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ABSTRACT 
 
 

NEIL GARDNER. Precision geometric metrology of refractive micro-lenses. 
(Under the direction of DR. ANGELA DAVIES) 

 
 

The accuracy of interferometric surface form measurements is limited by 

wavefront errors inherent in interference microscopes.  In interferometry, self-calibration 

refers to separating the interferometer bias from the errors on a test surface.  Using a 

medium grade spherical calibration artifact, the random ball test (RBT) self-calibration 

technique is useful for isolating systematic wavefront biases to achieve low-uncertainty 

surface form measurements of the test surface.  Theoretical and experimental studies 

revealed that the calibration result changes with artifact surface quality and misalignment, 

and the effect worsens when calibrating for micro-optics (radii < 1 mm) measurements.  

The curvature of the artifact leads to retrace errors, which are aberrations caused by 

altered ray paths after reflection from the test artifact.  A comprehensive optical ray-trace 

software simulation was developed to model the RBT and explore the calibration 

dependence to various system parameters.  Translational artifact misalignment away from 

null along the optical axis has a direct effect on the calibration result, even when 

simulating a perfect spherical artifact.  Reducing the artifact alignment from ½ wave to 

1/10 wave reduces the required number of measurements by one third.  The RBT was 

tested on a custom interferometer built to test the geometrical properties of refractive 

micro-lenses.  Derivation of a new equation to model the convergence of the test to the 

rms system wavefront bias was accomplished.  Through modeling and testing we were 

able to confirm the validity of the RBT, recommend an efficient method of 

implementation and understand the aspects impacting the calibration uncertainty. 
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CHAPTER 1:  INTRODUCTION 
 
 

Electromagnetic radiation, or light, is defined as a self-propagating wave in space 

consisting of electric and magnetic field components.  Wavelength is the distance 

between repeating units of the oscillating wave pattern.  A lens is a three-dimensional 

device that forces light to converge or diverge, and is typically formed from a piece of 

shaped glass.  Miniaturization is currently a growing trend and the demand on optical 

component manufacturers to produce more powerful and smaller lenses with more 

precise tolerances has fueled the demand for precision non-contact measuring 

instruments.  For continued advancement in precision manufacturing technology, the 

ability to measure optical components must surpass the ability to fabricate them.   

Micro-optics is a term referring to a family of devices consisting of very small 

lenses that enable the collection, distribution, and modification of light on the micro-

scale.  These tiny focusing elements, typically 5 µm – 2 mm in diameter with a radii of 

curvature (ROC) of 0.25 – 2.5 mm, facilitate the imaging, focusing, branching, and 

transmitting of light waves.  Micro-lenses have emerged as essential components in 

technology sectors such as optical communications, optical storage and display systems, 

and biomedical instruments [1].  Their ability to ‘steer’ and shape light depends on a few 

key parameters such as material homogeneity, and surface form error.  Our research 

focuses on metrology for form error, as this dominates micro-lens performance for 

refractive components.  Among the different types of micro-lenses, surface-relief 
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refractive lenses have excellent focusing characteristics because of their 

ideal spherical profiles. 

 

Figure 1. Typical light wave having orthogonal electric and magnetic field components [1]. 

The applications for micro-lenses are vast and ever-increasing.  Micro-lens arrays 

are used to increase the optical fill factor in CCD (charge-coupled device) sensors and 

hence improve the sensitivity of the sensors.  Sensitivity is defined as the smallest change 

that can be detected by a device [1].  These lens arrays aid in focusing and concentrating 

light onto the photodiode surface, thus diverting and collecting light that would otherwise 

fall on the non-photosensitive regions of the device.  CCDs are used in digital cameras, 

optical scanners and video cameras as light-sensing devices.  Micro-lens arrays are also 

widely used for fiber connectors and switches in optical networking for micro-electro-

mechanical systems (MEMS) [2].  The use of micro-lenses is popular in optical storage 

technology as well, specifically where lens arrays facilitate parallel accessing of multiple 

tracks in a system.  The telecommunications industry, for example, uses lens arrays to 

couple optical signals with multi-fiber connectors.  In optical memory and laser disk 

systems, a micro-lens is used to focus a laser beam down to a 1 µm-diameter spot, 

permitting the reading of pulse signals to and from optical disks.  Micro-lenses are used 

in advanced fingerprint sensors for security applications like customs clearance and 

automobile anti-theft systems.  They are currently being used to enhance cell phone 
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backlighting.  Micro-lenses have become an important part of daily life and are in great 

demand.  

 

 

Figure 2. Three-dimensional MEMS optical switch uses a micro-lens array for focusing and 
collimating optical signals [3]. 

 
Refractive micro-lenses are usually fabricated by one of a number of processes, 

including electron beam lithography, ion exchange, electro-migration, thermal reflow, 

focused ion beam, chemical vapor deposition, diffusion polymerization, excimer laser 

irradiation, proton beam writing, and various other techniques originally introduced for 

fabricating optical fibers and dielectric waveguides [4].  Common micro-lens materials 

are sol gel glass, gallium phosphide, calcium fluoride, silicon and fused silica.  The 

optimization of micro-lens manufacturing to achieve sub-wavelength form accuracy 

specifications is a well-known objective of the fabrication industry.  Understandably, the 

measurement of micro-lens surface form errors with sub-micrometer uncertainty creates a 
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unique and challenging measurement task, especially when monitoring form tolerances 

on the production floor.  However, through detailed investigation, advances in micro-lens 

form metrology using interferometry can be realized. 

 
 

Figure 3. Processing steps for an array of lenses fabricated using proton beam writing and a 
thermal reflow technique [5]. 

 
Surface form error, also known as figure error, is defined as low spatial frequency 

dimensional error on a part.  Form error can be measured both by contact and non-contact 

methods.  Phase-shifting interferometry is a confirmed method for testing optical 

components and systems, and is widely used for precision surface metrology 

applications.  Phase, is the present position in the cycle of something that changes 

cyclically, like a wave.  A wavefront is an imaginary plane, or surface, of points in space 

that are reached at the same instant by a wave propagating through a medium (i.e. points 

with the same phase).  In interferometry, two coherent wavefronts propagate one each to 
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a reference surface and the surface under test.  Then interference between the reflected 

test and reference wavefronts appears as a set of bright and dark fringes and provides 

information related to surface form errors.   

The measurement quality depends on the quality of the interferometer and the 

reference optic [6].  The resolution and phase contrast are limited by the illumination 

wavelength of the instrument.  The rms (root-mean-square) value is a good single-value 

description of the overall quality of a wavefront, as it statistically characterizes an entire 

two-dimensional map.  Interferometry is our chosen tool for micro-lens form metrology 

because one can achieve sub-wavelength measurement accuracy over large surface areas 

without contacting the part [7].  Contact methods damage the object surface and are time 

intensive.  Our research focuses on using non-contact interferometric metrology to 

achieve low uncertainty measurements of micro-refractive lens surface form errors. 

 

Figure 4. Microscopic image of surface-relief refractive micro-lenses [8]. 

Previously reserved for quality control in a laboratory environment, phase-shifting 

interferometry has become a necessary technology for monitoring surface form on the 

production floor [9].  Manufacturing tolerances for optical components such as cell-

phone micro-lenses, require interferometric-level metrology in environments where low-

noise testing is not viable.  The reproducibility, accuracy, spatial resolution, vertical 

resolution, speed, and flexibility of this technology have continuously improved to 
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accommodate the increasing demands of the optical manufacturing industry [10].  

Presently, most interferometry is carried out using a laser as the light source.  This is 

primarily because of source brightness and the large temporal coherence.  Light waves 

are correlated, or coherent if they come from the same source and have a narrow 

bandwidth.  With a narrow bandwidth, the coherence length is long and the two 

interferometer path lengths do not need to be the same optical path length as they would 

if a short coherence length white light source was used. 

 
Figure 5. Surface-relief refractive micro-lens with a spherical surface profile. 

It is often true in interferometric optical testing that the desired measurement 

uncertainty is of the same order or larger than the systematic bias of the instrument in 

question.  Interferometric measurements are usually very repeatable, therefore 

measurement results can be very misleading.  When measuring at such a demanding 

level, often a high-quality calibration artifact is not available to measure or assess the 

system bias – often the part to be tested is as good or better than any calibration artifact 

available.  In this instance, one must use what are called absolute or self-calibration tests 

[11].  In recent years, the demand for more accurate surface metrology has increased [12, 

13]; consequently much attention has been directed toward methods for calibrating 

interferometers.   
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Calibration is a mechanism for creating a controlled, traceable process that meets 

certification requirements and allows the measurement to be performed with well-defined 

and quantitative uncertainty.  Moreover, instrument calibration on the factory floor in 

general leads to lower uncertainties and increased system utilization.  In interferometry, 

calibration is dominated by the need to assess the interferometer bias added to each 

measurement.  The bias dominates the measurement (as opposed to random noise or 

factors contributing to repeatability) and must be removed from measurements to 

adequately lower measurement uncertainty.   

A number of methods have been developed for absolute surface testing, including 

the N-position, two-sphere, three-flat and random averaging tests.  The basic principle is 

that the reference wave error remains invariant when the part is moved.  As a rule, these 

tests require multiple parts and/or measurements at different positions [14].  For example, 

the two-sphere method acquires two null confocal measurements with 180º rotations 

between them, as well as a null point focus (cat’s eye) measurement [11].  The reference 

and test wavefronts can then be uncovered analytically from these data files.  The random 

ball test (RBT) self-calibration technique uses a random averaging approach.  It results in 

a wavefront map of the interferometer bias when measuring spherical parts.  
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Figure 6. Two-sphere test for absolute calibration [15]. 

The importance of surface metrology is often neglected and is usually regarded as 

a necessary evil if at all. In his book Handbook of Surface and Nanometrology, D. J. 

Whitehouse states: “Surface metrology cannot be regarded as an irritant to be added to 

the general size measurement of a component.  The smallness of its magnitude does not 

infer the smallness of its importance [16].”  In keeping with this theme, our hope is to 

remove as much of the ambiguity related to micro-lens surface metrology as possible.  

The ultimate research objective is to confirm the validity of the RBT for micro-lens 

metrology calibration, determine an efficient method for carrying out the test, and 

understand the aspects impacting calibration uncertainty.   

The following sections describe the theory behind interferometry for optical 

metrology and the RBT, the implementation of the RBT on an in-house micro-

interferometer, and the development of a custom ray-trace software simulation to model 

the RBT.  We will compare and contrast our results from simulation and experiment in an 

effort to reveal the functionality and limitations of this random averaging technique.  
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Finally, we will summarize the indispensable knowledge gained, namely that calibration 

artifact curvature and position misalignment greatly affect the interferometer wavefront 

bias, especially at the micro-optic level. 

 
Figure 7. Setup of a Twyman-Green interferometer. The deviation of the reflected beam in the 

test arm from a plane wave provides the information on the deviations from the sphericity of the 
micro-surface [17]. 

 
 

 



CHAPTER 2:  SURFACE METROLOGY 
 
 

2.1  Roughness, Waviness, and Form 

Geometric metrology can be defined as the study of surface shape measurements 

which involves measuring quantities, calibrating instruments, and determining the 

measurement uncertainty.  Generally speaking, calibration implies the act of quantifying 

the accuracy of a measurement by comparison with a measurement standard.  

Measurement uncertainty quantitatively represents the confidence in the measured value 

as an estimate of the true value.  All physical measurements should be reported as an 

estimate of the true value of a measurand plus the uncertainty associated with that 

estimate.   

The performance of a micro-lens is usually characterized by its geometrical 

properties such as ROC, surface texture, transmitted wavefront and back focal length.  

Surface texture is particularly interesting due to its wave-like nature and the varying 

spatial frequency ranges that define it.  Spatial frequency is a characteristic that means 

the property is periodic across position in space.  The three main elements of surface 

texture (or surface errors) are roughness, waviness and form, and they are never found in 

isolation [18].  In this context, error refers to the difference between the true surface 

shape and the intended surface shape.  Most surface errors are a combination of all three 

spatial frequencies and it is common to assess them separately.  Roughness consists of 

the highest spatial frequencies and appears as process marks produced by the fabrication 
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process. The material structure can also play a role in the roughness characteristics.  

Waviness is the special wavelength range beyond the roughness range.  Waviness is 

typically produced by instabilities in the fabrication process.  Form, or form error, refers 

to the coordinate-specific shape of a surface that differs from the nominal shape or flat 

line.  For refractive plano-convex micro-lenses (i.e. a lens used to focus a parallel beam 

of light traveling along the lens axis and passing through the lens to a spot on the axis), 

form error implies deviations from the best-fit sphere for the surface.   

In general, form error encompasses long wavelength, low spatial frequency 

deviations from the ideal surface shape.  Form deviations from the desired shape can be 

the consequence of several factors, including excessive part handling and over-clamping, 

which introduce stress patterns in the component.  Roughness and waviness can limit the 

accuracy of a form measurement. 

 

Figure 8. Various spatial wavelengths for different surface features [1]. 
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Figure 9. Relationship between surface roughness, waviness and form [19]. 

Refractive micro-lenses are continuous-relief spherical lenses (i.e. lenses whose 

surfaces have curvature) with aperture diameters on the scale of 10 µm to small fractions 

of a millimeter.  Details of their dimensional shape strongly influence optical 

performance.  Often, a component may have a sub-micrometer form tolerance, however 

surface finish might not be critical.  Tolerances on low-spatial frequency dimensional 

surface form error for these lenses are considerably smaller than their largest dimension 

and often approach tens of nanometers.  For that reason, optical metrology (or optical 

profiling) techniques are preferred to higher-uncertainty and time-consuming contact 

methods.  Optical interference microscopes are commonly used for high-precision 

surface form analysis for micro-scale components [20].  Interferometry establishes a 

direct link to the definition of the metre, as the metre is currently defined with respect to 

laser radiation and is measured by metrologists to one part in 1012.   

Even on the shop floor for measurements of micrometer-level features, 

interferometers are often the instrument of choice because of their high accuracy and ease 

of use.  Their rapid full-aperture measurement capability, ability to contour three-

dimensional surfaces, and non-contact measurement nature, are of great interest for 

practical uses such as process control and quality assurance.  Stylus profiling techniques, 



 13 

like coordinate measuring machines, are the chosen tool in some cases, but have 

considerable drawbacks, including possible tip damage and part damage upon contacting 

the part.   Scanning microscopes can also be an effective choice, but limitations include 

lower acquisition speeds and a limited maximum image size. 

 

Figure 10. Various measurement tools for different spatial wavelengths [1]. 
 
 

 

Figure 11. Stylus profiling using a coordinate measuring machine. 
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2.2  Optical Interference 

Optical interferometry is based on the superposition principle for waves – two 

coinciding light waves with the same phase add constructively, while two waves with 

opposite phases will cancel each other out, assuming both have the same amplitude 

[21,22].  Given two such waves, 

(1)     ( )1011 sin αω += tEE    and   ( )2022 sin αω += tEE  , 

where 0E  is the amplitude, α  is the phase, and the waves have identical frequencies and 

speed, the resultant wave is the linear addition of the waves, namely, 

(2)     21 EEE +=  . 

Forming the sum and expanding using trigonometric identities, we obtain 

(3)     ( ) ( ) tEEtEEE ωααωαα cossinsinsincoscos 202101202101 +++=  . 

Since the amplitude-related quantities are constant over time, we can let 

(4)     2021010 coscoscos ααα EEE +=    and 

(5)     2021010 sinsinsin ααα EEE +=  . 

Recalling that 1cossin 22 =+ αα , we square the amplitude relations, take the sum, and 

obtain the resultant wave’s amplitude 

(6)     ( )120201
2
02

2
01

2
0 cos2 αα −++= EEEEE   . 

To find the resultant phase, we simply divide the amplitude relations, 

(7)     
202101

202101

coscos

sinsin
tan

αα
ααα

EE

EE

+
+

=   , 

and the resulting disturbance becomes 

(8)     ( )αω += tEE sin0  . 
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The resultant wave is harmonic and has the same frequency as the individual waves, 

while its phase and amplitude depend on details of the two waves interfering.  The phase 

difference between the two interfering waves is the key factor, as seen by the expression 

( )120201 cos2 αα −EE , which is known as the interference term.   

