- 1. The definite integral $\int_0^1 (4x-2) dx$ equals
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4
- 2. The graph of a function g(x) is shown to the right, which consists of three straight lines. Then the definite integral $\int_{-4}^{4} g(x) dx$ equals

- (b) -8
- (c) 8
- (d) 16
- (e) 28

- 3. The indefinite integral $\int \cot x dx = \int \frac{\cos x}{\sin x} dx$ equals
 - (a) $\ln|\sin x| + C$
 - (b) $\ln|\cos x| + C$
 - (c) $\ln|\sec x| + C$
 - (d) $\ln|\csc x| + C$
 - (e) $\tan x + C$
- 4. The definite integral $\int_0^1 \frac{x^2}{(x^3+1)^2} dx$ equals
 - (a) -1/2
 - (b) -1/6
 - (c) 1/6
 - (d) 1/3
 - (e) 1/2

- 5. The indefinite integral $\int 5x^4 \ln x dx$ equals
 - (a) $x^5 \ln x x^5 + C$
 - (b) $x^5 \ln x + x^5 + C$
 - (c) $x^5 \ln x \frac{1}{5}x^5 + C$
 - (d) $x^5 \ln x + \frac{1}{5}x^5 + C$
 - (e) $20x^3 \ln x 5x^3 + C$
- 6. The indefinite integral $\int 4x \sin(2x) dx$ equals
 - (a) $2\cos(x^2) + C$
 - (b) $-2x\cos(2x) + C$
 - (c) $2x\cos(2x) + C$
 - $(d) \sin(2x) 2x\cos(2x) + C$
 - (e) $\sin(2x) + 2x\cos(2x) + C$
- 7. Let $F(x) = \int_1^x \ln(t) dt$. Then F''(2) equals
 - (a) 0
 - (b) 1/2
 - (c) 1
 - (d) 2
 - (e) ln(2)
- 8. The improper integral $\int_0^\infty e^{-3x} dx$ equals
 - (a) 0
 - (b) 1/3
 - (c) 1
 - (d) 3
 - (e) ∞

9. The following integral form appears in the Table of Integrals in your text:

$$\int \frac{1}{\sqrt{u^2 + a^2}} \, \mathrm{d}u = \ln \left(u + \sqrt{u^2 + a^2} \right) + C.$$

Using this to find the definite integral

$$\int_0^1 \frac{1}{\sqrt{x^2 + 2x + 2}} \, \mathrm{d}x.$$

(Note that $x^2 + 2x + 2 = (x+1)^2 + 1^2$)

(a)
$$\ln\left(\sqrt{5}\right) - \ln\left(\sqrt{2}\right)$$

(b)
$$\ln\left(1+\sqrt{5}\right)+\ln\left(\sqrt{2}\right)$$

(c)
$$\ln\left(1+\sqrt{5}\right)-\ln\left(\sqrt{2}\right)$$

(d)
$$\ln (2 + \sqrt{5}) - \ln (1 + \sqrt{2})$$

(e)
$$\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{2}}$$

10. The length of the curve $y = x^2$ from the point (0,0) to the point (2,4) is

(a)
$$\int_0^2 \sqrt{1+2x} \, dx$$

(b)
$$\int_0^2 \sqrt{1+4x^2} \, dx$$

(c)
$$\int_0^4 \sqrt{1+2x} \, dx$$

(d)
$$\int_0^4 \sqrt{1+4x^2} \, dx$$

(e)
$$\int_0^4 \sqrt{1+x^4} \, dx$$

11. Let $a_n = \frac{2n^2 - 100n + 1}{5 - n^2}$ for $n = 1, 2, 3, \cdots$. Which of the following statements is true?

- (a) The sequence $\{a_n\}$ converges to 0.
- (b) The sequence $\{a_n\}$ converges to 2/5.
- (c) The sequence $\{a_n\}$ converges to 1/5.
- (d) The sequence $\{a_n\}$ converges to -2.
- (e) The sequence $\{a_n\}$ diverges.

12. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

- (a) is absolutely convergent.
- (b) is convergent, but not absolutely convergent.
- (c) is divergent.
- (d) equals 0.
- (e) equals 1.

13. The series
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

- (a) converges by the ratio test.
- (b) diverges by the ratio test.
- (c) diverges because it is a p-series with p = 1.
- (d) converges because it is a p-series with p > 1.
- (e) diverges by comparison of its terms with the terms of the series $\sum_{n=1}^{\infty} \frac{1}{n}$.

