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Protein Thermodynamic Stability 
Dependence on thermodynamic/solvent conditions and sequence 

[co-solute] induced denaturation  
G. Pappenberger, Nature: Struct. Biol. 8, 452-458 (2001) 

pressure 
induced 

denaturation 
Torrent, et. al., 

Biochemistry, 38, 
15952-15961, 

(1999) 

Temperature induced denaturation 
R.M. Ballew, et al., PNAS 93 5759 (1996) 

pH induced 
denaturation 
Spector and 
Raleigh. JMB. 276 
479-489, (1998) 

sequence 
dependence 

examples of how to 
denature a protein 
(randomly selected) 
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Modeling Protein Thermodynamics 

Speed versus accuracy tradeoffs 

MM/QM 
explicit MM 

all-atom MM in implicit solvent 

Go-like all-atom MM 

coarse-grain Molecular Mechanics (MM) 

Ising-like thermodynamic models 

thermodynamic models 
Two modeling paradigms 
1. free-energy based 
2. energy based 

QM 

not 
tractable 
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QM 
MM/QM 

explicit MM 
all-atom MM in implicit solvent 

Go-like all-atom MM 

coarse-grain Molecular Mechanics (MM) 

Ising-like thermodynamic models 

thermodynamic models 
computational bottlenecks 
1. assumes additivity 
2. requires long simulations 

not 
tractable 
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Modeling Protein Thermodynamics 

Speed versus accuracy tradeoffs 

G = H - TS   calculation of free energy requires entropy 

Free Energy Decomposition (FED) 
is fast but assumes additivity! 



Gtotal = Σ Gpart parts 

Free Energy Decomposition (FED) 
The problem of “hidden” thermodynamics 

No unique way to decompose 
a system into parts. 

 
Decomposition of the Free Energy of a System in Terms of Specific Interactions 

A. E. Mark and W. F van Gunsteren, J. Mol. Biol. 240, 167 (1994) 
“In regard to the detailed separation of free energy components, we must acknowledge that 
the hidden thermodynamics of a protein will, unfortunately, remain hidden” 

How to add back the parts? 
Hidden thermodynamics 

See: Ken A. Dill, “Additivity Principles in Biochemistry”,  
The Journal of Biological Chemistry 272, 701-704 (1997) 



The Distance Constraint Model (DCM) 
Restoring the utility of a free energy decomposition (FED) 

The DCM resolves the problem of nonadditivity 
by explicitly regarding network rigidity as a long-range mechanical 
interaction between components to identify the independent ones. 

“I never satisfy myself until I can make a mechanical model of a thing. If I 
can make a mechanical model I can understand it”! --- Lord Kelvin 

D.J. Jacobs,et. al., Network rigidity at finite temperature: Relationships between 
thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems. 
Physical Reviews E. 68, 061109 1-21 (2003) 

A NEW PERSPECTIVE 

Distance Constraint 
Model 

Constraint Theory 
 

and 
 

Free Energy  
Decomposition 

atomic level 
molecular 
structure 

DCM 
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Mind your Ps and Qs 
(P,Q) interdependence 

ΔH	
  =	
  -­‐ε	
  +	
  -­‐ε	


ΔS	
  =	
  -­‐δ + 0 

Regarding	
  NETWORK	
  RIGIDITY	
  as	
  a	
  
mechanical	
  interac?on	
  accounts	
  for	
  
NON-­‐ADDITIVITY	
  IN	
  ENTROPY	
  

! 

G(F) = H (F)"TS(F)

! 

S(F) = sc qc(F)
c
"

! 

H (F) = hc pc(F)
c
"

Tao of the DCM: Free Energy Reconstitution 
Network rigidity accounts for non-additivity in conformational entropy 



H 

-TS 

-TS 

H 
H -TS 

Globally Rigid Globally Flexible 

STABLE representing 
the native state 

STABLE representing 
the unfolded state 

UNSTABLE representing 
the transition state 

THERMODYNAMICS 

MECHANICS 

Linking Molecular Structure to Thermodynamics 
The Gibbs ensemble consists of all accessible constraint networks 
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New Modeling Paradigm for Protein Thermodynamics 

DCM provides high speed and accuracy 

G = H - TS   calculation of free energy requires entropy 
mDCM (minimal DCM) 
Jacobs & Dallakyan (2005) Biophysical J. 88:903 
Livesay et al. (2004) FEBS Letters 576:468 

FAST (Flexibility And Stability Test) 

based on an extended DCM 
that includes all essential enthalpy-
entropy compensation mechanisms 



Quantified Stability/Flexibility Relationships (QSFR) 
Examples of two mechanical response characterizations 

Backbone flexibility is dependent 
upon temperature and pH 

Cooperativity correlation quantifies 
flexibility/rigidity pairwise couplings 

For more information, see the following: 
Livesay, et al. FEBS Letters (2004) 576:468. 
Jacobs & Dallakyan. Biophysical J. (2005) 88:903. 
Livesay & Jacobs. Proteins (2006) 62:130. 

