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Taking the advice of Lord Kelvin, the Father of Thermodynamics, I describe the protein molecule and 
other molecular systems of interest in terms of a mechanical model. Thermodynamic information is 
impressed onto mechanical networks to form a complete statistical mechanics theory. Network rigidity 
becomes a long-range interaction − the critical aspect where I found simplicity in complexity.  
 
Key idea: Combine constraint theory (network rigidity) and free energy decomposition to account for 
correlations between all degrees of freedom, enabling the required non-additive reconstitution of free 
energy components within a system.  
 

 



Distance Constraint Model; Donald J. Jacobs, University of North Carolina at Charlotte  Page 2 of 11 

Focusing on why mechanics matters, consider a two dimensional quadrilateral molecule with four 
distinct constraint topologies (or frameworks). In the top-left network, the shape is very flexible. In the 
right-top and bottom-left networks, the diagonal constraint (i.e. a fluctuating hydrogen bond) makes 
the networks isostatically rigid. In the bottom-right network, two diagonal constraints cause the 
network to be overconstrained (i.e. having one redundant constraint). Since interactions are modeled 
as distance constraints, each will have an associated entropy contribution that reflects the amount of 
(change in length) that is allowed between a given pair of atoms. See next slide if you are confused 
about how a distance constraint is associated with a change in length!  
As distance constraints are added to a network, motions are becoming more limited provided the 
constraints are independent. However, if a region is already rigid, adding a distance constraint will not 
lower entropy. As such, the lower-right network does not lower entropy due to redundant constraints, 
which is where non-additivity enters. The entropy is related to the number of independent constraints 
in a system, not simply total number of constraints. Thus, regions having redundant constraints form 
cooperative mechanisms during the process of forming/removing specific interactions in a system.  
The free energy is broken up into separate enthalpy and entropy terms. According to the formulas, it 
is clear that the total enthalpy is obtained additively (as is generally assumed) by weighting variable 
enthalpy contributions by the probability, pc, that a fluctuating constraint is present in the network. In 
contrast, entropy terms are non-additive due to the additional attenuation factor, qc, corresponding 
to the conditional probability that if a constraint is present in a network it must also be independent for 
it to contribute to the entropy. In the lower-right network, due to symmetry, each diagonal constraint is 
assigned a q-factor of ½ since there are twice as many constraints than is needed to maintain the 
region to be isostaticly rigid. Note that each framework, F, represents a different constraint topology, 
and has its own calculation based on network rigidity. 
Key idea: Non-additivity is directly linked to network rigidity (mechanical properties), and in particular 
non-additivity appears because of the presence of redundant constraints.  
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This schematic picture shows how a distance constraint has variable length. When network rigidity is 
calculated, it is based on generic rigidity. This means the exact length of the constraints do not 
matter (within linear response). The rigidity properties of a network are dependent only on topology, 
defined by the relative placement of the distance constraints, but not their precise lengths. As such, to 
know what is rigid and what is flexible does not require knowing the exact lengths of distance 
constraints. Indeed, there will be fluctuations in the length between any pair of atoms. We can 
characterize an interaction by the depth of the potential well and its width, which is determined by a 
set tolerance in the energy, given by ΔE. The greater curvature corresponds to smaller entropy. That 
is, the flatter the potential well, the greater entropy is associated with the distance constraint.  
By selecting some arbitrary global scale factor for distance, Lo, it is possible to define pure entropies, 
δ, associated with the tolerance in length assigned to each distance constraint. The smaller tolerance 
corresponds to stronger interactions having low entropy. Greater tolerance has a flatten curvature, 
corresponding to weak interactions and large entropy. In chemical bonds, high curvature corresponds 
normally to low depth in energy and vice versa, although this relationship is not technically required.  
Key idea: Apply network rigidity in the sense of generic rigidity, and by accounting for tolerances on 
distance constraints (i.e. the wiggling room allowed by a generic distance constraint in the network), 
an estimate for the total conformational entropy of the system can be made.  
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If you understand everything said on the previous slide, it should be clear to you that a system having 
inhomogeneous constraint types will create different entropy contributions due to differences in 
curvature in the potential energy function associated with the interaction that the distance constraint is 
modeling. All constraints (corresponding to some type of interaction) are assigned entropy values 
based on curvature of the potential energy function. Redundant constraints do not contribute to 
