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Abstract

Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions
that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently
calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging
over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network
topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single
effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies
is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight
of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective
network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG
to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG
accurately reflect the ensemble averaged PG properties. This result positions the VPG as an efficient alternative to
understand the mechanical role that chemical interactions play in maintaining protein stability.

Citation: González LC, Wang H, Livesay DR, Jacobs DJ (2012) Calculating Ensemble Averaged Descriptions of Protein Rigidity without Sampling. PLoS ONE 7(2):
e29176. doi:10.1371/journal.pone.0029176

Editor: Jerome Mathe, Université d’Evry val d’Essonne, France

Received June 20, 2011; Accepted November 22, 2011; Published February 22, 2012
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Introduction

The set of accessible conformations of a protein is critically

dependent upon the arrangement and strength of chemical

interactions, which greatly influences the conformational entropy.

While there are many different computational models available to

characterize protein dynamics [1–4], the computational efficiency

and relative accuracy have made network rigidity models parti-

cularly attractive [5]. Describing protein structure as a network of

constraints that fix the distance between atoms (vertices), the

salient feature of network rigidity is to carefully characterize the

number of degrees of freedom (DOF) within the network. The

number of accessible DOF is generally reduced as chemical

interactions are added to the network, which is related to the

reduction in phase space upon formation of the interaction. In

particular, adding a distance constraint to a flexible region reduces

the number of available DOF, while adding one to an already

rigid region does not.

While there are a number of graph theoretic algorithms to

calculate network rigidity [6–9], the efficient Pebble Game (PG)

has emerged as the most popular way to account for protein

flexibility [5]. Indeed, various methods based on PG have been

developed to analyze network rigidity [10–12], where FIRST [5]

has served as the starting point for methods that explore the native

conformational dynamics, such as ROCK [13,14] and FRODA

[15,16]. Using pebbles to refer to DOF, network rigidity properties

of the complete network are quickly calculated based on a strict

accountancy of pebbles. Once complete, the PG identifies all

flexible/rigid regions within the network. Unfortunately, FIRST,

ROCK and FRODA are limited by an athermal formulation,

meaning fluctuations within the noncovalent interaction network

are not modeled.

Within molecular networks [17], covalent bonds are modeled as

quenched constraints (meaning they are ever-present), whereas

noncovalent bonds fluctuate on and off. The intermittent nature of

the noncovalent interactions reflecting protein dynamics further

complicates calculation of average network properties. In this

direction, we have developed a statistical mechanical Distance

Constraint Model (DCM) [18,19] that is based on a Gibbs

ensemble of PG networks that uses network rigidity to account for

enthalpy-entropy compensation [20,21]. The result of the DCM

approach is that the give and take between protein stability and

flexibility is accurately quantified [22–27]. In all works to date,

solving of the DCM for protein structures has required average

network rigidity properties determined from Monte Carlo

sampling across a large sample of network topologies. In this

approach, there is a binary on/off designation based on the

probability of a constraint to be present or not. This randomness

leads to an astronomically large ensemble of networks consisting of

2N possibilities for N constraints that are fluctuating on or off

throughout the network. Typically N will range between a few

hundred to several thousand in applications. Monte Carlo

sampling works markedly well because of self averaging properties

of constraint networks. It has been found that for statistical error
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bars to be within acceptable limits, millions of networks are usually

necessary to be sampled [19].

Because there can be more than one distance constraint placed

between a pair of rigid bodies, the body-bar PG [28] represents the

network as a multi-graph, where more than one edge can connect

between a pair of vertices. That is, each vertex represents a rigid

body, having 6 DOF, and each edge represents a distance

constraint. Herein, the framework of the body-bar PG algorithm is

generalized, and, interestingly, requires only a minor modification

in a way that preserves essentially the same implementation. That

is, we have developed a Virtual Pebble Game (VPG) that allows

for probabilistic descriptions of the network. The network now has

only one edge between a pair of vertices with an assigned weight

that defines the capacity for it to absorb DOF. This capacity is

given by the average number of constraints that can form between

a pair of vertices, thus it needs not be an integer value. The VPG

extends the counting of constraints and DOF to real numbers,

allowing for fractional DOF, which are viewed as representing the

probability to find a DOF. Through this generalization of the PG

implementation, the VPG algorithm tracks probability flow that

governs where the average number of DOF pool within the

effective network, rather than track individual DOF that fluctuate

about this average. This approach leads to a dramatic computa-

tional speed-up because the PG algorithm dictates sampling

over many networks to calculate equilibrium properties, whereas

the VPG can probabilistically determine them from a single

calculation. The approach of the VPG to calculate ensemble

properties without sampling is in the same spirit as other

algorithms that tackle important computational biology problems

with a very large search space that otherwise would require

excessive computation time [29–32].

In a recent report [33], we have demonstrated that the VPG

closely reproduces the ensemble averaged counting of DOF within

a variety of disordered lattices. The ensemble averaged results over

many PG runs is designated PG . In this report, key average or

consensus network rigidity metrics are directly compared across a

non-redundant data set of 272 protein structures. For example,

identified rigid clusters represent groups of vertices that behave as

a single body. Numerically and visually we show that the VPG

rigidity calculations faithfully represent an overwhelming majority

of the ones performed by the PG. Varying the number of

interactions present in the network allows us to identify the

rigidifying effect that they have on protein structure [11]. Through

a continuous increase in number of hydrogen bond (H-bond)

constraints placed in the protein, a rigidity percolation is defined

where the network progressively becomes more rigid. The rigidity

threshold [34] defines the point where the protein just transitions

from being globally flexible to globally rigid, or vice versa. At this

rigidity threshold, the greatest fluctuation in network topology

occurs, leading to the greatest differences between the PG and

VPG quantities. Remarkably, at the rigidity threshold, the

similarity in all network rigidity metrics that were calculated using

PG and VPG is found to be quantitatively high. As we

demonstrate below, the VPG is ideally positioned as a viable

alternative to ensemble averaging in the characterization of

protein rigidity.