Jacobs, et al. J. Mol. Biol. (2006) 358:882. 
Livesay, et al. Chem. Cen. J. (2008) 2:17. 
Mottonen, et al. Proteins (2009) 75:610. 
Mottonen, et al., Biophysical J (2010) 99:2245. 



Free Energy 
Decomposition 

Free Energy 
Reconstitution 

FED FER 
constraint theory 

Distance Constraint Model 
The Heart of the DCM Consists of Three Essential Elements 

DCM 

“I have yet to see any problem, however complicated, which, when you looked at it in the right 
way, did not become still more complicated”. --- Poul Anderson in New Scientist (1969) 



Protein Stability is Linked to Solvent 
Modeling of solvent and conformational interactions  

                   solvent 

interface 

protein 

solvent affects  
protein 

protein affects 
solvent 



The Free Energy Functional 
FAST models all essential enthalpy-entropy mechanisms 

FREE ENERGY DECOMPOSITION 



! 

P(T ) = prm prc
,  where

prx =Qrx
Qrb +Qrm +Qrc( )

Temperature (K) 
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Empirical  
Parameterization 

Free Energy Decomposition (FED) 
Model highlights: Solvent penetration using transfer free energies 

Local environments for 
residues, are classified 
using 3 solvent states. 

! 

prb
buried 

non-polar env. aqueous env. 

mobile 

! 

prc

! 

prm
clathrate 



Free Energy Decomposition (FED) 
Model highlights: Electrostatics determined by optimizing pKa values  

! 

prs
dp "

! 

Gion
base = TR ln(10) prs pKa(s,r)" pH[ ]prsdp

s
#

r$base
#  

! 

Gion
acid =TR ln(10) prs pH " pKa(s, r)[ ]

s
# prs

pr

r$acid
#  protonated 

deprotonated 

! 

Sion
prot = "R prs prs

pr ln(prs
pr )+ prs

dp ln(prs
dp )[ ]

r#titrable
$
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prc
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prm
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prb
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prs "
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prs
pr "
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prs
pr =

10"[pH"pKa(s,r )]

1+10"[pH"pKa(s,r )]
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prs
dp =1" prs

pr  

protonation states 
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Free Energy Decomposition (FED) 
Covalent bond network defines structural template 

2D schematic of the process 

covalent bonding 
between different 
types of residues 



Free Energy Decomposition (FED) 
Solvent penetration defines a heterogeneous local environments 

2D schematic of the process 

The solvation state of 
a protein is defined at 
the residue level. 



Free Energy Decomposition (FED) 
Crosslinking distance constraints couple to solvent penetration 

2D schematic of the process 

Based on the solvation state, all 
crosslinking interactions are added 
to the covalent bond network to form 
a constraint network. 

DCM 



FED 

Constructing the Free Energy Functional 
Modeling Essential Mechanisms 

MOLECULAR PARTITION FUNCTION  (MPF) 

! 

Z(T ) = eSo R"#0U0 P(E |To )e
"(#"#0 )EdE$

sampled energy distribution function 
at reference temperature To. 
βo = 1/(R To)	
  

sampled  
mean energy 

! 

So = R "kk#

The {σk}define a “pure entropy spectrum” 
for which there will be 3N	
  -­‐	
  6 finite values.   

! 

"k = 1
2 ln kBTe

2 /!( )#k +1[ ]

The Schlitter quasi-harmonic approximation 
is used to estimate So from the eigenvalues 
{λk} of the mass weighted covariance matrix 
of atomic displacements in XYZ-coordinates. 
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FED 

Constructing the Free Energy Functional 
Modeling Essential Mechanisms 

MOLECULAR PARTITION FUNCTION  (MPF) 

! 

g int " #RT ln e#$0U0 P int (E)e#($#$0 )EdE%[ ]

! 

"RT ln Z int (T )( ) # G int (T ) = g int "T R $ k
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%
& 

' 
( 

) 

* 
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molecular free energy for 
a specified interaction 

! 

int" interaction



FED 

Constructing the Free Energy Functional 
Modeling Essential Mechanisms 

MOLECULAR PARTITION FUNCTION  (MPF) 

! 

Z int (T ) = Zj
int
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Nstates

" (T ) = e#$G
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molecular free energy for 
a specified interaction ! 
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subdividing 
configuration space 
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j=4 

j=3 

j=1 



FED 

Constructing the Free Energy Functional 
Modeling Essential Mechanisms 

! 

