddata to change to a uniform grid

% Fit data to an evenly spaced Cartesian grid to pr
exporting to Zemax

Xrprime = xr";
yrprime = yr’;
zrprime = zr';

newxr = xrprime(:);

newyr = yrprime(:);

newzr = zrprime(:);

[XIr YIr] = meshgrid(-R:((2*R)/(gg-1)):R, -R:((2*R)
%[newxnewy,newz] =

consolidatorl1d([newx(:),newy(:)],newz(:),'mean’,1.

%newx=newxnewy(:,1);
%newy=newxnewy(:,2);

ZIr = griddata(newxr,newyr,newzr,XIr,YIr);
Zir(isnan(ZIr)) = 0;

zfinal = ZIr - ZI;
%zfinal = -ZI;

%?zfinal = zeros(501);
%oclf

%figure

%surf(XlIr,YIr,zfinal)

%shading interp

%axis equal

%light

%lighting phong

%view(-126,36)

%rotate3d

%ititstr5 = ['best fit sphere removedT;
Y%title(titstrs)

%
% Write gridsag file, then send to zemax
% Write to ASCII file (.dat)

%

% STEP 1. Open file, or create new file, for writin
contents, if any

fid = fopen( 'C:\Program Files\ZEMAX\Samples\NEWgridSAGform.DAT" , 'wit

% STEP 2. Write to the file: 1st, write seven value

line, then enter down to next line

% fprintf(fid,'401 401 0.125 0.125 0 0 O\n') % Widt
fprintf(fid, '201 201 0.25 0.25 0 0 O\n'

% STEP 3. Write all remaining entries (nx*ny)
%for iii = 1:size(zfinal,1)

epare it for

/(99-1)):R);

e-12);

g; discard existing

s for the header

h/pts = 10/100 = 0.1
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% for jjj = 1:size(zfinal,2)
% fprintf(fid,'%f %f %f %f

% end
%end
% fprintf(fid,'%f 0 0 0 O\n',2);

% STEP 3. Write all remaining entries (nx*ny)
fprintf(fid, '%7.4f 0 0 O\n' ,zfinal); %7.4

% STEP 4. Close the file
status = fclose(fid);

% DDE Commands (don't forget to open Zemax ! |
%

% Initiate Link
%zDDEInit
%zSetSurfaceData(4, 52, 5)
%zPushLens(10)

%% Create random misalignment of the gridsag surfac e (max 1/2 wave)

%rz = rand,

%g = -0.003;

%h = 0.003;

%distz = 19 + g + (h-g)*rz; %defocus; %distance fr om objective lens
to surface

dx =0;
dy =0;
distz = 30;

% Send grid data to Zemax
zlmportExtraData(4, 'C:\Program
Files\ZEMAX\Samples\NEWgridSAGform.DAT' )
% Send the misalignment
zSetSurfaceData(4, 52, dx) % Can also use zGetSurfaceData to check
zSetSurfaceData(4, 53, dy)
zSetSurfaceData(3, 3, distz)

zPushLens(10)
% User Input

%u = input(' Acceptable? Y/N [Y]:'/'s");
%if isempty(u)

% u="'Y"
%else
% u="'N}
%end
%if u =="Y";

O Qmmm e e




% Send data back to Matlab, after all N maps have r eturned to Matlab,
Average the data
% Make text file from wavefront map

zGetTextFile( file2' , 'Wfm' |, 'FOO.cfg" ,0)
% Read text file into Matlab and put data in a matr ix called p

% ReadZemaxWaveMap('C:Documents and Settings\Neil

Gardner\Desktop\Project\Zemax\file1")

wm = ReadZemaxWaveMap( 'C:\Program Files\ZEMAX\Samples\file2' );
% Gather wavefront data in matlab, and average

%A = wm.data;

wW = wm.data;

W =W +wW,;

%name = num2str(i);
%eval(['p' name ' = A - zcalib;'])
%eval(['p' name ' = A;)
%psum = psum + wm.data;
end

if u== 'N';
N = N-1;
end

end

%for i=1:N

%name = num2str(i);

%eval(['psum = psum + p' name ;')
%end

zavg = W./N;
%zavg = psum./N;
%zavg = zavg - zcalib;

% Estimate Zernikes

%zfinal = mask_circle(zfinal,[33,33],31); % mask (m atrix,center,radius)
zavg = mask_circle(zavg,[65,65],62); % mask (matrix,center,radius)

vsize = size(zavg);

[mr,ma] = zern_radius_angle(vsize,[65,62],62);
[zernparameters,rmserror,standarddevs,tstatistics,p robabilities] =
zern_estim(zavg,mr,ma,[1:36]);

[x_vect,y vect]=get xy(zavg,l);

% Zernike terms Removal

zavg=rmterms(x_vect,y_vect,zavg,[0 0 0 0 0],36);

% 5 zernike terms in bracket: [tilt power astig ¢ oma spherical]

vsize = size(zavg);

[mr,ma] = zern_radius_angle(vsize,[65,65],62);
[zernparameters,rmserror,standarddevs,tstatistics,p robabilities] =
zern_estim(zavg,mr,ma,[1:36])

%off = offset/N
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a = max(zavg);

b = sort(a);

pk = max(b);

¢ = min(zavg);

d = sort(c);

val = min(d);

pktoval = pk - val,
%RMS
%zavg(isnan(zavg)) = 0;
B = zavg;

B = B(finite(B));

rms = sqrt(mean(B."2));

%figure
pcolor(zavg)
%colormap(gray)
axis equal
shading interp
colorbar(  ‘'vert' )
%c=camlight

tittenum3 = num2str(rms);
tittenum4 = num2str(pktoval);
tittenum = num2str(N);
%titlenum2 = num2str(NA);

titstré = [ 'RBT Avg of ' tittenum " wavefront maps, PV ="' tittenum4 '
wvs, RMS ="' titlenum3 "wvs' L

%titstr = [RBT Average of ' tittenum ' wavefront m aps of a perfect

sphere, NA = "titlenum2 ' , waves';

title(titstré)
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