conformational entropy, but independent constraints do. Also important to note is that the assignment 
of which distance constraint is independent and which is redundant is arbitrary to a large degree. It 
depends on the order of assignment to which constraint is independent and which is redundant (see 
FIRST which describes the pebble game). As such, a unique estimate for conformational entropy 
is not possible because it depends on which constraints are assigned to be independent. 
Moreover, not all independent constraints are orthogonal. As such, the non-additive contributions 
will not yield a unique or correct answer by simply adding up independent constraints. Instead, each 
answer provides an upper bound estimate to the true conformational entropy. The distance constraint 
model gives the lowest possible upper bound estimate for conformational entropy by preferentially 
placing distance constraints in a network with lower entropy before those with higher entropy to obtain 
a robust and surprisingly good estimate of total conformational entropy − without moving any atom! A 
preferential rule is implemented by presorting all the constraints from lowest to highest entropies in a 
queue for identifying if a constraint is independent during the pebble game. The queue defines an 
entropy spectrum as depicted on the right panel.  
Key idea: The lowest upper bound estimate of conformational entropy is obtained by systematically 
placing distance constraints with the lowest pure entropy in the network before those with higher pure 
entropies.  
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An instructive simple example: Suppose for the moment that Maxwell-counting is exact. Maxwell, 
(the famous theoretical physicist that worked out the equations for electromagnetic radiation) worked 
on the mechanics of networks and provided a quick an dirty approximate estimate for finding the 
number of distance constraints that will be redundant in a homogenous network of constraints. 
The steps of the DCM are to place constraints in the network according to the preferential rule that 
places constraints in order of lowest entropy to highest entropy. In this example, as is commonly the 
case, assume the constraints with lowest energy also have the lowest entropy. Also, assume there 
are three types of constraints, each characterized by an energy and entropy contribution (ε,γ). Based 
on Maxwell counting, as the constraints are placed in the system they are independent until there are 
just enough constraints to make the entire network globally rigid. At that point there are no internal 
degrees of freedom remaining in the system, and this point defines a rigidity threshold (see top-right 
figure). The system undergoes a rigidity transition from being globally flexible to globally rigid 
across the rigidity threshold, denoted by the vertical dashed line in the bottom-right figure.   
Total energy is just the sum of the energy contributions from all the distance constraints (that model 
the interactions) as shown in the bottom-left figure. Note that the same net energy would be obtained 
independent of the order the constraints are placed, because as you know, the result you get in 
adding up a list of numbers do not depend on the order you add them. 
Total entropy is assumed to equal the lowest upper bound estimate, which is obtained by using the 
preferential rule and placing the lowest entropy constraints before the higher entropy constraints. 
Once the rigidity transition point is reached, all constraints placed thereafter are redundant. Before 
that, all constraints are independent. This is why the total for the entropy does not accumulate after 
the rigidity transition. In other words, q=1 and 0 below and above the rigidity threshold respectively.   
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An instructive simple example (continued): If rigidity theory were not invoked (in this case using 
Maxwell-counting as a fast and dirty approximation, instead of exact pebble game calculations), we 
would resort back to an additive model. Ising-like models that do not include long-range mechanical 
interactions using network theory will make errors in overestimating the entropy as the figure above 
demonstrates. By simply adding up all the entropy components from all independent constraints, one 
cannot account for correlations between degrees of freedom, thereby tremendously over estimating 
the conformational entropy.  A common way to correct for these over estimations is to rescale the 
local entropy parameters, but the problem is that the actual mechanical interactions are missing. 
Consequently, Ising-like models that do not accounting for the fundamental mechanical interactions 
will miserably fail to be an accurate predictive model. There is some wiggling room depending on 
what the variables are, so several Ising-like models, such as the Zimm-Bragg and Lifson-Roig models 
have limited utility. Nevertheless, even in those models, they do not have transferable parameters in 
large part because non-additivity is important to take into account as I have shown in a number of 
publications on the helix-coil transition. In fact, application of rigidity theory does not depend on the 
specific details of the molecular system. The next example that I show considers a beta-hairpin turn, 
transitioning into a coil state, and back. In the next example, I revisit Shellman’s two-state model for 
energy-entropy compensation, but I cast the problem in terms of the DCM to illustrate how it works! 