 A maximum amplitude is obtained when the waves are in phase, while a 

minimum results when they are out of phase by 180º.  Assuming the waves are initially 

in-phase, and setting 21, xx  to be their respective distances from the source, we can also 

define the phase difference, δ, as 

(9)     ( ) ( )21
0

12

2
xxn −=−=

λ
πααδ   , 

where 0λ  is the wavelength and n is the refractive index in the medium.  The expression 

( )21 xxn −  is referred to as the optical path difference (OPD), or wavefront error, of the 

interfering optical waves.  This information is crucial to the success of an interferometric 

test.  Comparing reference and test wavefronts provides an interferogram (contour map) 

of the phase differences between the two wavefronts, and enables high resolution 

measurements of the structure of the test surface or lens, assuming good temporal 

coherence.  Recall that light is emitted in uncorrelated wave-trains with random phase 

jumps between, and the average length of a wave-train is known as the coherence length 

of the source.  If the optical path difference between two light beams is larger than this 

length, then an interference pattern cannot be observed or recorded.  Hence, the optical 

path difference between the beams must be less than the coherence length of the source in 

order to observe interference.  For helium-neon lasers, the coherence length is typically 1 

metre [1].  In optical testing with interferometry, system aberrations and reference surface 
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errors contribute to the OPD map and are a bias in the measurement [21].  The 

significance of the bias must be assessed.  In optics, aberrations are defects of a lens 

system that cause its image to deviate from the rules of paraxial imagery.  Electronic 

phase-measurement techniques can be used in interferometers, such as the Twyman-

Green, where the phase distribution across the interferogram is measured.  Phase-shifting 

interferometry makes use of these measurements, since it provides for rapid precise 

assessments of the phase distribution. 

 
(a)                                            (b) 

 
Figure 12. (a) Two waves in phase (bottom left) combine and interfere constructively to form a 
larger resultant wave (top left); (b) two waves out of phase (bottom right) interfere destructively 

and cancel out (top right) [23]. 
 

2.3  Twyman-Green Interferometry 

Phase-shifting Twyman-Green interferometry is the preferred configuration for 

measuring refractive micro-optics [9].  The Twyman-Green is similar to the Michelson 

interferometer, except that it is illuminated with a point source instead of an extended 

source.  Laser light from a point source is incident on a 50/50 beam splitter, and part of 

the wave is reflected while part is transmitted.  Both waves have smaller amplitudes than 

the original wave, therefore it can be said that the Twyman-Green is an amplitude-

splitting interferometer configuration.  Interference between the waves reflected from the 

test surface and the reference mirror are detected at the detector array.  In an 

interferometer which uses a reference surface, the measured surface heights correspond to 
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the difference between the test and reference surfaces, at the very least.  Error sources for 

phase-shifting measurements include phase-step error, mechanical vibration, thermal 

drift, and air turbulence.  All of these sources can be identified and minimized in most 

cases.  In their paper Vibration Insensitive Interferometry, Millerd et al. assert that the 

largest limitation of phase-shifting interferometry for optical testing is the sensitivity to 

the environment, both vibration and air turbulence [24].  They explain that an 

interferometer using temporal phase-shifting is very sensitive to vibration because the 

various phase shifted frames of interferometric data are taken at different times and 

vibration causes the phase shifts between the data frames to be different from what is 

desired.  Vibration effects can be decreased by recording all of the phase shifted frames 

simultaneously, while turbulence effects can be reduced by averaging many 

measurements.  For the most precise and accurate results, instruments must be placed in a 

temperature-controlled space. 

 

Figure 13. Twyman-Green Interferometer used to test a spherical part [22]. 

SourceSourceSourceSource    

BSBSBSBS    

TestTestTestTest    
PartPartPartPart    

LensLensLensLens    

Ref.Ref.Ref.Ref.    
MirrorMirrorMirrorMirror    

LensLensLensLens    

 



 18 

Phase-measurement is achieved by varying the phase of the reference wave in the 

interferometer in a known manner [25].  Typically, this is done by mounting the reference 

mirror on a piezo-electric transducer (PZT).  Undesirable properties of the PZT, such as 

hysteresis and nonlinear motion, must be removed beforehand via calibration in optical 

software [26].  By changing the voltage in the transducer, the reference mirror is moved 

in small steps by a known amount to alter the phase of the reference wave a known 

amount.  A detector array (CCD) detects the intensity distribution across the interference 

pattern.  The intensity pattern is fed into a computer software program three or more 

times (depending on the specified algorithm), and between each intensity measurement, 

the phase of the reference beam is stepped a known amount.  The wavefront phase is 

encoded in the variations in the intensity pattern of the recorded interferograms, and a 

point-by-point calculation recovers this phase.   

Finally, the optical path difference map is obtained by unwrapping the phase 

profile to remove phase discontinuities and converting phase to height by multiplication 

of the wavelength divided by 2π.  Phase unwrapping resolves the 2π phase ambiguity.  In 

an interferometer that uses a reference surface, the optical path difference between the 

test and reference wavefronts nominally corresponds to the measured test surface height.  

Phase-shifting techniques are especially advantageous because good results are obtained 

even with low contrast fringes [26].  It is important to note, however, that the wavelength 

of the laser source affects the phase contrast and spatial resolution of the instrument.   
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Figure 14. Phase-shifting waves; by stepping the path length by a number of known phases it is 

possible to recover the phase of the interference signal [27]. 
 

 Most Twyman-Green interferometers utilize polarizing optics to allow for easy 

access to an amplitude balance between test and reference waves, and to reduce the 

contribution of false reflections [17].  Virtually all optical imaging systems suffer from 

stray light or unwanted light, i.e. light from a bright source shining into the front of the 

system and reaching the image as unwanted light [28].  Stray light can never be 

completely eliminated, and is manifested in two ways: ghost images (due to refractive 

optics and windows) and scattered light (from reflective surfaces).  Stray light is 

sometimes referred to as optical noise.  Typically, an anti-reflection coating is applied to 

each lens surface to reduce the ghosting problem.  Scattered light can be minimized by 

eliminating straight shots in the optical system with apertures.  Using a rotating piece of 

ground glass can also be effective in averaging out unwanted contributions by reducing 

the spatial coherence of the laser beam. 

Aside from stray light, there are other problems with using this optical 

measurement method.  When performing a measurement, as much as possible of the 

interferometer's pupil should be used in order to maximize the number of data points.  An 

optical zoom system is key to providing pupil matching, and the resolution of the optical 
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measurement system is dependent upon the numerical aperture (NA – cone of light) of 

the objective lens, as seen in Figure 15.  Magnification is another important criterion.  

The magnification determines the relative lateral size of the surface under test in the 

image plane (at the detector).  However, the higher the magnifying power of the 

objective, the more the depth of focus is limited, and it becomes difficult in many cases to 

clearly image all parts of a three-dimensional object, such as a micro-lens surface [29].  

The accuracy of a form measurement of a steep surface will be affected if the depth of 

focus is not sufficient.   

A Twyman-Green interferometer set in confocal mode is useful for the 

measurement of the surface deviations of a micro-lens from an ideal spherical shape, as 

well as for the measurement of the radius of curvature of the surface.  The null confocal 

mode is set by positioning the micro-lens where the incident spherical wavefront rays 

reflect from the test surface back onto themselves in coaxial fashion.  In other words, the 

spherical test wavefront nests into the surface of the part at confocal, picking up 

deviations on the part, and is reflected back into the interferometer.  At this position, the 

center of curvature of the test part is coincident with the focus of the objective lens being 

used.  In geometrical optics, an idealized narrow beam of light, or ray, is an abstract 

object that is perpendicular to the wavefront.  Rays are used to model light propagation 

through an optical system by dividing the real light field into distinct rays that can be 

computationally propagated through the system by a technique known as ray-tracing.   
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Figure 15. The dependence of system resolution on the aperture objective lens [19]. 

Some important limitations of phase-shifting in optical testing appear as random 

noise in the measurement, including the impact of environmental disturbances like 

vibration and air turbulence.  Phase-shifted interferograms are taken at different times 

and vibration causes the phase shifts between the data frames to be inaccurate.  Vibration 

effects can be counter-balanced by taking all the phase shifted frames simultaneously, 

while turbulence effects can be removed, to some degree, by averaging several 

measurements [24].  Another drawback is the technique’s inability to measure optically 

rough surfaces.  Surface roughness leads to data dropout and sharp spikes where local 

high surface slopes scatter light away from the detector.  To decrease the effect of surface 

roughness, longer wavelengths should be used along with appropriate detectors.  Another 

technique is image the interferogram onto a rotating ground glass to blur the interference 

fringes and filter out the higher harmonics or noise.   

2.4  Self-Calibration 

Using interferometry as a form error characterization tool also introduces biases 

(or noise) to the measurement.  Random noise is an experimental uncertainty that can be 
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revealed by repeating a measurement and can be reduced by averaging [30].  Systematic 

biases, unlike random noise, are repeatable errors and cannot be revealed in this way.  

Repeatable errors lead to measured values that are systematically too high or too low and 

can be intrinsic to the instrument or introduced by human influence [31].  In many optical 

testing applications, the systematic instrument biases are comparable to or larger than the 

form errors on the lens under test, therefore a rigorous calibration method is necessary 

[11].  Current practice typically involves measuring a high quality part, such as a λ/20 

artifact, and measured errors are equated to the instrument bias.  An alternative is to use a 

multi-orientation self-calibration method, such as the random ball test (RBT) [13, 32].     

Self-calibration is commonly used in optical testing, and in general refers to the use of an 

imperfectly calibrated measuring instrument and one or more imperfectly calibrated 

artifacts to improve the calibration of the instrument and the artifacts [33].  

The random ball test is based on averaging and exploits the spherical symmetries 

of a sphere.  Averaging techniques are often used to reduce random noise, and variations 

of this method have been used for self-calibration.  For example, measurements of 

random patches of a large optical flat can be averaged together to estimate systematic 

biases in flatness measurements, and a similar technique using subaperture patches on a 

ball has been used to calibrate interferometer transmission spheres and Twyman-Green 

interferometers used for micro-refractive lens measurements [34].  These methods treat 

the errors in the calibration artifact as statistically independent noise that is reduced by 

averaging.  The result is a calibration of the system with an uncertainty that decreases by 

the inverse square root of the number of random positions sampled. 
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Figure 16. Systematic and random errors. 

 

The random ball test (RBT) is an averaging technique applied to a series of sphere 

surface patches for the purpose of determining the bias that the interferometer itself adds 

to a given micro-lens form error measurement.  Once determined, the bias can then be 

subtracted from future measurements to reduce measurement uncertainty.  This technique 

is based on the observation that the errors on a sphere are zero on average.  This is 

supported by the fact that the shape of a sphere can be described by a linear combination 

of spherical harmonics, and that the integral of each spherical harmonic over the sphere is 

zero (aside from the first terms which represent a constant and the base radius of the 

sphere) [11, 32].  When the measurements of randomly selected surface patches are 

averaged, the sphere form error contribution approximately drops out and the average 

converges to the bias introduced by the interferometer [34].  The sphere contribution to 
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the average identically goes to zero only in the limit of an infinite number of 

measurements, thus a finite number of measurements limits the uncertainty of the 

calibration.  In previous work, we demonstrated the application of the RBT to the 

calibration of a scanning white light interferometer and a Twyman-Green interferometer 

using a 1 mm diameter steel sphere [34].  The results showed biases on the order of a few 

hundred nanometers peak-to-valley for both instruments. 

To improve our understanding of the RBT, consider gathering a collection of 

measurements of the surface profile of a sphere, where the sphere is randomly 

repositioned between measurements.  We can write each measurement (indicated by the 

subscript i) as, 

(10)     instrumentballi WWW
i

+=  

where the measurement is a simple sum of the form errors on a given patch of a micro-

sphere and the errors introduced by the instrument itself (the instrument bias).  When the 

measurements are averaged, the sphere surface error contribution approximately drops 

out and the average converges to the errors introduced by the instrument as follows, 
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Therefore, using a random ball averaging technique enables the determination of a 

system bias in the instrument, namely, 
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N

W
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Σ
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This result can then be subtracted from future measurements to achieve a better estimate 

of surface form errors,  

0 
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As previously mentioned, the random ball test is based on the fact that the errors 

on a ball can be described by spherical harmonics as follows, 
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where )(cosθm
lP  are the Legendre polynomials and the coefficients, m

la , represent the 

magnitude of each term.  When ),( φθA  is integrated over all values of θ  and φ , only the 

0
0a  (constant)  coefficient survives and this reflects the radius of the ball.  This shows that 

the departures from a best-fit sphere on a ball are zero on average.  Interferometric 

measurements of regions on the ball surface reflect exactly this, departures from a best-fit 

sphere.  In practice, the conditions just described are never perfectly realized though.  

Because an interferometer measures data over an area (or patch), the measurement areas 

will tend to overlap as the number of measurements grows over the surface of the sphere, 

which could lead to correlations in the sampling.  It is also untrue that the measured area 

represents the form error with respect to the best-fit sphere for the whole ball surface.  

Actually, it only represents the departure from the local best-fit sphere.  Even so, 

simulation suggests that this is valid in the presence of the shortcomings encountered in 

an experimental setting. 

2.5  Aberration Theory 

A perfectly corrected optical system images a point in the object plane as a point 

in the image plane and transforms an incident spherical wavefront into an emerging 

spherical wavefront.  We call this a first-order paraxial, or small-angle, approximation 
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which is never exactly attainable.  Rays that make a small angle with the optical axis and 

travel close to the axis are called paraxial rays.  Peripheral rays interact with the edges of 

the components in an optical system.  We can also say that deviations from the paraxial 

analysis provide a convenient measure of the quality of an optical device.  Such 

departures from the ideal conditions are known as aberrations, and are embodied in five 

primary aberration terms, namely, spherical aberration, coma, astigmatism, field 

curvature and distortion.   

 

Figure 17. Wave aberrations result from defects in the components of an optical system. 
 
 

Wavefront (or wave) aberrations are third-order deviations in optical path length 

between the actual and ideal wavefronts caused by imperfections in the components of an 

optical system (i.e. beam-splitter, objective lens, etc…).  In the context of interferometry, 

aberrations can appear as a direct instrument bias in the measurement.  System aberration 

leads to blurring of the image in a conventional imaging system, and instrument-makers 

must correct optical systems to compensate for aberration.  Seidel polynomials are used 

to mathematically describe the primary aberrations.  Higher-order terms also exist, and 
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are frequently described by Zernike polynomials, which, unlike Seidels, are orthogonal 

polynomials, meaning the contribution of each polynomial to the linear combination 

description of the wavefront is unique.  In interferometry, a microscope objective lens 

transforms a test beam into a well-defined spherical wavefront which is useful for testing 

spherical surfaces and lenses.   

 
 

Figure 18. First ten Zernike polynomials [15]. 
 
 

 There are two dominant naming and ordering conventions for the set of Zernike 

polynomials in optical testing.  We follow and present here the University of Arizona’s 

description in the form of a table of thirty-six entries.  The orthogonality of the Zernike 

polynomials leads to several useful properties when they are used to describe a wavefront 

within a circular pupil.  Orthogonality also simplifies the task of fitting polynomials to 
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the measured data points.  When aberration polynomials are used to represent a 

wavefront, the purpose of the fit is to find the polynomial coefficients that best represent 

the measured data.  A minor inconvenience with these polynomials, is that non-

rotationally symmetric aberrations, like coma and astigmatism, are split into two 

components.   

 

Table 1. U of A description of Zernike aberrations [35]. 
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Poorly-corrected objective lenses often exhibit spherical aberration which causes 

light passing through the periphery of the lens to focus at a different location than light 

passing through near the lens center.  Consequently, a spherically-aberrated lens has no 

well-defined focus.  Spherical aberration is always present for lenses with spherical 

surfaces.  The use of symmetric doublets or aspheric lenses greatly reduces spherical 

aberration.   

 

Figure 19. Spherical aberration; a perfect lens (top) focuses rays to a single point, but a real lens 
(bottom) focuses to different points depending on the radial position of each incoming ray [36]. 

