Protein Dynamics is Linked to Rigidity Merging geometrical and topological properties

Geometrical Simulation

Geometrical Simulation compared to Molecular Dynamics and Elastic Networks:

C. David and D.J. Jacobs, *Characterizing protein motions from structure*, J. Mol. Graph Model, **31**:41-56 (2011)

Geometrical Simulation (GS) An example of Rigid Cluster Decomposition (RCD)

molecular structure

Identification of rigid clusters using graph rigidity analysis

- 1. D. Farrell, K. Speranskiy and M.F. Thorpe, *Proteins*, **78**:2908–2921 (2010)
- **2.** Daniel W. Farrell, Ph.D. Thesis, *Generating stereochemically acceptable protein pathways*, Arizona State University (2010)

Geometrical Simulation (GS) An example of Rigid Cluster Decomposition (RCD)

molecular structure **RCD** creates multiple copies of atoms

- 1. D. Farrell, K. Speranskiy and M.F. Thorpe, *Proteins*, **78**:2908–2921 (2010)
- **2.** Daniel W. Farrell, Ph.D. Thesis, *Generating stereochemically acceptable protein pathways*, Arizona State University (2010)

Geometrical Simulation (GS)

Virtual potentials maintain molecular structure

$$V_{POINT} = \frac{1}{2} A \sum_{\langle ab \rangle} \left| \vec{r}_a - \vec{r}_b \right|^2$$

Shared atoms merge together

$$V_{MAX} = \frac{1}{2} A \sum_{\langle ab \rangle} \begin{cases} \left(\left| \vec{r}_{a} - \vec{r}_{b} \right| - d_{ab}^{MAX} \right)^{2} \text{ for } \left| \vec{r}_{a} - \vec{r}_{b} \right| \ge d_{ab}^{MAX} \\ 0 \text{ otherwise} \end{cases}$$

$$V_{MIN} = \frac{1}{2} A \sum_{\langle ab \rangle} \begin{cases} \left(\left| \vec{r}_{a} - \vec{r}_{b} \right| - d_{ab}^{MIN} \right)^{2} \text{ for } \left| \vec{r}_{a} - \vec{r}_{b} \right| \leq d_{ab}^{MIN} \\ 0 \text{ otherwise} \end{cases}$$

Prevent atoms from getting too close

Relaxation Step: Energy minimization method brings constraint network to ZERO energy.

- 1. D. Farrell, K. Speranskiy and M.F. Thorpe, *Proteins*, 78:2908–2921 (2010)
- **2.** Daniel W. Farrell, Ph.D. Thesis, *Generating stereochemically acceptable protein pathways*, Arizona State University (2010)

Geometrical Simulation (GS)

Distance inequalities maintain canonical local structural characteristics

Example

Ramachandran plots as well as rotamers are reproduced using distance inequality potentials.

GS parameters were optimized**
to keep local geometries that are
sampled statistically equivalent to
structures from X-ray crystals and
that generated by MD simulation.

See: B.K. Ho, A. Thomas and R. Brasseur, Protein Science 12:2508-2522 (2003)

Figure from: S.C. Lovell, J. M. Word, J. S. Richardson and D. C. Richardson. *The penultimate rotamer library*. Proteins 40:389-408 (2000)

** Daniel W. Farrell, Ph.D. Thesis, Generating stereochemically acceptable protein pathways, Arizona State University (2010)

Geometrical Simulation (GS)

Exploration of conformations for fixed constraint topology

High Level Overview