Key idea: Including mechanical correlations between degrees of freedom using a DCM provides a 
pragmatic approximation to restore the utility of employing free energy decomposition because 
non-additivity in conformational entropy is taken care of in the process of free energy reconstitution.  
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Example of a beta hairpin turn to coil transition: Using the Maxwell-counting approximation in 
this example, the calculations required to estimate energy and entropy can be done graphically as 
shown on the top and bottom graphs respectively. The two graphs on the left side correspond to an 
intact beta-hairpin turn with all the hydrogen bond crosslinks formed, while the two graphs on the right 
side correspond to an unfolded coil state. The rigidity calculation is applied to each mechanical 
network separately. In this case, only two states are considered, and by making a direct comparison 
of energy and entropy of both mechanical networks (representing the folded and unfolded states) the 
change in enthalpy and change in entropy of the system can be figured out in a similar way Shellman 
estimated changes for the alpha-helix to coil transition. Constraints placed in the system beyond the 
rigidity transition (denoted by the vertical dashed lines) are redundant and do not contribute to the 
entropy. The propagation of rigidity through a molecular system causes there to be non-additivity in 
the fundamental nature of conformational entropy. The two-state model is a crude approximation.  
More generally for a given molecular system, such as a protein, an estimate for the energy (using an 
additive summation) and conformational entropy (using the non-additive preferential rule to network 
rigidity calculations of some type) must be performed on every mechanical framework. Furthermore, 
to fully account for microscopic fluctuations, all accessible constraint topologies must be considered 
by building a complete ensemble of mechanical frameworks. Just two such mechanical frameworks 
are considered above, representing two extremes.   
 
Key idea: Apply network rigidity calculations combined with the free energy decomposition scheme to 
each accessible mechanical framework, and calculate the partition function of the system. 
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The above figure summarizes the statistical mechanics of the DCM. Different mechanical frameworks 
are used to define microstates, which are not configurations. A configuration is a specific location of 
all atoms in the network. A mechanical framework defines generic distance constraints between pairs 
of atoms. Since each generic distance constraint is impressed with a length tolerance to give it some 
wiggle room, a mechanical framework represents a mini-ensemble of accessible geometries of the 
atoms consistent with a fixed constraint topology (i.e. rigid cluster decomposition). Because the 
tolerances in the distance constraints are set by an energy tolerance, each mechanical framework 
has an energy associated with it that is effectively a constant for all of its accessible geometries. A 
partition function is built by summing over Boltzmann factors, where the total energy is additive over 
all the constraints present in the system. However, flexible frameworks wiggle more than rigid ones, 
so that the amount of wiggling contributes to the statistical weight in the form of a degeneracy factor. 
The degeneracy factor for each mechanical framework is estimated through the conformational 
entropy calculation. When these two calculations are combined per framework, the partition function 
is expressed by the equation given above. For a protein, there will be an astronomical number of 
accessible frameworks. For example, if there are 400 possible hydrogen bonds (formed/broken) and 
1,200 torsion interactions (native/disordered), then the number of distinct frameworks (or microstates) 
will be 2400 × 21200 that must be considered to calculate the partition function.  
 
Key idea: The DCM is a well-defined statistical mechanical model that defines a particular partition 
function that must be calculated, and the standard tools available to calculate partition functions can 
be applied in the usual way. 
 