 
 

Astigmatism is said to be present when an optical system has different foci for 

rays that propagate in two perpendicular planes.  Light rays lying in the tangential and 

sagittal planes refract differently, which results in the different focal lengths for each 

plane.  Astigmatism depends very strongly on the oblique angle of the light beam.  
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Figure 20. Rays existing in meridian and sagittal sections after being refracted by the optical 
system do not gather in one point due to astigmatism [37]. 

 
 

Coma is a result of refraction differences by light rays passing through the various 

lens zones as the incident light angle increases.  This aberration is encountered with off-

axis light and is most severe when the optical system is out-of-alignment.  In other words, 

coma is a variation in magnification over the entrance pupil and it makes off-axis point 

sources appear distorted. 

 

Figure 21. Coma aberration [38]. 
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Field curvature is an aberration in which the focus changes from the center to the 

edge of the field of view.  This aberration causes a flat object to be imaged onto a curved 

surface rather than a plane. 

 

Figure 22. Field curvature [39]. 

When an image differs geometrically from its object, distortion is said to be 

present.  There are two types of distortion, positive and negative, and both are caused by 

variations in the magnification of the optical system.  A common cause of distortion is 

the use of a stop, or aperture, to reduce spherical aberration or astigmatism.  As distortion 

increases, the image appears in focus over the entire field, but the image size differs at the 

center compared to the periphery of the field of view. 

 

Figure 23. Distortion aberration [40]. 

As previously mentioned, aberrated wavefronts can be represented 

mathematically using the set of Zernike polynomials.  The Zernike representation of the 
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wavefront is then a set of best-fit coefficients that each embody the fundamental 

aberrations [40].  Even and odd Zernike terms exist.  The odd polynomials are defined as 

(15)     ( ) ( ) ( )φρφρ mRZ m
n

m
n cos, =   , 

and the even Zernike polynomials as 

(16)     ( ) ( ) ( )φρφρ mRZ m
n

m
n sin, =−   . 

The m and n are nonnegative integers (n ≥ m), φ is the azimuthal angle in radians, and ρ  is 

the normalized radial distance.  The radial polynomials m
nR  have no azimuthal 

dependence, and are defined as 
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if n-m is even, and, 
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if n − m is odd.  A pre-defined set of thirty-seven Zernikes is commonly used to describe 

typical wavefront aberration.  

 
"Piston", equal to the mean (or constant) value of 
the wavefront 

 
"X-Tilt", the deviation of the overall beam in the 
sagittal direction 

 
"Y-Tilt", the deviation of the overall beam in the 
tangential direction 

 
"Defocus", a parabolic wavefront resulting from 
being out of focus 
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"X-Astigmatism", a horizontally oriented 
cylindrical shape 

 
"Y-Astigmatism", a vertically oriented cylindrical 
shape 

 
"X-Coma", comatic image flaring in the horizontal 
direction 

 
"Y-Coma", comatic image flaring in the vertical 
direction 

 "Third order spherical aberration" 

Table 2. The first nine Zernike polynomials. The normalized pupil radius is ρ , with 0 ≤ ρ  ≤ 1, θ  is 
the azimuthal angle around the pupil, with 0 ≤ θ  ≤ 2π, and fitting coefficients a0 through a8 are 

the wavefront errors in units of wavelengths [40]. 

Defocus, or wavefront curvature, is represented in the Zernike description with 

the polynomial 2ρ 2 − 1 and the coefficient for defocus is labeled a3.  The parameter a3 has 

units of length but is commonly reported in waves which is a dimensionless number that 

is the number of wavelengths of light.  Defocus corresponds to the parabola-shaped 

optical path difference between two spherical wavefronts that are tangent at their vertices 

and have different radii of curvature.  Defocus refers to a translation along the optical 

axis away from the plane or surface of best focus.  Defocus typically reduces the 

sharpness and contrast of an image, and sharp high-contrast edges become gradual 

transitions.  Almost all optical devices utilize some form of focus adjustment to minimize 

defocus and maximize image quality.  Defocus is also commonly referred to as power. 

 
Figure 24. Defocus (power) aberration.



CHAPTER 3:  CUSTOM INTERFEROMETER 
 
 

3.1  Micro-Optic Reflection and Transmission Interferometer (MORTI) 

 We have developed a flexible and compact micro-interferometer that can be used 

to measure micro-lens form and transmitted wavefront errors, as well as radius of 

curvature and back focal length.  MORTI is constructed on a Mitutoyo® microscope 

body and operates with a 633 nm helium-neon laser fiber input as the light source.   

For form measurements, MORTI is designed to work in reflection in a Twyman-

Green configuration.  The input arm contains a collimating element and a pair of lenses 

arranged in an afocal configuration to expand the beam diameter.  One of a series of high 

quality Mitutoyo microscope objectives (0.28 < NA < 0.9) is used as a diverging element 

in the test arm of the interferometer.  The reference beam is reflected from a mirror 

mounted on a piezo-electric transducer (PZT) for phase-shifting.  Interference of the 

recombined beams is analyzed on a CCD camera via a system of 4f relay lenses.   

The instrument has the capability to measure micro-lenses with radii of curvature 

between 150 µm and 3 mm.  Surface data is acquired and analyzed using IntelliwaveTM 

data acquisition software made by Engineering Synthesis Design, Inc.  Figure 27 shows 

all the components of the interferometer installed on the microscope body.  MORTI is 

unique from other commercial interferometers for a few reasons, including the fact that it 

can measure multiple properties of refractive and diffractive lenses.  Furthermore, the 

optical setup is fiber-based and makes use of a laser-to-fiber coupler, 
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whose internal surfaces are angle polished and coated to minimize back reflections.  

Also, it is well-known that association of the measured wavefront with the surface errors 

of the part requires that the phase of the wavefront at the detector (CCD array) be the 

same as the phase profile at the test surface.  The unique focusing ability of the 

instrument can account for this issue, by varying the distance between the two afocal 

systems that make up the 4f imaging leg, via a focusing-fold-mirror-assembly (FFMA).  

In addition, diffraction effects stemming from double-pass configurations may be 

remedied by imaging the optical pupil onto the CCD.  The term diffraction, implies 

diverse phenomena related to wave propagation, such as the bending, spreading and 

interference of waves emerging from an aperture.  Diffraction can also be thought of as 

the breaking up of light as it passes around an object or through a hole. 

While diffraction is always said to be present, its impact is typically only 

observable for waves where the wavelength is on the order of the feature size of the 

diffracting objects or apertures.  Due to diffraction effects, a lens cannot take a point 

object and image it as a perfect point image, but only as a pattern of concentric rings.  

Consequently, there is a diffraction limit on the minimum separation of two adjacent 

points that even a perfect optical system can resolve, and there is little need for designing 

or testing an optical system to better than this limit.  Rayleigh has shown that for a 

wavefront to be diffraction-limited, it must not deviate from a true sphere by more than a 

quarter of a wavelength [1]. 
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Figure 25. 4f relay system 

 

Figure 26. Actual imaging leg of MORTI. 

 

FFMA 
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Figure 27. Micro-interferometer in Twyman-Green configuration for characterization of micro-
lens form errors. 

 
Choosing the proper microscope objective for our interferometer can have a 

beneficial effect on the measurement result.  The numerical aperture (NA) is a 

dimensionless measure of the diameter of a lens aperture compared with its focal length 

and is one of the main factors that affect the performance of a microscope objective.  

Numerical aperture is an important quantity because it reveals the resolving power of a 

lens.  The larger the cone of light that can be brought into the lens, the higher its 

numerical aperture.  As previously mentioned, the bigger the NA of a lens, the better the 

resolution of a specimen will be.  The size of the smallest resolvable detail is proportional 
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to /NA, where  is the wavelength of the light.  A lens with a larger NA can detect finer 

details than a lens with a smaller NA.  Also, lenses with larger NAs collect more light 

and typically yield brighter images.  The equation for calculating NA is the following: 

(19)     θsinnNA=  , 

where n is the index of refraction, and the angle θ  (or µ) is half the angular aperture, A. 

In selecting the best objective lens to measure a given part using MORTI, two 

criteria needed to be met.  First, the radius of curvature (ROC) of a convex test surface 

must be smaller than the working distance of the objective.  Second, the ROC of the test 

surface divided by the clear aperture should be greater than the f/# of the objective.  The 

f/# of a lens is the ratio of its focal length to the aperture diameter.  For very low 

numerical aperture lenses, the f/# is equal to the inverse of twice the NA.  Low f/# lenses 

are quite sensitive to defocus and have very short depths of focus, while high f/# lenses 

are very tolerant of defocus, and thus have large depths of focus.   

Given the vertical translation range of our microscope stage and the size of the 

parts we wanted to measure, we selected a Mitutoyo® M Plan Apo objective with a NA 

of 0.42 based on all of the factors outlined above.  The objective has a magnification of 

20X, a resolving power (or angular resolution) of 0.7 µm, a depth of focus equal to 1.6 

µm and a 20 mm working distance.  Microscope objectives are usually designed with a 

short working distance, which is the distance from the front lens element of the objective 

to the closest surface of the coverslip when the specimen is in sharp focus.  In general, 

the objective working distance decreases as the magnification and numerical aperture 

both increase. 
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Figure 28. Resolving power of objective lenses. 

 

 

Figure 29. ZEMAX simulation of interferometer test arm showing how the radius of curvature 
(ROC) of a convex test surface must be smaller than the back focal length of the objective. 

 
 
 

Most interferometer configurations are oriented with the optical axis horizontal 

and mounted on a vibration isolation optical table.  MORTI however, was built on a 
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microscope frame with the interferometer’s test arm oriented vertically.  This unique 

setup allows for ergonomic, repeatable and fast changes of test pieces via mechanical 

cage assemblies and tubes (rigid construction), and uses less space than a horizontal 

interferometer setup.  Also, it allows for quick changes between a reflection Twyman-

Green setup, and a Mach-Zehnder transmission setup for transmitted wavefront 

measurements.  MORTI also takes advantage of a robust vertical translation stage for 

positioning the test part along the optical axis, and a Sony® BS-77 optical displacement 

gage (or laser scale) to monitor the vertical motion of the stage.  Fixtures were kept as 

rigid as possible to minimize vibration. 

3.2  MORTI Alignment 

We have found that a well-calibrated Twyman-Green phase-shifting 

interferometer is useful in measuring the form error of refractive micro-lenses (ROC > 

400µm) with 10’s nm uncertainty.  Following optical alignment of all components, the 

instrument is calibrated using a random averaging technique called the random ball test 

(RBT).  But first, setup of the Twyman-Green interferometer on the microscope body on 

a vibration isolation table must be done carefully with high attention to detail.  This 

includes positioning all lenses and mirrored components on the main breadboard (BB1), 

angular alignment of the laser beams, and the alignment of the optical axis to the vertical 

motion axis of the stage.  Some of the alignment steps are not intuitive and require 

practice and repetition for proper implementation.   
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Figure 30. MORTI configuration for alignment procedure. 

 

The main breadboard (BB1) holds the microscope’s trinocular head, as well as the 

laser input, test, reference and imaging arms of the interferometer.  A turret with multiple 

objective lens slots is mounted below BB1.  The sample stage sits below BB1 and  

includes a large custom tip/tilt mount below the standard microscope translation stage, 

allowing for small angle and position adjustments.  These degrees of freedom are 

important when measuring components and are also critical for the initial alignment 

process to align the optical axis to the vertical motion axis of the stage.   

 

 

 

z 
OFA 
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Figure 31. Optical flat assembly on microscope stage. 

 

For the first stage of the alignment, a part known as the optical flat assembly 

(OFA) is positioned on the stage.  The OFA consists of an optical flat mounted in a vise-

like apparatus with kinematic positioners to allow for repeatable and fine rotational 

adjustments.  A mechanical beam-splitter sits flush on the surface of the flat, secured with 

glue.  Also, a small piece of paper with a crosshair drawn on it, is affixed to the flat.  Just 

below the stage, the Sony laser scale is mounted.  Once calibrated, the laser scale 

(resolution = 0.1 µm) offers highly repeatable measurements of the stage displacement in 

z. 
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Figure 32. Sony laser scale for accurate positioning. 

 

Aside from the Twyman-Green components, a secondary instrument, a Hewlett-

Packard® 5528 heterodyne (two frequencies) displacement-measuring interferometer 

(DMI) is setup on a secondary breadboard (BB2) on a tripod that sits on a rubber-footed 

table.  This instrument is required for completion of the initial alignment steps.  A second 

breadboard (BB2) contains the DMI laser head, an imaging interferometer consisting of a 

flat reference mirror and a CCD, as well as a DMI beam fold mirror to redirect the beam 

down to BB1 and the test arm.  Also, a DMI interferometer is attached to a slot in the 

turret of BB1.  The DMI interferometer consists of a polarizing beam-splitter (PBS) and a 

flat reference mirror so that the DMI beam returns to the laserhead on the same path, 

while the laserhead detection option is set on the straightness setting.   

As seen in Figure 33, the output beam from the dual frequency DMI laser source 

contains two polarizations with frequencies F1 and F2, and the beat frequency between 
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them is (F2 – F1).  The polarizing beam-splitter reflects the light with frequency F1 into 

the reference path, and light with F2 passes through the splitter into the measurement 

path where it strikes the moving optical flat causing the frequency of the reflected beam 

to be phase-delayed and Doppler shifted by ± F.  The reflected beam is then combined 

with the F1 light at the interferometer, and returned to the laser detector unit with a new 

beat frequency of (F2 – F1) ± F.  Finally, high-resolution position sensing is made 

possible using a comparator device, which allows for stable measurements of signal 

phase.  Deadpath error associated with environmental conditions over large distances can 

often be corrected and removed. 

 

Figure 33. Typical heterodyne interferometer setup [41]. 

The overall alignment can be performed once the key MORTI components are in 

their approximate locations.  The major alignment steps include the following: (1) 

mechanical alignment of the optical test flat to the x, y, z motions of the stage, (2) optical 

alignment of the imaging interferometer, (3) optical alignment of the DMI test beam to 

the z-motion of the stage (4) optical alignment of the DMI interferometer, (5) calibration 

of the displacement laser scale to the z motion of the stage, and (6) optical alignment of 
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the Twyman-Green interferometer setup.  Co-linear alignment of the DMI test beam with 

the z-motion axis of the stage is crucial for reduction of abbé offset and cosine 

displacement errors.   

Beginning with mechanical alignment to the stage motion, we assume that the 

vertical faces of the mechanical beam-splitter are perpendicular to the optical flat surface.  

First, we fix a mechanical indicator (1 µm resolution) to the vibration isolation table, and 

indicate with a mechanical indicator off of the x, y beam-splitter sides as the stage is 

translated along its x and y axes.  We align the x, y vertical faces of the beam-splitter to 

the x, y motions of the stage by translating in the x, y directions while we execute small 

rotations of the optical flat in its assembly until the indicator reading stays constant.  

Next, we align the x, y vertical sides of the beam-splitter to the z motion as the stage is 

moved up and down.  To do this, we tip and tilt the stage until the indicator reading is 

constant during z translation.   

Once the beam-splitter on the OFA is parallel to the motion axis, the optical flat 

of the OFA is approximately perpendicular to the motion axis.  The goal of the next step 

is to align the DMI beam to be perpendicular to the OFA.  This is accomplished by first 

aligning a temporary ‘imaging interferometer’ to the OFA.  The first step is to add a 

retro-reflector (or corner cube) to the OFA (acts as the imaging interferometer test arm) 

to reflect the DMI beam back along its initial path.  Tipping and tilting the imaging 

interferometer’s reference mirror to null the interference fringes from the two DMI 

beams, as seen by the CCD in the imaging interferometer, aligns the imaging 

interferometer reference mirror perpendicular to the DMI beam.  This establishes a 

reference for the DMI beam’s direction out of the laser head.   
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The next step is to effectively tip/tilt the DMI laserhead and imaging 

interferometer by tip/tilting the DMI fold mirror (see Figure 34) to align the DMI beam 

perpendicular to the OFA and therefore parallel to the motion axis of the stage.  The first 

step is to remove the retro-reflector so that the DMI beam now reflects off of the optical 

test flat on the OFA, and swinging in the DMI interferometer in line with the beam 

(below BB1) so and wedge in the DMI beam splitter below BB1 is taken into account.  