1. A table of values of a function f is shown. Find the Riemann sum for f on the interval [0, 8], using 4 subintervals of equal width and taking the sample points to be the right endpoints.

x	0	2	4	6	8
f(x)	4	1	2	1	2

- (a) 6
- (b) 8
- (c) 12
- (d) 16
- (e) 20
- 2. Let $\int_0^3 f(x) dx = 2$ and $\int_0^3 g(x) dx = -5$. Then $\int_0^3 (3f(x) g(x)) dx$
 - (a) equals 11
 - (b) equals 7
 - (c) equals 1
 - (d) equals -3
 - (e) cannot be calculated from the given information.
- 3. If $\int_5^0 f(x) dx = 2$ and $\int_5^{10} f(x) dx = -5$, then $\int_0^{10} f(x) dx$
 - (a) equals 3
 - (b) equals 7
 - (c) equals -3
 - (d) equals -7
 - (e) cannot be calculated from the given information.
- 4. The integral $\int_{-1}^{1} \frac{2}{x^3} dx$
 - (a) is a common definite integral and equals 0.
 - (b) is a common definite integral and equals 2.
 - (c) is an improper definite integral and equals 1.
 - (d) is an improper definite integral and equals -1.
 - (e) is a divergent improper definite integral.

- 5. The indefinite integral $\int \frac{x+1}{(x+2)(x-3)} dx$ equals
 - (a) $\ln |x+2| + \ln |x-3| + C$
 - (b) $\frac{4}{5} \ln|x+2| \frac{1}{5} \ln|x-3| + C$
 - (c) $\frac{1}{5} \ln|x+2| \frac{4}{5} \ln|x-3| + C$
 - (d) $\frac{4}{5} \ln|x+2| + \frac{1}{5} \ln|x-3| + C$
 - (e) $\frac{1}{5} \ln|x+2| + \frac{4}{5} \ln|x-3| + C$
- 6. The area enclosed by the curves y = x and $y = 3x x^2$ is
 - (a) 2/3
 - (b) 4/3
 - (c) 10/4
 - (d) 9/2
 - (e) 2
- 7. Find the average value of $f(x) = 3x^2 12x + 13$ on the interval [0, 3]:
 - (a) 4/3
 - (b) 2
 - (c) 4
 - (d) 6
 - (e) 12
- 8. A particle is moved along the x-axis by a force $F(x) = 6x^2 + 4x 2$. How much work is done in moving the particle from x = -1 to x = 2?
 - (a) 12
 - (b) 14
 - (c) 16
 - (d) 18
 - (e) 20

- 9. What is the coefficient of $(x+1)^2$ in the Taylor expansion of $f(x) = x^3 + x 1$ about a = -1?
 - (a) 1/2
 - (b) 1
 - (c) -1
 - (d) -3
 - (e) -6
- 10. Consider the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2}$.
 - (a) The interval of convergence is [0, 2].
 - (b) The interval of convergence is [0, 2).
 - (c) The interval of convergence is (0, 2).
 - (d) The interval of convergence is (0, 2].
 - (e) The interval of convergence is $(-\infty, \infty)$.
- 11. The geometric series $\sum_{n=1}^{\infty} 2^n 5^{1-n} = \sum_{n=1}^{\infty} 2 \left(\frac{2}{5}\right)^{n-1}$
 - (a) converges to 2.
 - (b) converges to 5/3.
 - (c) converges to 10/3.
 - (d) converges to 10.
 - (e) diverges.
- 12. Which of the following series diverges?
 - (a) $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}.$
 - (b) $\sum_{n=1}^{\infty} \frac{n^3}{100n^3 + 7}.$
 - (c) $\sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$.
 - (d) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$.
 - (e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$.

1. (a) Use Simpson's rule with n = 4,

MATH 1242

$$S_4 = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)]$$

to approximate the definite integral $\int_1^5 \ln x dx$.

(b) The error estimate when Simpson's rule is used to approximate $\int_a^b f(x) dx$ is given by

$$|E_n| \le \frac{K(b-a)^5}{180n^4},$$

where n is the (even) number of subintervals, and K is an upper bound for $|f^{(4)}(x)|$ on [a,b]. Estimate the error of the numerical integration in part (a) above.

- 2. Consider the region in the first quadrant bounded by the curves $y=x^3, y=1$, and the y-axis.
 - (a) Find the area of the region.

(b) Find the x-coordinate of the centroid of the region.

(c) Find the y-coordinate of the centroid of the region.

- 3. Consider the region in the plane bounded by the curves $y = 0, y = x^2 + 1, x = 0$ and x = 1.
 - (a) Set up (but do not evaluate) a definite integral which gives the volume of the solid formed when the region is rotated about the x-axis.

(b) Set up (but do not evaluate) a definite integral which gives the volume of the solid formed when the region is rotated about the line y = 2.

(c) Set up (but do not evaluate) a definite integral which gives the volume of the solid formed when the region is rotated about the line x = 1. (You may want to use the shell method.)

4. A spherical tank with radius 5 meters is partially filled with water, 5 meters deep in the middle. How much work is required to pump all the water out through a hole at the top of the tank? (Use the facts that the mass density of water is 1000 kg/m³ and the acceleration due to gravity is 9.8 m/s².)

5. The Maclaurin power series expansion for $\cos x$ is

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \cdots$$

(a) Write down the first FIVE nonzero terms of the Maclaurin series for $\cos(t^2)$.

(b) Using part (a), find the first FIVE nonzero terms of the Maclaurin series for the function $f(x) = \int_0^x \cos(t^2) dt$.

(c) Using part (b) with the first THREE nonzero terms to estimate $\int_0^1 \cos(t^2) dt$.