 



Distance Constraint Model; Donald J. Jacobs, University of North Carolina at Charlotte  Page 9 of 11 

The DCM in its general formulation has very little limitations. Although it is based on a coarse grained 
approach where an energy tolerance needs to be set, in the limit that this energy tolerance is taken to 
zero, the approximations essentially cease to exist. However, this would be useless because one 
would end up with the configuration integrals that cannot be integrated. A good view of the DCM is 
that it coarse grains the configuration integrals into discrete entities so that they can be summed over 
instead of integrated over. However, as the previous slide illustrated, the number of terms to be 
summed is astronomical. Compared to a two-dimensional Ising model on a square lattice of size 
40×40, there is just as many microstates (i.e. 21600). This system is small compared to systems 
usually considered in condensed matter physics. However, unlike problems in condensed matter 
physics, the protein system is highly non-homogeneous with strong finite size effects where 
interfacial boundary interactions with solvent need to be accounted for.  
It is possible to calculate a partition function by transforming the problem into solving a free energy 
functional (FEF). In homogeneous systems, solving a FEF is relatively easy because translational 
symmetry can be used to simplify finding the solution. In a protein, solving the FEF is difficult because 
of the heterogeneous microenvironments. Approximations are made by identifying relevant order 
parameters to describe key features of the system. Rather than solving the FEF analytically, it is 
calculated numerically. Finding the minimum is not the goal (as it often is in condensed matter 
physics). In a protein, the free energy for different values of the order parameters that define the FEF 
are also of interest. The complete solution defines the free energy landscape (FEL).    
minimal DCM (mDCM): A few empirical parameters are applied to all residues irrespective of type 
and location, which is why the mDCM is a mean field approximation (MFA). Also, the FEF is solved 
under a MFA. However, much information is retained despite making two MFAs because the mDCM 
is applied to a known protein structure, which encodes the hydrogen bond network. Exact rigidity 
calculations are performed using Monte Carlo sampling at each macrostate (defined by the grid 
points shown in the figure above). Empirical parameters account for much of the oversimplifications.  
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minimal DCM (mDCM): The mDCM is an all atom model. Monte Carlo sampling is employed to 
generate mechanical frameworks. All mechanical frameworks that are generated at a given grid point 
will have the same global properties defined by order parameters, which define the number of native 
torsion interactions and number of native hydrogen bonds. Other than the mean field simplifications, 
the particularly simple free energy decomposition and statistical errors that appear from the Monte 
Carlo sampling, it is possible to calculate the partition function accurately and rapidly. Therefore, all 
thermodynamic properties of interest, including heat capacity, can be calculated numerically. By using 
the native state topology of the protein, no simulation of the protein motion is necessary. This 
introduces the approximation that only native contacts are considered. As it can be seen, a lot of 
approximations were made, and for this reason the qualifier “minimum” has been used to emphasize 
that only the bare-minimum essence of rigidity interactions is retained carefully in the model. Other 
types of interactions involving solvation can use improvement. However, this mDCM has proven to be 
quite useful, generating many results consistent with a large number of proteins and experiments.  
Parameter fitting: The problem is that this calculation would be good if the empirical parameters 
were known. However, the empirical parameters are not known. The procedure is to guess the 
parameters, and then perform the entire calculation of the free energy landscape, and calculate the 
partition function, and then the heat capacity. Using simulated annealing, the three parameters are 
randomly guessed until the predicted heat capacity curve matches the experimental curve well. This 
empirical approach offers a powerful pragmatic way to tackle the drug discovery process. Over the 
years, we find that the model parameters are physically reasonable, and are transferable better than 
that in the Lifson-Roig model for example. In short, the mDCM is an impressive testimony for how a 
model can capture the essential physics to make useful predictions.    
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The two-dimensional free energy landscape from the previous slides is converted into a one-
dimensional free energy landscape by partial integration. Notice that the global flexibility is an 
intensive quantity that quantifies the number of independent degrees of freedom in a protein. This is 
not a primary order parameter, but is calculated in the rigidity calculations exactly. By binning the two-
dimensional free energy landscapes expressed in terms of two types of constraints, one can quantify 
how flexible a protein is without reference to which type of constraint is restricting the motions. As 
such, a direct relation between free energy of a protein and its degree of flexibility is obtained. At low 
temperature the protein will become globally rigid, and at high temperatures the protein will be 
globally flexible.  
 
Key idea: Proteins are comprised of rigid and flexible regions to various degrees and distributed in 
different ways, and the stability of a protein is directly linked to its degree of flexibility.  
 
 
 
 

 