We then tip/tilt the DMI fold mirror to null the fringes between the imaging 

interferometer reference beam (aligned to the laserhead) and the DMI beam reflecting 

from the OFA.  Once the fringes are null, the DMI beam is effectively now parallel to the 

motion axis of the stage.  Next we swing in the 20X objective lens into the beam in place 

of the DMI interferometer, and we use the location of the focus point to define our x, y 

origin (0, 0) for the system.   

 

Figure 34. BB2 equipped with DMI laser source, optics and fold mirror. 
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Figure 35. BB2 and tripod; directs beam to MORTI. 

 

We are then ready for the next major step which is to define and calibrate the 

Sony laser scale by calibrating it against the DMI.  This requires first aligning the DMI 

interferometer located beneath BB1. The DMI interferometer itself and its reference 

mirror must now be adjusted to get the DMI beam back into the input hole in the laser 

head and to maximize the splitting of the two polarized beams.  The reference mirror 

angle controls the direction of the return DMI beam, and the entire DMI interferometer 

assembly is rotated around the optical axis to optimize the splitting of the two polarized 

beams.  Once aligned, the DMI digital readout shows that the returning beam signal is 

strong and values reported by the DMI represent the vertical motion of the stage along 

the DMI beam and can be used to calibrate the Sony laserscale.   
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The Sony scale calibration involves moving the stage in z and recording the stage 

position using both the DMI and the displacement laser scale.  Laser scale readings are 

displayed on a nearby computer using software known as e-counter.  Calibration results 

are shown in Figure 36, where the red data represents using the fine stage translation 

knob, while the blue represents using the coarse translation knob.  Taking the average of 

the slopes of the two linear lines yields our final calibration multiplication factor of 

0.88881. 

 

Figure 36. Calibration curves for Sony laser scale and DMI readings. 

(20)     Actual “z” displacement  =  (SONY reading) *  0.88881 

Once the scale is calibrated, we can align the Twyman-Green interferometer 

components on BB1.  We begin by removing the DMI setup and BB2 to make room for 

the fiber He-Ne laser input arm of the Twyman-Green configuration.   

Before this alignment begins, it is important to prepare the afocal lens pairs and 

optimize their position using an optical shear plate or a separate interferometer.  We used 

a commercial  Veeco® laser phase-shifting Fizeau interferometer for this alignment.  We 

aligned a return mirror in front of the Veeco and then null the transmitted wavefront 
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through the afocal system by adjusting the distance between the two lenses.  The FFMA 

is also aligned on the Veeco.  This involves aligning the two fold mirrors approximately 

to the horizontal translation stage of the FFMA and to each other.  A beam splitter is first 

mechanically attached to the front edge of the translation stage and the beamsplitter face 

then represents a surface approximately perpendicular to the translation axis and 

therefore can be used to align the translation axis to the Veeco interferometer.  After 

nulling fringes off of the front face of this beam splitter, we then adjust the pitch and yaw 

of the mirrors to null those fringes which then further aligns the fold mirrors in the FFMA 

to 90 degrees to each other.  Adding a small opaque card with a hole in it to the front of 

this setup, we translate the FFMA stage to check for motion of the spots as seen on the 

CCD.  Rotating the mirrors until the spots stay still during stage translation is the final 

step.  Improper alignment of this 90-degree prism-like apparatus (as seen in Figure 37) 

will cause the Twyman-Green beam to walk as interferometer focus is adjusted. 

 
Figure 37. FFMA mirrors; focusing. 
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Figure 38. Actual FFMA with reference BS and 45 degree mirrors. 

 

Having prepared the afocal systems and the FFMA, we are then ready to begin the 

Twyman-Green interferometer alignment.  The first step is to mount the Twyman-Green 

input arm and the trinocular head on BB1, and translate in addition to tip and tilt so the 

beam is colinear with the z motion axis of the microscope stage and x, y centered on the 

focal point of the objective lens.  Coarse alignment must be done first before beginning 

with the detailed alignment procedure.  This step must include ensuring that the incoming 

beam fills the objective lens and is parallel with the axis of the objective.  This is done by 

adjusting the xy position and angle of the objective using translation and tip/tilt stages 

that attach the objective to the underneath side of BB1.  The detailed procedure is similar 

to the DMI alignment.  First, after removing the objective lens and blocking Mref, we 

adjust the direction of the incoming beam so that it reflects back on itself after hitting the 
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optical test flat on the OFA.  We then put a retro reflector on the OFA and use the 

reflected beam to center the beam through the imaging system (FFMA and afocal 

systems) by setting the appropriate orientation of the beam-splitter (BS1).  With the beam 

and imaging optics centered and effectively parallel to the motion axis, we replace Mref 

and orient it to null fringes between it and the optical test flat.   

To summarize, we have made the Twyman-Green beam interferometrically 

parallel to the z motion.  Also, Mref is perpendicular to the beam and our beam is 

centered well in the imaging leg.  In addition, the FFMA mirrors are aligned so that the 

beam does not walk on the CCD upon focusing. 

Also, it is important to note that the focal lengths and position of all imaging 

lenses as a part of the 4f system are pre-determined by performing a paraxial thin lens 

analysis in software (Excel) as seen in Figure 40.  Using the spreadsheet, we are 

attempting to recreate the conditions for focusing on the test lens aperture given different 

size lenses.  The thin lens equation allows for all parameters to be tabulated. 
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Figure 39. MORTI test arm with moveable objective lens. 

 

Figure 40. Imaging system calculations. 
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Figure 41. Twyman-Green setup. 

 

 Once assembled and aligned, the Twyman-Green interferometer is now ready for 

calibration, followed by measurements of opaque spherical parts.  The overall system can 

be seen in Figure 42. 
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Figure 42. MORTI overview. 

 

 

 
 

 

 

 

 

 

 



CHAPTER 4:  SOFTWARE MODELING 
 
 

4.1  Retrace Errors 

 A micro-refractive lens form error measurement is performed at the confocal 

position with the interferometer in reflection mode [34].  The wavefront in the 

interferometer reflecting from the test surface inherently has aberrations at some level, 

and reflection from an imperfect test surface causes further deviation.  Consequently, the 

ray takes a different path back through the interferometer, thereby accumulating a 

different aberration.  In general, this effect is referred to as a retrace error.  In terms of the 

ray model for double-pass geometry, the function of an ideally spherical test surface is to 

return an incoming ray back upon itself so that it follows the same path back through the 

interferometer on the second pass as it did on the first.  This happens exactly only when 

the incoming beam (the interferometer wavefront) is perfect, i.e. a spherical wavefront.  

But, as aberrations accumulate on the first pass, reflection off of the test surface leads to 

an angle change and the incoming and return rays are no longer coincident.  When 

analyzing the resulting fringe pattern, it is no longer the case that we can divide the result 

by two to obtain the single-pass wavefront aberration.  In general, the interferometer bias 

is a complicated function of the optical details of the instrument, and this effect 

significantly impacts measurements and calibration [42].  Ray-mapping (retrace) error 

introduces non-axially symmetric aberrations like coma and astigmatism in addition to 

axially symmetric aberrations like low-order spherical aberration [9].   
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Given that the actual interferometer cannot be modeled because detailed 

information of the optics and their configuration cannot be accurately known, we moved 

forward with a very simplistic model of the test arm of the interferometer to investigate 

the general trends and possible order of magnitude behavior.  Modeling the retrace error 

phenomenon in the ray-tracing software, ZEMAX®, consisted of defining the test arm 

only of a Twyman-Green configuration, assuming the reference arm to be perfect.  A 

paraxial lens is set as the aperture stop, while a Zernike phase surface is added to the 

diverger so aberrations to the wavefront (and therefore an interferometer bias) can be 

simulated.  Aberrations can be defined on the Zernike surface in the ZEMAX ‘Extra Data 

Editor’ dialog box.  The test surface is taken to be a perfect spherical, reflective object.  

ZEMAX traces rays through the diverger, then they reflect from the spherical test surface 

and propagate back through the diverger.  The aperture of the second pass through the 

diverger is set to the same diameter as the aperture stop so rays are properly vignetted.  A 

paraxial lens is then used to focus the light.  The software can then evaluate the 

wavefront error (optical path difference (OPD) compared to a perfect wavefront) at the 

exit pupil of the system.  This captures the wavefront at the aperture stop in the system, 

which is the last diverger in this case – this simulates focusing the interferometer on the 

aperture stop, as is done in the experiment.  Standard ray-tracing in ZEMAX makes use 

of paraxial beam propagation and follows the laws of geometrical optics.  Gaussian beam 

propagation makes use of advanced ZEMAX features, and is an expansion of paraxial 

optics that provides a more accurate model of coherent radiation and partially accounts 

for diffraction effects.  However, for most optical systems and for our purposes, the 

paraxial model is adequate.  Figure 43 depicts the ray-trace model, showing the angle 
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deviation which leads to the retrace error for a reasonably prescribed wavefront 

aberration and test lens radius for a simulated micro-optic measurement.   

 

Figure 43. ZEMAX ray trace model of an aberrated interferometer wavefront reflecting from the 
surface of a perfect micro-sphere with a radius comparable to that of a micro-lens. 

 
By using a perfectly aligned and perfect spherical surface as the spherical test 

surface in the simulation, the simulated measurement result is an exact measurement of 

the instrument bias.  Simulated measurements of perfectly aligned, perfect lenses, show 

that the total instrument bias depends on the surface curvature of the test lens because of 

retrace errors, discussed above.  The resulting interferometer bias changes dramatically 

with the test lens surface curvature and becomes significant in the micro-optic range.  

This is shown in Figure 44.  The fact that retrace errors depend on the radius of the test 

part implies that when calibrating the instrument, even with a nominally perfect artifact, 

the calibration is valid only when measuring parts with the same radius as the calibration 

artifact.  The ZEMAX simulation revealed that the retrace errors can become so extreme 

with poorly corrected interferometer optics and very small radii test parts that the cat’s 

eye and confocal locations become ill-defined.  While the results will be system 

dependent, in general the calibration will be insensitive to retrace errors only for large 

radius parts.  Simulations show that for reasonable interferometer aberrations, the system 



 58 

calibration can be modified by the retrace errors at the level of several percent in the 

micro-optic range.  This indicates that the selection of the micro-sphere for self-

calibration must be done with care for measurements of micro-lenses with demanding 

form tolerances.   

An example of the potential order magnitude of the effect is shown in Figure 44 

where λ/5 peak-to-valley (PV) of spherical aberration is added to an otherwise perfect 

(paraxial) microscope objective to simulate a realistic diffraction limited objective [43].  

Reflection from the test lens and the subsequent retrace errors back through the objective 

lens lead to a total wavefront aberration that is not simply twice the aberration of a single 

pass.  The simulation shows that if an instrument was, for example, calibrated with a 

large convex or concave radii artifact and then this calibration file used to correct a 

measurement of a very small radii micro-lens, the measurement result could be as much 

as 10% or more in error.  

 

Figure 44. Simulated retrace error data for interferometer calibration with a perfect sphere [43]. 
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Through simulation, we have shown that instrument biases in micro-

interferometry depend strongly on the curvature of the part under test and this 

dependence can be significant in the sub-millimeter radius range.  If the curvature 

changes, the wavefront takes a slightly different path back through the interferometer, 

picking up slightly different aberrations.  Consequently, calibration must be done with 

care.  Ideally, the calibration should be executed with a calibration artifact who’s radius 

closely matches the radii of the test lenses.  Meeting this requirement in order to reduce 

the impact of retrace errors, however, will never be completely realized given that radius 

measurements themselves have considerable ambiguities.  This size-matching technique 

could also be impractical if measurements of lenses with largely different radii are 

desired.  Given all of this knowledge, reducing the influence of retrace errors on 

interferometric form error measurements as stated above will only be approximately valid 

and future work is required in view of lessening their impact.     

4.2  Artifact Misalignment 

Recall that the random ball test (RBT) self-calibration technique is useful for 

isolating systematic wavefront biases to achieve low-uncertainty interferometric surface 

form measurements.  In this technique, a series of sphere surface patch measurements are 

averaged, which leads to an estimate of the interferometer bias [34].  Previous work 

shows that the quality of the ball surface (rms of the form error on the ball) has a 

considerable effect on the rate of convergence of the test.  Furthermore, sensitivity of the 

bias to test surface curvature motivated a more detailed investigation of misalignment 

during the RBT calibration.  Misalignment in the centering of the ball appears as off-axis 

propagation back through the interferometer and introduces changes to the wavefront 
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aberration.  Lateral misalignment of the ball causes tilt in the wavefront.  Vertical 

misalignment leads to curvature (defocus) in the wavefront.   

For example, the wavefront sensitivity to misalignment can be observed by 

intentionally misaligning the ball in x, y, and/or z.  The tip, tilt, and defocus Zernike 

coefficients indicate the degree of misalignment.  Plots of higher-order coefficients 

versus tip, tilt, and power coefficients reveal approximately linear relationships.  The 

slopes of the lines indicate the sensitivity to misalignment.  Perfect alignment during a 

RBT calibration is experimentally not possible, therefore the impact of these additional 

aberrations on the calibration procedure must be considered.  To accomplish this task, we 

have developed a virtual model of the RBT using MATLAB® and ZEMAX.  ZEMAX is 

used to simulate the retrace error consequences and MATLAB® is used to generate the 

misaligned and imperfect spherical test surface from which the wavefront reflects.  The 

simulation is versatile, allowing for parameters such as sphericity, radius, numerical 

aperture (patch size), number of patches, and misalignment to be varied. It allows for a 

detailed investigation of the sensitivity of the RBT in a relatively short time period.  

MATLAB is at the forefront, where all coding and computational work is executed, while 

ZEMAX imports data and returns results to MATLAB for further calculation via a 

central dynamic data exchange (DDE) software interface [44,45].   
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Figure 45. Example of calibration artifact misalignment from the confocal position, where a 
spherical beam from an objective lens ideally nests into the surface. 

 
 
 

The basis for the model hinges on defining a sphere mathematically in terms of a 

set of spherical harmonic functions, and varying the amplitudes and the number of 

functions to adjust the form error on the sphere.  Spherical harmonics are the angular part 

of an orthogonal set of solutions to Laplace's equation defined in a system of spherical 

coordinates [46].  The fact that any polynomial may be written in terms of Legendre 

polynomials allows us to use Legendre polynomials to represent our radial data.  After 

determining the Legendre polynomials, we may substitute trigonometric arguments into 

the Legendre polynomials and obtain the spherical harmonic functions.   

dz 
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Figure 46. Spheres created by coding and spherical harmonic functions. 
 

Hence, we have our spherical surface upon which patches can be chosen and 

averaged.  An imperfect sphere is created simply by varying the number of harmonic 

functions and their multiplication constants (m
la  coefficients).  This is summarized in 

equation 14,  
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[47].  Having defined our sphere, repeated random sampling of surface patches is then 

achieved by choosing a solid angle with random orientation on the sphere.  Spherical 

coordinate equations facilitate this task, leading to a determination of sag data for each 

patch [48].  Sag, or z, data is a requirement for describing and importing custom surfaces 

in ZEMAX. 

To simulate experimental conditions, misalignment of a patch can also be 

specified and added to the simulation.   This is done by randomly choosing a combination 

of x, y, and z offsets of small magnitudes and modifying the orientation of the patch 

accordingly.  The sag data is then mapped onto a uniform grid and written to a file which 

is sent to ZEMAX for interpretation.  ZEMAX reads the data as a ‘gridsag’ surface, 

interpolates the data and generates a smooth custom surface from which the rays are 
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reflected.  ZEMAX traces rays through the interferometer model to the surface, reflecting 

from the surface and heading back through the interferometer to a detector plane where 

the wavefront is analyzed and sent back to MATLAB for analysis.  The DDE commands 

programmed in MATLAB allow for all data transfers between the two software 

packages, and finally the RBT averaging can be performed on the N wavefront matrices 

in MATLAB.  ZEMAX contains a built-in DDE server permitting other Windows® 

applications, including MATLAB to access it.  The DDE is an interprocess 

communication  system built into the Windows operating system.  It is a feature of 

Windows that allows two programs to share data or send commands directly to each other 

[49].   

