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Computational Methods Applied to Proteins

A comparison of speed versus accuracy tradeoffs

G =H -TS calculation of free energy requires entropy

Three modeling paradigms
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Computational Methods Applied to Proteins

A comparison of speed versus accuracy tradeoffs

G =H -TS calculation of free energy requires entropy

Pros and Cons
Pros: Dynamics & thermodynamics can be studied
\ Cons: Requires long simulations: Low throughput
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Computational Methods Applied to Proteins

A comparison of speed versus accuracy tradeoffs

G =H -TS calculation of free energy requires entropy

Pros and Cons
Pros: Quickly identifies native conformational motions

i \ Cons: Cannot predict thermodynamic properties
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Computational Methods Applied to Proteins

A comparison of speed versus accuracy tradeoffs

G =H -TS calculation of free energy requires entropy

minimal Distance Constraint Model

Pros and Cons

Pros: Ensemble based method. Links
structure to conformational entropy to
enable rapid free energy calculations.

Cons: Relies on native state topology.
Cannot predict dynamic properties.
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Computational Methods Applied to Proteins

A comparison of speed versus accuracy tradeoffs

G =H -TS calculation of free energy requires entropy

Hybrid Method
~ Pros and Cons

minimal Distance _
Constraint Model Pros: Non-native contacts
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Lo allowed. Free energy

o \ > driven exploration of

73 \ conformational pathways.
E \(\ Geometrical simulation (GS)/ Cons: Cannot predict true
E N\ dynamic properties with
o N respect to time scales.
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Protein Dynamics is Linked to Rigidity and Stability

Merging geometrical and topological properties

Free Energy Driven
Geometrical Simulation
of Protein Dynamics

Geometrical Simulation compared to Molecular Dynamics and Elastic Networks:

C. David and D.J. Jacobs, Characterizing protein motions from structure,
J. Mol. Graph Model, 31:41-56 (2011)



New Hybrid Model

Combining mDCM with GS

High Level Overview

Input initial
protein
structure

1. Apply mDCM (generate free energy landscape)
2. Select new constraint topology (metropolis MC)
3. Identify all rigid clusters using network rigidity
4. Empirically adjust effective time scale (Nsteps)

Input: Last geometry
Run FRODA for Nsteps at fixed constraint topology |
Output: New geometry for each step.

no

finished
?
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stop



New Hybrid Model

Two dimensional example

mDCM: Determines new constraint topology for fixed geometry

— = = = Fluctuating constraint
Quenched constraint

Pink and shaded regions highlight rigid clusters with 3 atoms or more.
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Two dimensional example

GS: Determines new geometry for fixed constraint topology

previous
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Pink and shaded regions highlight rigid clusters with 3 atoms or more.
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New Hybrid Model

Two dimensional example

GS: Determines new geometry for fixed constraint topology

previous

— = = = Fluctuating constraint
Quenched constraint

Pink and shaded regions highlight rigid clusters with 3 atoms or more.



New Hybrid Model

Two dimensional example

An ensemble over constraint topology and conformation is generated
that contains native and non-native contacts, driven by free energy!




Results

Protein example: (adenylate kinase: 1ake.pdb)

Thermodynamic Properties
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Heat capacity curve measured by Jorg Rosgen, Penn State University, College of Medicine



Results

Protein example: (adenylate kinase: 1ake.pdb)

Thermodynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Thermodynamic Properties
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Results

Thermodynamic Properties
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Protein example: (adenylate kinase: 1ake.pdb)

20

G (kcal/mol)

[a—
~
R—

0

— 300K
— 310K

320K
— 322K
— 330K
340K

IIII|IIII|IIII|I]II|IIII|IIII|IIII|IIII|IIII L

LY A

VL

IIllIlIIlIllllIllllllllIIIlllIllllllllllllllllllllllllllllllllll

0.7

0.9 1 1.1 1.2

14 15 16 1.7
number of independent DOF per residue

1.8 19

2



Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties

80 — 322K

60

40

20 E | )
() | | | | | | | | | I | | | | I | | | | | | | | |

100 200 300 400 500 600
Monte Carlo constraint topology moves

number of H-bonds present

| | | | | | | | | | | | | | l | | | | | | |




Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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Results

Protein example: (adenylate kinase: 1ake.pdb)

Dynamic Properties
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