Gcnf =Gcnf
res +Gcnf

lnk +Gcnf
ihb +Gcnf

pck

Conformational components define a distance constraint network 

generic form: 

! 
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%

Accounts for the many-body mechanical interactions 
Accounts for nonadditivity in conformational entropy 
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Constructing the Free Energy Functional 
Modeling Essential Mechanisms 
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A set of distance constraints are 
used to model each entropy mode. 

The probability for a 
distance constraint to 
be independent as 
determined by graph-
rigidity calculations. 

! 

W"ki
int

i=1

Nk
int

# =1normalization condition: 

Conformational components define a distance constraint network 
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Constructing the Free Energy Functional 
Modeling Essential Mechanisms 

! 

Gcnf =Gcnf
res +Gcnf

lnk +Gcnf
ihb +Gcnf

pck

generic form: 

! 

G"
int = g"j

int #T R $"jk
int W"ki

intq"jki
int

i=1

Nk
int

%
k=1

3N int #6

%
& 

' 
( ( 

) 

* 
+ + +TR ln(p"j

int )
, 

- 
. 
. 

/ 

0 
1 
1 
p"j
int

j=1

Nstates

%

! 

p"j
int =
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Conformational components define a distance constraint network 

The probability for an interaction to form depends on all other interactions  



Mobile 
Mobile Clathrate 

Uh Uc 

F 

Free Energy Landscape 
Constraint Networks are Defined by Solvent Macrostates 

FER 
LOW T 
Intermediate T 
HIGH T 

For a given 
template 
structure 



Free Energy Reconstruction (FER) 
Self-consistent process is used to solve the free energy functional 

Mobile Mobile Clathrate 

FER 

! 

{prc , prb , prm}

! 

{prs
pr , prs

dp}

! 

{pc ,qc}

adaptive grid 

interpolations 



Network Rigidity Calculations 
Accounts for non-additivity in conformational entropy 

road to additivity 

conformational entropies renormalize 

! 

Z = eS0 /kB "#0U0 P0 (E)e
"(#"#0 )EdE$

! 

Gcnf " Gc # Zc
c
$

c
%

nonadditive with qc=1 ∀ c ⇒ bare parameters 

from Zc and {qc} → calculate {pc} 

Jacobs, US Patent # 8244504 

“I have yet to see any problem, however complicated, which, when you looked at it in the right 
way, did not become still more complicated”. --- Poul Anderson in New Scientist (1969) 



road to additivity 

conformational entropies renormalize 
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Z = eS0 /kB "#0U0 P0 (E)e
"(#"#0 )EdE$

! 

Gcnf " Gc # Zc
c
$

c
%

nonadditive with qc=1 ∀ c ⇒ bare parameters 

based on network rigidity and 
from {pc} → calculate {qc} 
 
 

! 

So
new " qnewSo

from Zc and {qc} → calculate {pc} 

Self-consistent Network Rigidity Calculation 
Local environments and nonadditivity in conformational entropy 
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road to additivity 

conformational entropies renormalize 

! 

Z = eS0 /kB "#0U0 P0 (E)e
"(#"#0 )EdE$

! 

Gcnf " Gc # Zc
c
$

c
%

nonadditive 

! 

Gcnf = ˜ G c " ˜ Z c
c
#

c
$
additive 

! 

˜ Z = e ˜ S o /K B "#oUo Po (E)e"(#"#o )EdE$

with qc=1 ∀ c ⇒ bare parameters 

self consistent 
constraint theory 

Self-consistent Network Rigidity Calculation 
Local environments and nonadditivity in conformational entropy 



Flexibility And Stability Test (FAST) 
DCM = FED + FER  

input protein structure parameter-library constraint topology 

FED 

FER 
renormalized 
parameters 

thermodynamic response mechanical response 

Stability Flexibility 



Stability Curves 
Results for three typical macrostates 

37 residues 
0.56 minutes 

pH=7 

162 residues  
2.51 minutes 

pH=7 



Scalability of FAST 
Efficient parallelized sparse-hierarchical-adaptive grid methods 

T 

pH 

Folded 

phase boundary line  
depending on: 

sequence 
bound ligand 
solute concentrations 
pressure 
temperature 
etc 

FAST calculation of multi-dimensional free energy landscape 

FAST 
performance characteristics 
Example:  
Protein size: 150 residues 
domain: (150 K ≤ T ≤ 400 K) @ ΔT=1K 
               (2 ≤ pH ≤ 12) @ ΔpH=0.1  
wall time: < 6hrs using 50×(2.3 GHz CPUs) 
 
Scales nearly linear with # of atoms 
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Newtonian 
Mechanics 

Boltzmann 
Statistics 

Network rigidity is a fundamental 
mechanical property that directly links 

protein stability, flexibility and dynamics 
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