In our case, ZEMAX acts as the server while MATLAB is the client.  Links are 

initiated in the client application and are manually programmed.  One advantage of 

sharing data between programs is the ability to create custom surfaces for use in ray-trace 

models.  Another advantage is that we can modify or acquire many ZEMAX parameters 

using MATLAB commands and unique MATLAB tools, like the random number 

generator to simulate random ball misalignment, matrix averaging for wavefront post-

processing, and statistical functions like standard deviation to analyze calibration 

uncertainty.  The same ZEMAX interferometer model is again used, but in this case, the 

test surface is taken to be an imperfect misaligned sphere patch generated in MATLAB. 
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Figure 47. ZEMAX model of test arm of interferometer. 

 

 

Figure 48. ZEMAX 3D model of test arm of interferometer. 

 

Programming our unique random ball simulation required careful consideration 

before execution and frequent debugging throughout.  Few literary sources documenting 

the DDE coding technique are available and none describe our particular application.   

Having described the basis for the model, let us now move to a discussion of the 

major road blocks encountered in the programming.  For example, when creating our 

sphere in terms of spherical harmonic functions, it was necessary to use spherical 
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coordinates, and hence have a grid that varied with radius and angle.  However, ZEMAX 

can only interpret data contained in a uniform x-y grid.  The solution was the ‘griddata’ 

function in MATLAB, but it also had requirements.  In testing the function we discovered 

that ‘griddata’ was not robust when applied to large matrices with duplicate or near 

duplicate elements.  This brought about the need for an additional MATLAB function 

called ‘consolidator’, which we modified for compatibility with our software version 

[50].  The ‘consolidator’ function solves interpolation problems by allowing a tolerance 

to be specified on how close two values need to be to be considered duplicates.  

Remedying the duplicate data points issue, unfolding the x, y, and z matrices into vectors 

and creating a uniform x-y grid with the ‘meshgrid’ command allowed the ‘griddata’ 

function to effectively convert spherical data into cartesian data.  Writing the sag data to a 

file in the format specified by ZEMAX was tedious and required considerable syntax.  

Finally, specifying any base radius for the custom surface in ZEMAX yielded incorrect 

data.  The answer was to simply set the radius of the ‘gridsag’ surface to infinity before 

sending custom data from MATLAB. 

 

 
Figure 49. ZEMAX data editors for prescribing variables and biases. 



 66 

 

Having established data transfer, we then tested its limitations, starting with a 

large radius ball (R = 25 mm) where retrace errors would be negligible.  We began by 

running one iteration with no test arm aberrations (i.e. a perfect system) and a perfect 

custom spherical patch, and expected to see a nearly flat output OPD wavefront map.  To 

our surprise, the resulting map contained considerable residual aberration, on the order of 

1 part in 102 waves rms (0.0110 waves).  This was caused by interpolation problems in 

ZEMAX with treatment of the gridsurface.  But this discovery in ZEMAX was useful.  

ZEMAX uses an iterative method to find the ray-surface intersection in the case of the 

‘gridsag’ surfaces, and there seem to be convergence errors for custom surfaces with 

steep slopes.  Consequently, ‘gridsag’ data should not be used to model surfaces of large 

sag, but rather to model small deviations from a standard surface.  Setting the radius of 

curvature of the ‘gridsag’ surface to that of the best-fit sphere instead of infinity, and 

sending OPD sag data (small deviations normal to curved surface) instead, resulted in an 

output wavefront rms close to 1 part in 103 waves (0.000817 waves).   
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Figure 50. Different techniques for sending sag data to ZEMAX. 
 

Increasing the grid density for the sag data description of the spherical patch from 

101x101 to 201x201, and programming ZEMAX to perform bicubic instead of linear 

interpolation, further improved the rms results (as seen in Figure 51) to nearly 1 part in 

105 waves (0.0000158 waves) without significantly reducing computational time.  With 

bicubic interpolation, the value of a function at a point is computed as a weighted average 

of the nearest sixteen samples in a rectangular grid (a 4x4 array).  The resulting output 

wavefront is flat to within the diffraction limit.  Additional structure is still present in the 

map due to residual computational noise.  This noise limit must be considered when 

drawing conclusions from the simulation results in the ultra-precision limit.  It is also 

important to note that ZEMAX cautions that one should always expect some residual 

deformation with the ‘gridsag’ model.  Using the ‘gridsag’ template was not intuitive, 

and in doing so, we required much assistance from the ZEMAX customer support help 
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desk.  Perhaps it is not a coincidence that ZEMAX has recently made considerable 

changes to their ‘gridsag’ help file in their software manual. 

 

 

Figure 51. Map showing resulting rms values indicates the sensitivity of the simulation. 
 
 

Prescribing an imperfect ball and increasing the number of iterations was the next 

step to confirming that the RBT was performing as expected.  We chose a realistic rms 

form error of 1/5 of a wave (0.18 waves) for the ball and raised the number of iterations 

to N = 100.  The resulting wavefront map had an rms residual value of 0.00171 waves.  

Next, we programmed 500 iterations and obtained an rms of 0.000350 waves.  Finally, 

using N = 3000, the simulation ran for a couple of hours and revealed good results - a 

virtually flat map with residual rms of 0.0000691 waves.  The result map for N = 3000 is 

seen in Figure 52. 
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Figure 52. Map showing resulting rms values for a typical random ball test. 
 
 

As previously mentioned, our desire to concentrate on the positioning/alignment 

of the calibration artifact was driven by the data trend that we observed in studying 

retrace errors.  To summarize that study, we learned that the return angle of inherently 

misaligned rays depended greatly on the location at which they were reflected from the 

calibration sphere and the local slopes at those locations.  We hypothesized that other 

calibration-artifact-related effects could play a significant role in affecting the system 

wavefront bias (i.e. the result of the RBT).  Both systematic and random misalignments 

of the spherical calibration artifact were included in our study. 

In an effort to simulate realistic experimental conditions, we focused on random 

(Gaussian distributed) misalignment of our artifact by large, and then small amounts 

(average = 0), in the positive and negative directions.  The goal was to intentionally 

introduce defocus (optical axis misalignment) into our optical model.  Initially we used 

the 25-millimeter-radius ball and the 0.18 waves rms ball error as before, and specified 
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0.25 waves of spherical aberration as our system bias in ZEMAX.  The range was defined 

by the maximum possible displacement in millimeters of the ball that yielded 1/2 wave of 

defocus in the output OPD map.  Later we tested misalignment that results in 1/10 wave 

of misalignment in the output OPD map.  One-half wave in the OPD map corresponds to 

about 3 visible fringes in the interferogram, while 1/10 wave corresponds to about 1 

fringe.  For a large radius ball,  1/2 wave of defocus resulted in 0.2668 waves rms for the 

output wavefront, and 1/10 wave of defocus resulted in an rms of 0.0770 waves 

(assuming no system bias).  Using MATLAB’s random number generator, pseudorandom 

scalar values for displacement within the allowed ranges were drawn from a normal 

(Gaussian) distribution with a mean of zero.   

 
Figure 53. The Gauss function is bell-shaped and centered on x = 0; σ is the width, and is defined 

as the distance from the center of the curve to the point where the curvature changes sign. 
 

We graphed the rms RBT results for both large and small amounts of calibration 

artifact misalignment, results obtained in the absence of misalignment, and those 

obtained in the absence of ball errors.  For each case, the simulation was repeated 10 

times for N values of 50, 100, 200, and 300, so that both a mean and standard deviation 

could be computed.  The standard deviation observed for a specific value of N gives us 

uncertainty bars for our plots to carry out a more rigorous comparison with a model.  

Creath and Wyant showed, using statistical error analysis, that the standard deviation 

uncertainty (uc) of the rms result of the RBT (the rms result is simply the rms value of the 
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final averaged surface) depends on the rms of the form error on the calibration artifact 

and decreases as the inverse of the square root of the number of patches averaged [51]; or 

(21)     
N

u ball
c

σ= . 

We plotted the rms result versus 1/N  for each case outlined above, and observed that 

each case described a nearly linear trend with varying slope.  One can see that as N 

increases, the rms of the RBT result approaches the actual system bias rms (B = 0.2215 

waves) that we prescribed by adding 0.25 waves of spherical aberration into our ZEMAX 

model.  We also observed that both misalignment and ball form error impact the apparent 

linearity of the data. 

 

Figure 54. R = 25 mm; plot of rms versus the inverse square root of the number of maps averaged 
(N). Plot shows resulting rms values converging to the actual system bias for various test 

conditions in apparent linear fashion. Each data point is the average of ten measurements. The 
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term ‘ball’ implies 0.18 wv rms form error on ball, ‘1/2mis’ implies misaligning the ball by ½ 
wave along the optical axis, and ‘1/10mis’ is 1/10 wave of misalignment. 

 
 

We began with a postulation that the data was linear when plotted versus 1/N : 

 

(22)     B
N

A
bias +=σ  , 

where the slope, A, of the line is approximately equal to some combination of misσ  and 

ballσ  and B is the system bias in the limit of large N.  This model appears consistent with 

the simulated data with uncertainty bars, however, there is a systematic difference 

between the simulated data and the linear model that suggests the model is only 

approximate.  We looked to a theoretical analysis to investigate the relationship in more 

detail. 

Based on the concepts surrounding the RBT, we know that an estimate of the 

instrument bias map can be generated by averaging N surface form measurements of a 

smooth calibration ball.  The ball surface used to do the averaging does not need to be 

extremely spherical, but the more spherical it is, the fewer measurements are needed for 

the average.  Once the estimate of the instrument bias map is obtained, it can then be 

subtracted from subsequent measurements of a test lens surface.   

We begin with the reasonable assumption that one measurement in the collection 

of  N measurements can be written as [51]: 

(23)   single meas(x)i = actual ball form error(x)i + act. ball misalignment(x)i + act. instr. bias(x) 

or 

(24)     ( ) ( ) ( ) ( )actualiii xbiasxmisxballxmeas ++=   . 
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This equation is for a single pixel x on the ith surface map where i varies from 1 to N.  

The instrument bias estimate ( )estimatexbias  is given by 

(25) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∑
= =

++===
N

i

N

i
actualiiiiiestimate xbiasxmisxball

N
xmeas

N
xmeasxbias

1 1

11
 

where each pixel x on the ball map is averaged over N separate measurements of the 

surface.  Performing this averaging on each pixel allows us to build up a surface map of 

our bias estimate.  We need to connect this bias estimate with the rms of the resulting bias 

estimate which is what is plotted in Figure 54 versus N.  Thus, we begin by calculating 

the variance of the data over the collection of pixels on this averaged map.  This can be 

written as 

(26)     ( ) ( ) ( ) ( )[ ]
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  , 

but this time, the angle brackets indicate an average over x (all the pixels on one map), 

and we have assumed that all the variables have zero mean in x.  Distributing the average 

over N through to each term and carrying out the square multiplication, we obtain the 

following: 
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The ball surface error contributions and misalignments are independent, uncorrelated, and 

identically distributed.  Consequently, cross terms resulting from the squaring operation 
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are uncorrelated, likely small, and therefore ignored.  This follows because it is equally 

likely to have positive and negative average contributions from the misalignment and the 

ball contribution on individual pixels.  Next, given that the system bias does not vary 

between the N maps, the variance equation reduces to the following: 

 (28)   ( ) ( ) ( ) ( )
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Again, the ball surface error contributions and misalignments are uncorrelated between 

the N measurements, with equally-likely positive and negative values for each 

measurement, therefore the cross-terms of these squaring operations also lead to 

negligible cross terms and we have 
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or 

(30)     ( )2 2 2 2
_

1 1
ball mis bias actualestimate x

bias x
N N

σ σ σ= + +  , 

where the σ2 terms are defined to be the expected variance over all pixels for a single 

measurement.  Re-writing in terms of rms, we obtain the following for the rms result of 

the RBT: 
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The ballσ  term can be estimated in the simulation, it is simply the rms of the ball 

form errors.  To estimate misσ  for the simulation, we prescribe a perfect ball, specify a 

system bias and choose a misalignment of 1 sigma, and after one ray-trace iteration we 

read-off the resulting rms of the output wavefront and use this value as an estimate of our 

misσ .   

Equation 32 for the rms result of the RBT reveals a non-linear relationship 

between estimatebias_σ  and N.  We now return to our simulated rms RBT result data and 

compare it to this model.  To do this, we performed a chi-square minimization to the 

model by finding the best-fit variables ballσ , misσ  and actualbias_σ  in equation 32 for the 

data.  The best-fit model curves are shown in Figure 55.   The best-fit model parameters 

are close to our estimated model parameters (estimated from the simulation input 

parameters).   

 We carried out a chi-square test to more rigorously investigate the goodness of 

the fit.  In general, the Χ2 test evaluates statistically significant differences between 

proportions for two or more groups in a data set.  Thus, the chi-square statistic is the sum 

of the square of the distances of the simulated data points from the model curve, divided 

by the predicted standard deviation at each value of N,     

(33)     
( )

∑
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=
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i yy
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2

2
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The Χ2  statistic indicates the likelihood that our model (Equation 32) provides a good fit 

to our simulated (or later experimentally) data, given the uncertainty in the data.  If the 

model is correct then on average each term in the sum of equation 33 is one.  Since each 

curve corresponds to 5 data points (for 5 values of N), and we are estimating two 
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parameters, the calculated 2χ  value may be tested against the chi-square distribution 

with 

(34)     k -1 - p = (5 - 1) - 2 = 2 degrees of freedom . 
 
 

For this distribution, the critical value for a 0.05 significance level is 5.99.   

 We have simulated RBT rms result values for the large radius case (case I: R = 25 

mm; lower curves in Figure 55), as well as the micro-optic case (case II: R = 1 mm; 

upper curves in Figure 55).  Across the board, the simulation converged to a higher 

overall system bias rms value for the case where a 1 mm radius ball was used.  The data 

points correspond to RBT rms results, while the curved lines represent the fit to the 

model.  Model fit variables and the actual simulated data are also listed in Table 3.   

 

Figure 55. Chi-square minimization of mean values to the model, plotting rms RBT result versus 
number of maps averaged, N. The term ‘1/2wv def’ implies misaligning the ball by max ½ wave 
along the optical axis, ‘1/10wv def’ implies max 1/10 wave misalignment and ‘ball’ implies 0.18 

waves rms surface form on the ball. 
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Table 3. Model fit variables compared with actual simulated values; chi square statistic for each 
case; rms values in waves.  The term ‘½ wv def’ implies a max ball misalignment of ½ wave 

along the optical axis, ‘1/10 wv def’ implies max 1/10 wave misalignment and ‘ball’ implies 0.18 
wv rms form error on the ball. The term ‘sim data’ refers to a predicted rms value, while ‘fit’ 

implies the (actual) resulting rms value following minimization. 
 
 
 

Our chi square value for each case is less than 5.99, supporting the use of this model at 

the current level of uncertainty in our simulation.   

Evidently, the actual system bias rms (convergence of the curves) changes 

considerably as we move from a large radius ball to a 1mm radius ball.  Based on the 

retrace error simulation, we expect even more change as we select radii less than 1 mm.  

For the 1 mm case, the functions converge to a bias of 0.2279 waves rms, while the 25 

mm curves approach 0.2215 waves rms.  It can also be interesting to re-write equation 32 

and graph the mean squared (ms) data as follows: 
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(35)     ( ) 2
_
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1
actualbiasmisballestimatebias N

σσσσ ++=   . 

 
 

Figure 56. Chi-square minimization to the model for mean values; assuming y is ms and x is 1/N.  
The term ‘½ wv def’ implies a max ball misalignment of ½ wave along the optical axis, ‘1/10 wv 
def’ implies max 1/10 wave misalignment and ‘ball’ implies 0.18 wv rms form error on the ball. 

