Math 1241 Project 2 - Difference quotient and Derivative Name:

In this project, numerical values of the derivative will be calculated using the limit of the difference quotient and a calculator program will be created to compute the slope of the secant line.

Problem I: In this problem, we will find the slope of the tangent line to a curve. First, the slope of the secant line joining the points corresponding to $x=a$ and $x=a+h$ is given by the difference quotient $m_{\mathrm{sec}}=\frac{f(a+h)-f(a)}{h}$.
If h is small enough, we get a good approximation for the slope of the tangent line at $x=a$. The slope of the tangent line is $f^{\prime}(a)=\lim _{h \rightarrow 0} m_{\text {sce }}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

Let $f(x)=\sin x$ and $a=1$. The slope of the secant line joining the points corresponding to $x=1$ and $x=1.1$ is equal to $m_{\text {sec }}=\frac{f(1.1)-f(1)}{0.1}=\frac{\sin 1.1-\sin 1}{0.1}=0.49736 \quad$ (here $h=0.1$).
To find the slope of the tangent line at $a=1$, take smaller and smaller values of h.
This is easily done using TABLE in the calculator. Take $Y_{1}=\frac{\sin (1+X)-\sin (1)}{X}$ and plug in smaller and smaller values of X. In the TABLE SETUP, set Indpnt on Ask and Depend on Auto. Press 2nd GRAPH and start entering values for x to get the values of y automatically.
Fill in the following tables (Also remember Radians Mode).

X	.1	.01	.001	.0001	.00001
Y 1					

X	-.1	-.01	-.001	-.0001	-.00001
Y 1					

Thus the slope of the tangent line to the curve $f(x)=\sin x$ at $x=1$ is equal to

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} m_{\text {sec }}=\lim _{h \rightarrow 0} \frac{\sin (1+h)-\sin (1)}{h}=
$$

\qquad .

Problem II: An easier way to compute the slope of secant lines is by using a program on the calculator. Follow the steps below to create this program. More instructions are on the back page.

PROGRAM:MSEC
:Disp " ENTER H"
:Input H
:Disp " ENTER A"
:Input A
$: A \rightarrow X$
$: Y_{1} \rightarrow Y$
:A+H $\rightarrow X$
$:\left(Y_{1}-Y\right) / H$
:Disp Ans

Name of the program
Prompt a value of H
Accept a value of H
Prompt for the point at which to find the slope
Store the value of A in X
Compute $f(\mathrm{~A})$ and store it in Y
Store the value of $\mathrm{A}+\mathrm{H}$ in X
Compute the slope of the secant Display the slope

To create this program on your calculator:

- Press PRGM to display the PRGM NEW menu
- Press ENTER to select 1: Create New. The Name = prompt is displayed (and the A-LOCK is on with the TI 83 Plus), type in MSEC the name of the program
- The ALPHA key lets you enter the alphabetic characters. To enter T, for example, press ALPHA, release it, and then press 4 . If you have to enter several alphabetic characters, press $2^{\text {nd }}$ ALPHA to get the A-lock so that you avoid pressing the ALPHA key many times.
- After typing the program's name, press ENTER. The program editor is displayed.
- The commands Disp and Input are in the PRGMIIO(input/output) menu. Press PRGM \square.
- To get the \mathbf{Y}_{1}, press VARS \square to display the \mathbf{Y}-VARS menu, select 1: Function to display the \mathbf{Y}_{n} functions.
- " is ALPHA + , is ALPHA \square, Ans is $2^{\text {nd }}(-)$, and \rightarrow is the STO \triangle key.
- When done typing the program, Press 2nd QUIT to leave the program editor and return to the home screen.

To use the MSEC program

- Press $Y=$ and set $\mathbf{Y}_{1}=\boldsymbol{\operatorname { s i n }} \mathbf{X}$. Press $2^{\text {no }}$ QUIT to go to the home screen.
- Press PRGM to display the PRGM EXEC menu. Select the program's name and press ENTER ENTER to execute the program.

For example let $a=1$ and $h=0.1$. The MSEC program will give the slope of the secant line joining the points corresponding to $\mathrm{x}=1$ and $\mathrm{x}=1.1$.
Use the MSEC program to find the slope of the tangent at $a=1$ by using smaller and smaller values of h.

h	.1	.01	.001	.0001	.00001
MSEC					

h	-.1	-.01	-.001	-.0001	-.00001
MSEC					

Thus the slope of the tangent line to the curve $f(x)=\sin x$ at $x=1$ is equal to $\lim _{h \rightarrow 0} m_{\sec }=$ \qquad .

Problem III: Use the MSEC program to find the slope of the tangent line to the curve $f(x)=\sqrt{3 x+1}$ at $a=2$.

h	.1	.01	.001	.0001	.00001
MSEC					

h	-.1	-.01	-.001	-.0001	-.00001
MSEC					

Thus the slope of the tangent line $=$ \qquad