 
 

Steeper slopes mean that it takes longer (averaging more maps) to approach the actual 

bias result.  Here, the square of the actual system bias rms changes strongly with 

misalignment for the smaller radius ball.  The linear convergence slopes appear similar in 

comparing the 25 mm case to the 1 mm case, however the overall increase in slope from 

the bottom curve to the top curve was greater for the 1 mm ball (case II).  The relative 

increase of the bias value between cases can also be noted, and considering N = 100 for 

the ½ wave misalignment + ball line versus the ball only line, case I revealed a percent 

increase of 0.7 percent while case II showed an increase of 1.3 percent.  The largest 

deviation from the model is observed when simulating the 1 mm ball and the largest 
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amounts of misalignment.  Given the severity of the retrace error effect in the micro-optic 

range (high surface curvature), it is not surprising that our simulated data begins to 

deviate from the model.  An exponential increase in system bias for radii less than 1 mm 

could yield unpredictable results given our chosen model.  More work is needed to clarify 

the nature of the departure from the model for smaller radii. 

In summary, based on the model, using the best quality ball and least 

misalignment will result in the need for fewer measurements to approach the best 

estimate of the system bias.  Assuming that most available calibration balls will be of 

medium quality (as prescribed in the simulation), the data also reveals that decreasing the 

ball misalignment from ½ to 1/10 wave reduces the required number of measurements 

(N) by approximately one third to achieve the same estimate.   

Based on the error-propagation equation, we can also find the uncertainty in the 

“averaged” estimate by describing the standard deviation at each pixel [30]: 

(36) 

( )
( )

( )
( )

( )
( )

2

_

22

_ 













∂
∂

+














∂
∂

+














∂
∂

= actualbias
actual

xi
mis

i

xi
ball

i

xi
estimatebias xbias

xmeas

xmis

xmeas

xball

xmeas
σσσσ

  

where the angle brackets again indicate an average over x.  The ball measurements are 

still assumed to be uncorrelated and identically distributed.  Also, all of the partial 

derivatives give the same result (1/N), the summation yields a factor of N and the actual 

instrument bias is unchanged for each measurement (i.e. the bias(x)actual term drops off) 

yielding the uncertainty result (uc),   
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or 

(38)     ( )
NN

Nu misball
misballc

22
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1 σσσσ +
=+=  . 

Hence, the uncertainty equation can be rewritten in terms of standard deviation (or rms), 

(39)     
N

u misball
c

22 σσ +
=  , 

where ballσ  is the rms of the form error on the calibration ball, and misσ  is the rms of the 

ball misalignment.  Note that this equation does not depend on the specific probability 

distribution of the individual random variables.   

Also, a standard deviation based pixel-by-pixel uncertainty map for a given RBT 

calibration can be computed as seen in Figure 57. 

 

 

Figure 57. RBT simulation uncertainty map for an average of 300 maps using a 0.18 wv rms ball 
form error and 1/10 wv of defocus misalignment. 
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The uncertainty map for an average of 300 maps using an imperfect ball, a maximum of 

1/10 wave of defocus misalignment and 0.25 waves of spherical aberration (system bias), 

reveals some residual spherical aberration.  Given that positively and negatively 

defocused spherical aberration maps appear as the inverse of each other, we can conclude 

that applying random amounts of z misalignment to the simulated RBT and inputting 

spherical aberration as the system bias, lead to a near-zero mean misalignment result and 

residual spherical aberration.  Figure 58 illustrates positively and negatively defocused 

interferograms in the presence of spherical aberration.   

 

Figure 58. Spherical aberration and defocus [36]. 
 

In a physical experiment, we would expect more variation in the uncertainty map, given 

that a real-life calibration would be subject to other noise sources. 

We also examined alignment sensitivity of the model by executing a systematic 

misalignment test, and discovered that we could essentially predict the residual 

aberrations in the result of a random ball test with a simple initial alignment-sensitivity 

test.  To demonstrate this, we vary defocus (a20) in the simulation over a range and plot 

the resulting spherical aberration (a40).  The resulting plot, as seen in Figure 59, describes 

a linear relationship and equation that we use to predict a40.  Using a perfect ball (R = 25 

mm), no system bias, N = 60 and a maximum magnitude of ½ wave of random 
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misalignment in the z-direction (along the optical axis), we ran an RBT for comparison.  

The RBT reveals a residual a20 value of -0.0352 waves and an a40 of 0.0004 waves.  

Using the equation defined by the systematic misalignment, we insert -0.0352 waves for 

a20 (or ‘x’) and obtain a residual a40 (or ‘y’) of 0.0003 waves.  Hence, an alignment 

sensitivity test is effective in predicting residual system aberrations due to misalignment 

contributions without the need for repeated averaging by the RBT simulation.   

 

 
Figure 59. Plot of spherical aberration versus defocus for a systematic misalignment test for R = 

25mm. 
 
 
 

Furthermore, the systematic misalignment test can also be applied to predict the 

residual rms wavefront bias of the optical system, as seen in Figure 60.  Prescribing B = 

0.2215 waves of rms bias to our ZEMAX model, we again vary defocus (a20) in a 

controlled fashion over a range and, this time, plot the residual rms.  While the 

relationship is not linear, we can still arrive at a relatively unbiased prediction of the rms 

error.  The red line indicates that for perfect alignment, the rms residual is equal to the 

added system bias.  Realistically, in an experimental setting, the rms bias value for 
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perfect alignment includes ball and system bias, and consequently, isolation of the system 

bias is impossible without RBT averaging. 

 

Figure 60. Plot of the resulting rms versus defocus for alignment sensitivity test of R = 25 mm. 



CHAPTER 5:  EXPERIMENTAL SETUP AND RESULTS 
 
 

5.1  Retrace Error Effect 

 The RBT exploits the symmetry properties of a micro-sphere, resulting in a low-

uncertainty estimate of the instrument biases of MORTI.  By measuring a collection of 

random patches on the surface of this spherical calibration artifact and then averaging the 

results, the contributions from the sphere go to zero leaving only the systematic biases 

due to the instrument.  Careful selection of this spherical calibration artifact is required, 

however.  It is important to select a calibration ball with a high enough surface quality so 

as to end up with the desired calibration uncertainty.  Accordingly, we tested several 1 

mm balls and chose the one with the lowest RMS form error so as to minimize the 

number of measurements required.  The surface finish and form errors are strongly 

dependent on the ball material and grade.   Poor surface finish causes data dropout in the 

measurements and must be avoided.  We used the highest grade (“3”, rms form error = 

100 nm = 0.15 wv) of hardened stainless steel micro-sphere for our random ball tests.  

Small pits in the surface led to some data dropout, but bad pixels were not propagated 

through the average and it yielded acceptable results.  It is also important to use an 

opaque micro-sphere, particularly for a phase-shifting interferometer calibration, to avoid 

stray light reflections from the back surface of the sphere.  All of the micro-spheres were 

obtained through the Bal-tecTM company, and balls of varying radii can be seen in Figure 

61. 
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Figure 61. 440-steel micro-spheres; radii 0.5 – 3 mm [52]. 

 

 Random re-positioning of the ball between measurements is another crucial 

aspect.  The key is to randomly bump for re-orientation and then replace the micro-sphere 

in its original measurement position.  To do this, we developed a simple fixture that 

consists of a sandwiched sheet of brass between two large aluminum washers.  A small 

indentation in the center of the sheet provided a reproducible position for the micro-

sphere.  A small puff of air easily displaced the ball, causing it to roll around inside the 

fixture before returning to its original center position.  Interference fringes re-appear after 

the ball settles and little realignment is necessary.  The room temperature is kept close to 

21ºC throughout the data gathering process. 
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Figure 62. Random ball re-orientation fixture. 

 

 
 

Figure 63. He-Ne beam reflecting from the micro-sphere when positioned at the confocal 
location. 

 

 Recall that in interferometry, a circular and/or tilted fringe pattern is present when 

the spherical test surface is not perfectly aligned, while only straight fringes are present 

when testing a nominally flat surface that is slightly misaligned.  For the simple case of 

straight fringes, 
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where λ is the inspection wavelength, ∆ is half the fringe width and S is the fringe-center 

spacing. 

 

  

Figure 64. Fizeau fringes. 

 

In our experiment, phase-shifting is used instead of directly calculating fringe 

deviations.  By shifting the phase in increments of π/2 and gathering a few frames of 

intensity data, we can accurately calculate the height error for a given x, y location using 

a previously chosen algorithm as follows: 
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where φ is the phase [35].  Calibration of the phase-shifting device is also important and 

was tested before beginning the experiments.  Obtaining good surface measurements also 
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requires occasionally adjusting the light intensity to avoid over-saturation, and varying 

the modulation threshold in software.  The He-Ne laser that we are using has a very high 

spatial and temporal coherence, and allows for good contrast and visibility of fringes.  

The modulation threshold determines the contrast required for a pixel to be considered 

valid in the data analysis.  To gather the most data in our instrument we set the 

modulation threshold below 1% in most cases. 

 

 

Figure 65. Phase plot obtained during PZT calibration. 

 

 
Figure 66. Actual circular fringe pattern from micro-sphere surface. 
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Following Phase I of construction and alignment of MORTI, initial self-

calibration tests were performed using two micro-spheres with different radii.  Figure 67 

illustrates the RBT calibration result that was obtained using a 1 mm radius sphere, while 

Figure 68 is the result using a 0.5 mm sphere.  As predicted by the simulations, the peak-

to-valley instrument wavefront bias is higher for the sphere with the smaller radius.  A 

difference of approximately 300 nm was observed between the two results.  The RMS 

values are 50 nm and 97 nm, respectively.  The wavefront maps in Figures 67 and 68 

indicate our best estimate of the bias in our instrument. 

 

 

 

Figure 67. Phase I experimental RBT system bias result using 1 mm radius micro-sphere (PV = 
361 nm = 0.57 wv). 

 



 90 

 

Figure 68. Phase I experimental RBT system bias result using a 0.5 mm radius micro-sphere (PV 
= 553 nm = 0.87 wv). 

 

These experimental results support the statement that retrace errors significantly affect 

form error self-calibration at the micro-optic level.  Furthermore, calibration should be 

performed with an artifact of similar radius to that of the micro-lens to be tested.  Some 

measurements traditionally used for precision metrology of large-scale components can 

be simply extended to the micro regime; however the properties or systems that can be 

measured are limited and measurement uncertainties are often inadequate.  For a 

qualitative assessment of the RBT wavefront bias, we can fit the data to Zernike 

polynomials which emphasizes the low spatial frequency contributions, as seen in Figures 

69 and 70. 

 

Figure 69. Experimental RBT result Zernike generation for R = 1 mm. 
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Figure 70. Experimental RBT result Zernike generation for R = 0.5 mm. 
 
 

The dominant aberrations are more visible in these images, and judging by the maps, 

coma and astigmatism appear to dominate.  Coma is diagnosed based on examining the 

central region of the maps, and observing that, overall, one half of the map appears high 

(green) while the other appears low (blue).  This aberration is encountered with off-axis 

propagation through an optical system, which occurs when the optical system is out-of-

alignment.  Examining the edge regions of the maps, the two high-sloping regions (red) 

coupled with the pair of low regions (green) show the presence of astigmatism.  Recall 

that astigmatism is said to be present if an optical system is not axisymmetric, either due 

to an error in the shape of the optical surfaces or to non-optimal alignment of the 

components.  A faint circular pattern in the maps also implies the presence of some 

spherical aberration in the system.  Comparing one map to the other, the aberrations 

appear to be more extreme for the case where the smaller radius ball was used.  For 

further diagnosing, one could also examine the coefficients of the Zernikes to identify the 

major players in the aberration map.  



 92 

 The retrace errors and their sensitivity to surface curvature obviously impact the 

system bias.  Retrace errors will also impact radius of curvature measurements [43].  

Radius measurements require the identification of an interferometric null position when 

the lens under test is at two positions - the confocal position where the radius of curvature 

of the test lens coincides with the focus of the spherical wavefront exiting the 

interferometer and the cat’s eye position where the wavefront retro-reflects from the 

surface of the lens.  Aberrations in the interferometer and retrace errors introduce a bias 

in the apparent location of these two positions.  The same simple ray-trace simulation can 

be used to explore the order of magnitude of these effects.  Again, errors in the 

measurement become significant in the micro-optic regime. 

 

 

Figure 71. SEM photo of micro-lenses of various ROC [53]. 
 
 

5.2  Effects of Misalignment on MORTI 

 There are many parameter combinations that can be tested with our simulation.  

We chose a set of parameters to emphasize the dependence of calibration on 

misalignment during the RBT and on test surface curvature.  Previous published work on 

the RBT only considers the effect of the ball form error on the convergence rate of the 

calibration procedure [34].  Our simulation demonstrates that misalignment of the ball 
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along the optical axis as small as 1/10 wave has a significant effect on the calibration 

result, even when simulating a perfect spherical artifact.  During Phase II of alignment 

and calibration of MORTI, we demonstrate the misalignment effect by experimentally 

calibrating the instrument again using a 1 mm radius ball and a 0.5 mm radius ball.  We 

then compare observed trends without simulation results.   

For the Phase II calibration, we record the rms bias results and plot this as the 

number of patch measurements is increased.  Each random average of N measurements 

was repeated 10 times to estimate error bars for our analysis.  Also, the experimental data 

is fit to our rms model (Equation 32) using a chi-square minimization process.  We 

include the error bars for this fit analysis to assess the quality of the fit.  In the future, we 

recommend repeating the test to tighten the error bars and arrive at a more rigorous 

evaluation of the fit to the data. 
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Figure 72. Phase II RBT data for MORTI with 0.5 (red points) and 1 mm (blue points) radii balls. 
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The fit variables for the experimental data are listed in Table 4.  Initial guesses for ballσ  

and misσ  based on experimental data were used as the starting fit parameter values for the 

chi-square minimization process.  To estimate the rms of the form error on the ball, ballσ , 

we subtract any two patch measurements to give diffσ .  The system bias is the same in 

any two measurements and therefore cancels with the subtraction, leaving an RMS value 

that is on average 2 ballσ .  We can also take several difference maps and average the 

results to improve the estimate for ballσ .  The estimate of ballσ  is then 

(43)     
2

diff

ball

σ
σ =   . 

The initial estimate for misσ  is based on the decision that, in nulling the fringes for the 

confocal measurement, we will allow no more than one visible fringe (which translates to 

1/10 wave of defocus misalignment) to be visible.  We estimate that this results in 

approximately 0.1 waves rms after the measurement is taken.  This is more difficult to 

clearly estimate compared to the rms of the ball.  The variable actualbias_σ  is estimated by 

taking the rms result of the average of all 100 maps.   

 

Table 4. Model fit variables compared with experimental variables; chi square statistic for each 
case; rms values in waves. 
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After minimization, the chi square values both fall below the critical value of 14.07 for a 

5% significance level and 7 degrees of freedom and the best-fit parameter values are 

quite close to the independent experimental estimates.  Technically, the degrees of 

freedom may be less here because all the data is drawn from the same set of 100 

measurements for different N values.  This could potentially affect the statistical analysis, 

and should be studied in future work.  Therefore, to the level of our current measurement 

uncertainties, the fit and therefore model appear to adequately describe the experimental 

calibration dependence on both misalignment and ball form errors. 

As predicted by the simulation and seen in the calibration of MORTI on Phase I, 

the smaller radius ball results in a different system bias.  Also, on average, the error in the 

knowledge of the best system bias estimate for N = 10 compared with N = 100, increased 

from 0.02 to 0.03 as the ball size was increased.  Figure 73 and 74 are RBT calibration 

results for both cases, R = 1 mm and R = 0.5 mm. 

 

 

 
Figure 73. Phase II experimental RBT result for R = 1 mm on MORTI (PV = 256 nm, rms = 36 

nm). 

 

PV = 0.4041 wv  
rms = 0.0573 wv  

N = 100 
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Figure 74. Phase II experimental RBT result for R = 0.5 mm on MORTI (PV = 431 nm, rms = 

113 nm). 

 

Several changes to MORTI were made between Phases I and II to improve the quality of 

the optics and the alignment.  For Phase II, the resulting RBT maps again reveal 

astigmatism as well as some coma aberration, and, as expected, the overall PV and rms 

values are higher for the smaller radius ball due to retrace errors in testing micro-spheres.  

 

Figure 75. Phase II experimental RBT result Zernike generation for R = 1 mm. 

 

 
 

 

N = 100 
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Figure 76. Phase II experimental RBT result Zernike generation for R = 0.5 mm. 

 
 

Examining these RBT result maps more closely, one can observe that non-axially 

symmetric aberrations still dominate the system bias, but to a lesser extent than with the 

Phase I calibrations.  Recall that ray-mapping errors are mainly to blame for this type of 

aberration (coma and astigmatism); therefore MORTI may again be exhibiting beam 

alignment issues such as light entering and exiting lenses off axis.  We expect that 

spherical aberration would be the dominant aberration caused by the high-quality 

Mitutoyo objective lens.  While spherical aberration is present, it is not dominant and this 

suggests the system bias is limited by misalignment of the instrument itself, rather than a 

fundamental limitation from the quality of the objective.  It is therefore likely that 

MORTI’s bias can be further reduced through improved alignment. 

As in the simulation, we can compute a pixel-by-pixel uncertainty map for our 

experimental RBT on MORTI.  Using N = 100 and the R = 0.5 mm ball, our uncertainty 

map is seen in Figure 77.   
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PV = 0.012 wv       mean = 0.043 wv 

 
Figure 77. Uncertainty map for R = 0.5 mm on MORTI. 

 
 
 

The map shows a mean uncertainty level over the dataset of 0.043 waves (27 nm) and a 

variation in the uncertainty around this mean with a PV of 0.012 waves (7.9 nm).  We 

find that the uncertainty shows a spatial variation characteristic of astigmatism, as was 

present in the RBT wavefront bias map.  Examining the Zernike polynomials for this 

uncertainty map shows a small contribution of spherical aberration and coma as well.  

We can consider either residual ball or misalignment as causes for the spatial variation in 

uncertainty.  If the ball contribution to each patch measurement is truly random, a 

residual ball contribution would be the same for every pixel, leading to a flat uncertainty 

map.  This may not be true for the misalignment contribution, however.  To appreciate 

this, consider for example only the presence of added spherical aberration with 

misalignment.  Spherical aberration has nodes and antinodes at specific locations.  As the 

amount of spherical aberration randomly varies from random misalignment, the variation 

at the node locations would be identically zero while the variation would be a maximum 

at the antinode locations. 
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The sensitivity of the instrument bias to test part misalignment can be 

experimentally evaluated by recording measurements as the test part is systematically 

misaligned.  We can then plot, for example, the rms map value versus the Zernike 

defocus coefficient (a measure of optical axis misalignment).  In such a plot, the rms 

values include contributions from misalignment and the form error of the calibration ball.  

But the shift in rms with misalignment reflects the misalignment dependence.  Future 

work is required to isolate the instrument bias rms from the ball contribution for this type 

of experimental misalignment test.  Ideally, the low point of the curve would correspond 

to the actual system bias of the instrument, given a perfect calibration artifact. 

 

 

Figure 78. Actual systematic misalignment on MORTI for 1 mm ball 
 
 

 
One can also plot Zernike coefficients for the higher order aberrations versus defocus, as 

shown with the spherical aberration versus defocus shown in Figure 79.  This allows for a 

more detailed assessment and is useful for comparing MORTI to other interferometers.   
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Figure 79. Actual systematic misalignment: defocus versus spherical 
 
 
 

Comparing this data with that obtained using a 25 mm ball on the XCALIBIR 

interferometer from the National Institute of Standards and Technology (NIST) lab, 

MORTI shows promising results [54].  The slope of a linear fit to the data represents the 

sensitivity of the interferometer to misalignment.  The slope for spherical aberration 

versus defocus for the XCALIBIR was 0.023, indicating that our custom instrument is 

less sensitive to optical axis misalignment. 



CHAPTER 6:  DISCUSSION 
 
 

 In this section, we present several disjoint but noteworthy comments with the 

purpose of completing (1) an interpretive discussion of how the simulated models 

performed in comparison with the physical experiments and how our custom instrument 

performed compared with similar instruments; (2) an argument as to what the various 

calibration trends convey in light of other optical measurement technologies, how their 

presence will impact future metrology, and what their drawbacks are; and (3) thoughtful 

recommendations for implementation of a highly effective RBT calibration technique. 

 Through simulation, our goal was to gain insight as to which variables are most 

important to the calibration process, and later verify this in the experiment.  The 

underlying objective was to imitate the internal processes and not merely the results of 

the RBT.  For one, we have demonstrated that retrace errors play a significant role in 

contributing to the instrument bias for small (less than 1 mm) radii spheres.  The 

simulation plainly showed that for small radii parts, the retrace errors become extremely 

sensitive to the ball curvature.  In extreme cases, retrace errors cause the confocal 

location to be ill-defined.  The calibration ball size must be chosen with care, given the 

characteristics of the part to be measured.  Also, a fixture to hold the ball and a means of 

random re-orientation must be considered.  If care is not taken, the ball could settle into a 

non-random motion pattern and lead to sampling of the ball surface with a non-uniform 
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probability density and hence an undesirable bias in the calibration.  In future studies, it 

would be interesting to see how much smaller (nano) calibration balls affect the RBT, but 

finding smaller balls may be a challenge.  One thing is certain, the measurement and 

inspection of miniature parts will continue to demand new approaches and new 

technologies in the coming years. 

We would have liked to run the RBT calibration experimentally on our custom 

interferometer repeatedly and ramp up the number of measurements averaged to observe 

data trends and understand how some variables influence specific phenomena.  However, 

given time constraints, we chose to focus on the importance of ball size and the impact of 

misalignment, as these had not been studied and we expected them to be important for 

micro-optics metrology.  In the future, it would be beneficial to automate the random ball 

re-orientation process to average more surface measurements.  It is conceivable that the 

lengthy process of manual calibration may influence the operator to make too few 

measurements and compromise the calibration, and automation would eliminate this 

possibility.  Previous research involved setting a large ball on a three-point mount and 

rotating it manually between measurements.  This technique is not advisable, as the 

operator is required to touch the ball and this causes a change in temperature of the ball 

and possible surface contamination with dust or residue. 

Having created and tested our customized RBT simulation model to study 

misalignment, it became apparent that on top of the susceptibility to retrace errors for 

small optics, the effectiveness of the RBT is dependent upon several pre-defined system 

parameters.  Clearly, the RBT result will be different for every set of test conditions and 

recall that we derived the following equation for the rms result of the RBT: 
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misball
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


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
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Evidently, the rms result of the RBT depends on the rms of the form error of the 

calibration ball, the rms of the positional z-misalignment of the ball and the number of 

measurements taken.  This relationship shows that fewer measurements are required if 

ballσ  and misσ  are small.  Some researchers would argue that removing the defocus (z-

displacement) aberration term from each map before averaging eliminates the 

misalignment contribution.  Of course, residual defocus, tip, and tilt in the averaged map 

represents the amount of pure residual misalignment, but these are not the only 

consequences of misalignment.  Higher order aberrations result from misalignment and 

these are not removed by simply removing the low-order misalignment Zernike terms.  

Also, future work is necessary to examine the effects of other misalignment terms such as 

x-tilt and y-tilt, and how x, y and z positional errors interact. 

 The question then becomes, how many measurements should be averaged to leave 

a sufficiently low uncertainty in wavefront bias calibration?  In a paper by Ulf 

Griessman, he suggests that the number of measurements should be large enough so the 

calibration uncertainty is less than the rms repeatability of the measurement where the 

ball remains fixed [55].  This certainly is a reasonable target.  To estimate repeatability, 

we take a number of form measurements in a short period of time with the ball in the 

same orientation, plot the results for the rms of the maps and take the standard deviation 

of the data.  We found that during our experiment, the rms repeatability of MORTI was 

about 0.002405 waves (~1.5 nm).  Comparing MORTI with an in-house Wyko RTI 4100 

laser interferometer, we found its rms repeatability was 0.002867 waves (~1.8 nm).   
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Based on these figures and the simulation values for the RBT (we calculated the 

difference between the estimated bias for various N and the actual prescribed bias), we 

recommend collecting at least 100 maps for averaging, but 150 to 200 would be ideal, if 

time permits.  For N = 100, the rms uncertainty in the system bias is 0.002265 waves, 

while for N = 200, the rms uncertainty is 0.0009 waves.  The repeatability data for 

MORTI and the Veeco are seen in Figures 80 and 81.  Given the RBT data from MORTI, 

we can calculate the difference between the RBT results for various N (choose N = 60 

here) and the absolute best estimate value we have (N = 100), for the two different radii 

cases and estimate an rms uncertainty in the system bias for N = 60 of 0.0054 waves. 

 

 

Figure 80. MORTI repeatability. 
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Figure 81. Wyko repeatability. 

 

 

Figure 82. Wyko RTI 4100 laser Fizeau interferometer. 

 

st.dev. = 0.002867 
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Traditionally, RBT theory considers the behavior at one pixel and shows that the 

convergence follows a simple 1/N  description.  Plotting rms vs N, our research, and 

previous work, have shown that the convergence curve deviates from the 1/N  behavior 

as we approach large N values.  In the past, this was not fully explained, but given our 

data and our derivation of Equation 32, we can shed light on the tendencies of the random 

averaging convergence. 

Comparing our most recent system bias data from MORTI with that from two 

commercial interferometers, MORTI was as good or better.  Previously, we calibrated a 

Zygo® Micro-LUPI phase-shifting interferometer and a Zygo NewView 5000 scanning 

white light interferometer (SWLI) using the RBT technique (R = 1 mm).  We found that 

the Micro-LUPI has a system bias PV value of 211 nm, while the SWLI exhibited a PV 

of 390 nm for N = 100.  RBT results obtained using a 1 mm radius ball on MORTI 

totaled 361 nm.  The NewView 5000 and the Micro-LUPI are pictured in Figures 83 and 

84.   

 

Figure 83. Zygo scanning white light interferometer. 
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Figure 84. Zygo Micro-LUPI phase-shifting interferometer [56]. 
 
 

Caution is implied when using such non-common path interferometers, as the 

reference and test beams follow widely separated paths and are, hence, differently 

affected by mechanical vibrations and temperature fluctuations.  If the effects are large 

enough, the fringe pattern can become unstable and measurements will not be possible.  

Mechanical vibrations and turbulent air flow introduce significant problems for most 

interferometric test methods.  The problem is that data is taken sequentially over a 

relatively long time period.  Commercial interferometers can take four or five frames of 

data to compute a phase map, which means that the interference pattern must remain 

stable for almost 200 milliseconds.  Using faster cameras, measurements can be made 

with almost any magnitude of vibration or air turbulence.  Although MORTI is isolated 

from vibration via an air floatation table, its structure is large enough that low-frequency, 

high-amplitude vibrations could be present.  However, in our case, vibration and 

turbulence effects were minimal and did not disrupt the phase-shifter calibration process.  

A number of vibration-tolerant phase-shifting solutions have been developed by other 
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researchers, including gathering four frames on four detectors, gathering four frames on 

one detector, random data acquisition and active vibration compensation [57]. 

Given our demonstration of the RBT and its limiting cases, we believe strongly 

that the technique is as effective and more easily implemented than other absolute 

calibration techniques such as the N-Position test, particularly for calibrating an 

instrument for micro-optics metrology.  The N-position test requires accurate test part 

rotation about the test part center and this would be difficult to implement on a 

microscale.  In contrast, random re-orientation of a small ball is not very difficult. 

In future research, we anticipate the need to study the role of the NA more 

closely.  The NA of the objective affects the solid angle of the measurement (the patch 

size) and a smaller NA will measure smaller patch sizes.   For typical form errors on a 

ball surface where the largest form errors correspond to longer spatial wavelengths, this 

likely will cause the ball to behave as though it is of higher quality.  Also, NA will affect 

the size of the measurement patch on the ball, which in turn would likely affect the 

convergence rate of the RBT to the system bias value.   

Another subject of future study is how surface waviness and roughness affect a 

phase-shifting optical form measurement.  Previous research has confirmed that these two 

frequency components will limit the accuracy of form measurements, but it would be 

interesting to quantify the effect for our type of system.  We have seen how surface 

roughness (with its deep pits) can cause data dropout as light is not reflected back to the 

detector.  Also, the contribution of x and y misalignment to the RBT remains to be 

investigated. 
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Overall, we believe that the techniques developed in this research assist 

manufacturers in identifying and collecting quantitative data on large and small test parts, 

both during and after the manufacturing process.  This contribution to the development of 

new non-contact testing procedures will improve quality and reduce cost in industry.  The 

continuous advancement of tools and concepts fueled by the demands of the marketplace 

require advances in faster and more accurate metrology.  With growing options in terms 

of scanning speed, accuracy, and measurement size, manufacturers will be able to select a 

solution that is tailored to their needs.  



CHAPTER 7:  CONCLUSIONS 
 
 

Lenses are probably the most widely used optical elements and micro-

interferometry is the best approach for measuring many micro-refractives, however, the 

component size makes the measurements susceptible to systematic biases.  Micro-

refractive lenses are critical components in many devices, yet characterization remains 

challenging.  Micro-interferometry is the best measurement approach and was pioneered 

in the mid 1990’s  by Schwider’s group in Germany [58] and Hutley’s group in the U.K. 

[59].  In micro-interferometry, interferometer biases can be of the same magnitude or 

greater than the deviations on the micro-lens under test; therefore, a rigorous calibration 

and estimated uncertainty is necessary.  In simple terms, interferometer calibration means 

removing instrument wavefront biases before measuring a test piece, much like clearing 

out a calculator before beginning computations.   

We have developed calibration methods for micro-interferometry to improve form 

error and reduce measurement uncertainty.  Our ultimate goal was to contribute to the 

advancement of surface metrology for process control and quality assurance of the 

manufacture of high-end optical lenses.  Much of this research is based on mathematical 

modeling, computer simulation, statistical estimation of measurements, while 

experimental techniques also play a major role. 
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Micro-lenses are discrete or array-based spheres, aspheres and other optics used in 

a wealth of applications, including focusing light into fibers for optical networking [60]. 

Despite advances in various metrology tools, interferometry remains the method of 

choice for measurements of optical surfaces, including refractive micro-lenses.  There is 

also significant demand for fast and precise non-contact 3-D profile measurements in 

product design, industrial manufacturing, commercial multimedia, and information 

technology fields.  Phase-shifting interferometers measure the surface height of very 

smooth, continuous surfaces with nanometer resolution.   

 

Figure 85. Result of an interferometric micro-lens height profile measurement [61]. 
 

With the goal of optimizing the micro-lens measurement calibration, we 

performed a rigorous study of the random ball test (RBT) in theory and practice.  Our 

first conclusions are that the calibration result changes with calibration artifact surface 

quality and misalignment, and the effect worsens when testing micro-optics (radius less 

than 1 mm) due to retrace errors.  Translational misalignment away from null, along the 

optical axis as small as 1/10 wave has a direct effect on the convergence of the calibration 

result, even when simulating a perfect spherical artifact.  The curvature of the artifact 
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leads to retrace errors, which are aberrations caused by the specific path the rays take 

back through the interferometer following reflection from the test artifact.  

The RBT self-calibration technique averages a series of surface subapertures on a 

medium quality micro-sphere to identify the interferometer biases that can later be 

subtracted from any individual measurement.  By measuring a collection of random 

patches on the surface of a sphere, and then averaging the results, the contributions from 

the ball go to zero leaving only the systematic biases due to the instrument.  Our spherical 

surface is inspected for surface form errors (deviation from the best-fit sphere) by making 

its center of curvature coincident with the focus of the objective lens.  A self-centering 

element holder contains the spherical calibration artifact.  An investigation into the 

dependence of test part radius and misalignment on micro-lens form-error-measuring 

interferometer wavefront bias data have been conducted both experimentally and by 

software simulation.  A comprehensive geometric ray-trace software simulation was 

created to closely model the test arm of the physical system and this allowed us to study 

all factors impacting the calibration.  Results clearly indicate that the retrace error 

increases with test lens surface curvature.  The fact that retrace errors depend on the 

radius of the test part implies that when calibrating the instrument even with a perfect 

artifact, the calibration is nominally valid only when measuring parts with the same 

approximate radius as the calibration artifact.   

 As previously mentioned, the RBT is a random averaging technique applied to a 

collection of circular patches on the surface of a medium quality sphere that replaces the 

micro-lens under test.  Each interferometric measurement of a patch contains information 

on the form error on the ball and also a bias due to the wavefront traveling through the 
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imperfect instrument.  The basis for our simulation hinged on defining a sphere 

mathematically in terms of a set of spherical harmonic functions, and varying the 

amplitudes and the number of functions to adjust the form error on the sphere.  Spherical 

harmonics indicate that the average of all the deviations on the surface of a ball (sphere) 

is zero; therefore the result of averaging many patches yields the wavefront bias due to 

our instrument, with some uncertainty related to the number and size (NA) of patches 

averaged.  The RBT eliminates the need for an expensive high-quality concave 

calibration artifact, such as those used to calibrate commercial optical profilers.  The 

RBT takes more time than calibration with a high-quality artifact, but reduces uncertainty 

compared with calibrating by a single measurement of a high-quality artifact.  The 

biggest advantage of using RBT is overcoming a lack of availability of traditional high 

quality artifacts for a range of micro-lens ROC in accounting for retrace errors.  It is 

much easier to buy a collection of balls of different radii. 

Clearly, the RBT result will be different for every set of test conditions and we 

derived the following equation for the rms result of the RBT given z misalignment: 
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We found that the rms result of the RBT depends on the rms of the form error of the 

calibration ball, the rms of the positional z-misalignment of the ball and the number of 

measurements taken.  This relationship shows that fewer measurements are required if 

ballσ  and misσ  are small.  Based on the model, using the best quality ball surface and the 

least amount of misalignment (best null) will result in the need for fewer measurements 

to approach the best estimate of the system bias.  Assuming that most purchasable 
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calibration balls will be of medium quality (as prescribed in the simulation), the data 

reveals that decreasing the ball misalignment from ½ to 1/10 wave, reduces the required 

number of measurements (N) by approximately one-third to achieve the same estimate.  

Furthermore, a systematic misalignment test can be applied to predict the residual rms 

wavefront bias of a simulated optical system, but more work is required before this can 

be applied in practice. 

We validated the trends observed in the simulation by carrying out calibration 

procedures on our custom designed micro-interferomter, MORTI.  MORTI stands for 

micro-optic reflection and transmission interferometer (MORTI) and is built from a 

Mitutoyo microscope body and fiber laser input.  The flexible and compact micro-

interferometer that can be used to measure form and transmitted wavefront errors, as well 

as radius of curvature.  Following optical alignment of all components, the instrument is 

calibrated using the RBT.  Results of the calibration indicating MORTI system bias were 

as good if not better when compared with other commercial interferometric instruments.  

Repeatability also compared well. 

More and more, instrumentation is being sought to improve measurements of the 

conformity of parts to their tolerances and detect defects directly on the manufacturing 

line [62].  Metrology enables manufacturers to boost operating efficiencies and 

production yields gathering quantitative data on part defects, both during and following 

the manufacturing process.  The shrinking of high-tech gadgets is ever-present, and as 

parts continue to shrink and become increasingly complicated, micro- and nano-

metrology will take on a greater role [63, 64].  We believe that isolating systematic 

wavefront biases to achieve low-uncertainty surface form measurements will help 
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advance optical metrology, and will assist future efforts of other researchers in this field.  

Furthermore, self-calibration could be useful if applied to removing the discrepancies in 

other measurements such as transmission measurements of lens arrays, or even contact 

lenses. 
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APPENDIX 
 
 

The following pages contain the detailed MATLAB code generated for simulating 

the random ball test. 

 

%Create a sphere with low-frequency surface form er rors using 
%spherical harmonic functions. Randomly re-orient t he sphere and pick 
%a random patch. Remove a best-fit sphere from the data to isolate form 
%errors only. Describe sag data for the patch and s end to Zemax.  
  
 clear all  
 close all  
  
 %time start  
 TIC  
 %Initiate Link  
 zDDEInit  
 %Define matrix sizes  
 zavg = zeros(128);  
 W = zeros(128);  
 psum = zeros(128);  
 %name = num2str(N);  
 %eval(['p' name ' = zeros(128);'])  
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
                                                                                  
 %Number of patches to pick and send to Zemax in a l oop                           
  N = 1;                                                                          
 %Define sphere base size                                                         
  R = 25;                                                                         
 %Define IRREGULAR SPHERE harmonic parameters & mult iplication constant             
  degree = 6;                                                                     
  order = 1;                                                                      
  M = .008;  %used for ref sphere too                                             
 %Define grid sizes                                                               
  sg = 201; %spherical coordinate grid (should be denser than g g)                 
  gg = 101; %griddata grid...MUST ALSO CHANGE line 327                            
                                                                                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
for  i=1:N  
  
wW = zeros(128);  
  
% Create a grid in spherical coordinates  
delta = pi/(sg-1);  
theta = 0 : delta : pi; % altitude  
phi = 0 : 2*delta : 2*pi; % azimuth  
[phi,theta] = meshgrid(phi,theta);  
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% Calculate the harmonic functions  
Ymn = legendre(degree,cos(theta(:,1)));  
Ymn = Ymn(order+1,:)';  
yy = Ymn;  
for  kk = 2: size(theta,1)  
    yy = [yy Ymn];  
end ;  
yy = yy.*cos(order*phi);  
order = max(max(abs(yy)));  
rho = R + M*yy/order;  
  
% Apply spherical coordinate equations  
r = rho.*sin(theta);  
x = r.*cos(phi);     
y = r.*sin(phi);  
z = rho.*cos(theta);  
%v = x.^2 + y.^2 + z.^2;  
  
%% Rotate sphere to new random angle  
alpha = rand*pi;  
beta = rand*pi;  
gamma = rand*pi;  
    
% define the rotation matrix  
a = [1 0 0;0 cos(alpha) sin(alpha);0 -sin(alpha) co s(alpha)]*[cos(beta) 
0 -sin(beta);0 1 0;sin(beta) 0 cos(beta)]*[cos(gamm a) sin(gamma) 0;-
sin(gamma) cos(gamma) 0;0 0 1];  
  
for  i=1:sg  
  for  j=1:sg  
  a = [a(1,1) a(1,2) a(1,3);a(2,1) a(2,2) a(2,3);a( 3,1) a(3,2) a(3,3)]; 
% result of above long equation  
  b = [x(i,j);y(i,j);z(i,j)]; % want to rotate all x's, y's and z's  
        A = a*b; % do the rotation of every (x,y,z) point  
        x(i,j) = A(1,1);  
        y(i,j) = A(2,1);  
        z(i,j) = A(3,1);  
  end  
end  
  
% Exclude data  
maxz = 0.564112 * R;  
nodata = find(z <= maxz); %finds indices where z <= maxz  
z(nodata) = 0.564112 * R;  %uses those indices  
x(nodata) = 0.564112*R;  
y(nodata) = 0.564112*R;  
C = min(z);  
B = sort(C);  
d = max(B);  
z = z - d;  
z(isnan(z)) = 0;  
  
%-------------------------------------------------- ----------------  
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%Use griddata to change to a uniform grid  
  
% Fit data to an evenly spaced Cartesian grid to pr epare it for 
exporting to Zemax  
xprime = x';  
yprime = y';  
zprime = z';  
newx = xprime(:);  
newy = yprime(:);  
newz = zprime(:);  
[XI YI] = meshgrid(-R:((2*R)/(gg-1)):R, -R:((2*R)/( gg-1)):R);  
%[newxnewy,newz] = 
consolidator11d([newx(:),newy(:)],newz(:),'mean',1. e-12);  
%newx=newxnewy(:,1);  
%newy=newxnewy(:,2);  
ZI = griddata(newx,newy,newz,XI,YI);  
ZI(isnan(ZI)) = 0;  
  
%-------------------------------------------------- ---------------  
% Create a reference sphere  
  
%Define REFERENCE SPHERE harmonic function paramete rs                             
 degree = 1;                                                                      
 order = 0;  
  
deltar = pi/(sg-1);  
thetar = 0 : deltar : pi; % altitude  
phir = 0 : 2*deltar : 2*pi; % azimuth  
[phir,thetar] = meshgrid(phir,thetar);  
  
% Calculate the harmonic functions  
Ymnr = legendre(degree,cos(theta(:,1)));  
Ymnr = Ymnr(order+1,:)';  
yyr = Ymnr;  
for  kkr = 2: size(thetar,1)  
    yyr = [yyr Ymnr];  
end ;  
yyr = yyr.*cos(order*phir);  
order = max(max(abs(yyr)));  
rhor = R + M*yyr/order;  
  
% Apply spherical coordinate equations  
rr = rhor.*sin(theta);  
xr = rr.*cos(phi);     
yr = rr.*sin(phi);  
zr = rhor.*cos(theta);  
%v = x.^2 + y.^2 + z.^2;  
  
% Exclude data  
maxzr = 0.564112 * R;  
nodata = find(zr <= maxzr); %finds indices where z <= maxz  
zr(nodata) = 0.564112 * R;  %uses those indices  
xr(nodata) = 0.564112*R;  
yr(nodata) = 0.564112*R;  
C = min(zr);  
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B = sort(C);  
d = max(B);  
zr = zr - d;  
zr(isnan(zr)) = 0;  
  
%----------------------------------------  
%Again, use griddata to change to a uniform grid  
  
% Fit data to an evenly spaced Cartesian grid to pr epare it for 
exporting to Zemax  
xrprime = xr';  
yrprime = yr';  
zrprime = zr';  
newxr = xrprime(:);  
newyr = yrprime(:);  
newzr = zrprime(:);  
[XIr YIr] = meshgrid(-R:((2*R)/(gg-1)):R, -R:((2*R) /(gg-1)):R);  
%[newxnewy,newz] = 
consolidator11d([newx(:),newy(:)],newz(:),'mean',1. e-12);  
%newx=newxnewy(:,1);  
%newy=newxnewy(:,2);  
ZIr = griddata(newxr,newyr,newzr,XIr,YIr);  
ZIr(isnan(ZIr)) = 0;  
  
zfinal = ZIr - ZI;  
%zfinal = -ZI;  
%zfinal = zeros(501);  
%clf  
%figure  
%surf(XIr,YIr,zfinal)  
%shading interp  
%axis equal  
%light  
%lighting phong  
%view(-126,36)  
%rotate3d  
%titstr5 = ['best fit sphere removed'];  
%title(titstr5)  
  
%--------------------------------------------------  
% Write gridsag file, then send to zemax  
% Write to ASCII file (.dat)                                                                         
% 
  
% STEP 1. Open file, or create new file, for writin g; discard existing 
contents, if any  
fid = fopen( 'C:\Program Files\ZEMAX\Samples\NEWgridSAGform.DAT' , 'wt' );  
   
% STEP 2. Write to the file: 1st, write seven value s for the header 
line, then enter down to next line  
% fprintf(fid,'401 401 0.125 0.125 0 0 0\n') % Widt h/pts = 10/100 = 0.1  
   fprintf(fid, '201 201 0.25 0.25 0 0 0\n' )  
  
% STEP 3. Write all remaining entries (nx*ny)  
   %for iii = 1:size(zfinal,1)  
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    %   for jjj = 1:size(zfinal,2)  
     %    fprintf(fid,'%f %f %f %f 
0\n',zfinal(iii,jjj));%,dzdx(iii,jjj),-dzdy(iii,jjj ),-
d2zdydx(iii,jjj));  
     % end  
     %end 
%    fprintf(fid,'%f 0 0 0 0\n',z);  
   
% STEP 3. Write all remaining entries (nx*ny)  
  fprintf(fid, '%7.4f 0 0 0\n' ,zfinal); %7.4  
    
% STEP 4. Close the file  
   status = fclose(fid);  
   
% DDE Commands   (don't forget to open Zemax !!!!!! !!!!!!!!!!!!!!)                                   
% 
  
% Initiate Link  
  %zDDEInit  
  %zSetSurfaceData(4, 52, 5)  
  %zPushLens(10)  
  
%% Create random misalignment of the gridsag surfac e (max 1/2 wave)  
    
   %rz = rand;  
   %g = -0.003;  
   %h = 0.003;  
   %distz = 19 + g + (h-g)*rz;  %defocus; %distance fr om objective lens 
to surface  
    
   dx = 0;  
   dy = 0;  
   distz = 30;  
    
% Send grid data to Zemax  
  zImportExtraData(4, 'C:\Program 
Files\ZEMAX\Samples\NEWgridSAGform.DAT' )  
% Send the misalignment   
  zSetSurfaceData(4, 52, dx)    % Can also use zGetSurfaceData to check  
  zSetSurfaceData(4, 53, dy)     
  zSetSurfaceData(3, 3, distz)  
  
  zPushLens(10)  
   
% User Input  
%u = input(' Acceptable? Y/N [Y] : ','s');  
%if isempty(u)  
%    u = 'Y';  
%else  
%    u = 'N';  
%end 
%if u == 'Y';  
%-------------------------------------------------- --------------------
---------------------------  
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% Send data back to Matlab, after all N maps have r eturned to Matlab, 
Average the data  
% Make text file from wavefront map  
  zGetTextFile( 'file2' , 'Wfm' , 'FOO.cfg' ,0)  
% Read text file into Matlab and put data in a matr ix called p  
  % ReadZemaxWaveMap('C:Documents and Settings\Neil 
Gardner\Desktop\Project\Zemax\file1')  
  wm = ReadZemaxWaveMap( 'C:\Program Files\ZEMAX\Samples\file2' );  
% Gather wavefront data in matlab, and average  
  
%A = wm.data;  
wW = wm.data;  
W = W + wW;  
%name = num2str(i);  
%eval(['p' name ' = A - zcalib;'])  
%eval(['p' name ' = A;'])  
%psum = psum + wm.data;  
end  
  
if  u == 'N' ;  
    N = N-1;  
end  
  
end  
  
%for i=1:N  
%name = num2str(i);  
%eval(['psum = psum + p' name ';'])  
%end 
  
zavg = W./N;  
%zavg = psum./N;  
%zavg = zavg - zcalib;  
  
%--------------------  
% Estimate Zernikes  
  
%zfinal = mask_circle(zfinal,[33,33],31); % mask (m atrix,center,radius)  
zavg = mask_circle(zavg,[65,65],62); % mask (matrix,center,radius)  
vsize = size(zavg);  
[mr,ma] = zern_radius_angle(vsize,[65,62],62);  
[zernparameters,rmserror,standarddevs,tstatistics,p robabilities] = 
zern_estim(zavg,mr,ma,[1:36]);  
  
[x_vect,y_vect]=get_xy(zavg,1);  
% Zernike terms Removal  
zavg=rmterms(x_vect,y_vect,zavg,[0 0 0 0 0],36);  
% 5 zernike terms in bracket:   [tilt power astig c oma spherical]  
  
vsize = size(zavg);  
[mr,ma] = zern_radius_angle(vsize,[65,65],62);  
[zernparameters,rmserror,standarddevs,tstatistics,p robabilities] = 
zern_estim(zavg,mr,ma,[1:36])  
  
%off = offset/N  
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a = max(zavg);  
b = sort(a);  
pk = max(b);  
c = min(zavg);  
d = sort(c);  
val = min(d);  
pktoval = pk - val;  
%RMS 
%zavg(isnan(zavg)) = 0;  
B = zavg;  
B = B(finite(B));  
rms = sqrt(mean(B.^2));  
  
%figure  
pcolor(zavg)  
%colormap(gray)  
axis equal  
shading interp  
colorbar( 'vert' )  
%c=camlight  
  
titlenum3 = num2str(rms);  
titlenum4 = num2str(pktoval);  
titlenum = num2str(N);  
%titlenum2 = num2str(NA);  
titstr6 = [ 'RBT Avg of '  titlenum ' wavefront maps, PV = '  titlenum4 ' 
wvs, RMS = '  titlenum3 ' wvs' , ];  
%titstr = ['RBT Average of ' titlenum ' wavefront m aps of a perfect 
sphere, NA = ' titlenum2 ' , waves'];  
title(titstr6)  
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