Materials and Methods

Protein Structure Description
We consider a dataset composed of 272 protein structures that

are nonredundant at the SCOP [35] family level. Our dataset

includes one, two and three domain proteins for PDB codes (see

Table 1), that range from 50 to 764 residues. We focus on three

types of chemical interactions, which are: intra-residue, linker and

hydrogen bond. Note that salt-bridges are considered a special type of

H-bond as described previously [5]. The intra-residue interaction

models the covalent bonds that exist within a residue. The linker

interaction represents the peptide bond that connects the C-N

terminal atoms in adjacent residues. The reason we make a

distinction between these two types of covalent bonds is due to the

number of DOF they consume. While an intra-residue covalent

bond (and disulfide bonds if any) consumes five DOF (leaving one

for the dihedral angle), the linker consumes six DOF (locking any

possible rotation) due to the partial double bond character of the

amide group. The last interaction is the H-bond, which we

specifically control whether a H-bond is present or not by the

parameter 0:0ƒPnatƒ1:0. In this fashion, all possible H-bonds

Table 1. PDB codes of the proteins in the dataset.

12AS 1A1X 1A32 1A3A 1A76 1A8L 1A92 1A9N 1AEP 1AF7 1AHO 1AHS 1AIH 1AK0 1AKO 1AL3 1ALV

1ALY 1AM9 1AN9 1AOC 1AOL 1ASH 1ATZ 1AVQ 1AYO 1B1C 1B3A 1B3T 1B5P 1B67 1B77 1B9O 1BAZ

1BBH 1BEA 1BF6 1BGV 1BIF 1BJA 1BKR 1BM8 1BOL 1BRT 1BTN 1BUP 1BX4 1BXY 1BYK 1C1D 1C3G

1C3P 1C4Q 1C5E 1C7K 1C7Q 1C8U 1CC5 1CCZ 1CHD 1CI6 1COJ 1COL 1CQ3 1CQY 1CSH 1CTF 1CV8

1CY5 1CYX 1D4T 1D7P 1D9C 1DFU 1DGW 1DJ7 1DK0 1DK8 1DKQ 1DL5 1DQ3 1DQG 1DQP 1DRW 1DSZ

1DTD 1DZF 1E2W 1E44 1E5K 1ECS 1ED1 1EE6 1EEJ 1EEM 1EFD 1EFV 1EGW 1EJE 1EKG 1EL6 1ELK

1EM8 1EP3 1EQF 1EWF 1EZ3 1F02 1F08 1F0K 1F20 1F5V 1F60 1FD9 1FN9 1G6S 1G73 1G8E 1GAK

1GL4 1GP0 1GQV 1GS5 1GWU 1GWY 1GXJ 1GYX 1H03 1H2C 1H2S 1H8P 1HW1 1HXN 1I0V 1I2A 1I2K

1I3J 1I4M 1I6P 1I78 1I8N 1IIB 1IO1 1IQ4 1IS3 1ISU 1J2L 1J2Z 1J71 1JDC 1JFL 1JH6 1JIW

1JKE 1JOV 1JSD 1JTD 1JUV 1JYH 1K6K 1KEA 1KID 1KNW 1KPT 1KQ3 1KTH 1L5O 1LAM 1LBV 1LGH

1LJ5 1LJO 1LKO 1LLM 1LMB 1LP1 1LYV 1M2K 1M9Z 1MDL 1MLA 1MML 1MSC 1MW7 1N69 1N81 1NH1

1NKD 1NPE 1NRZ 1NTY 1NYK 1O9Y 1OA8 1OAI 1OGD 1OK0 1OKC 1ON2 1OQV 1ORS 1OYG 1P1M 1P6O

1PDO 1PF5 1PTQ 1PUC 1PVM 1PYO 1QB2 1QEX 1QYN 1R7L 1RMD 1RP0 1RQW 1S12 1SCZ 1SFP 1SIQ

1SKN 1SQU 1SR8 1SVB 1SYX 1T5J 1T8K 1T9I 1TFE 1TKE 1TO6 1TUA 1TZV 1U0M 1UHE 1UUN 1V71

1V77 1VMO 1VP2 1VYI 1VZI 1VZY 1WQJ 1YU0 1ZDY 1ZJC 2AG4 2AVU 2B9D 2BH1 2CFQ 2CLY 2D5B

2EDM 2FCW 2G64 2I06 2IZY 2O39 2O4T 2OEB 2P62 2PHC 2PSP 2QFA 2RFT 2SIC 2UUI 2VO9 3COQ

doi:10.1371/journal.pone.0029176.t001
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within the structure are present when Pnat~1:0, whereas no cross-

linking H-bonds exist when Pnat~0:0. An independent H-bond

consumes three DOF in order to account for the distance and

angular constraints it imposes.

A constraint topology file (CTF) contains a list of all the possible

interactions that are to be considered within a specific protein

structure. It is constructed from the original PDB file. The CTF

defines each interaction type, as well as their probabilities.

Quenched covalent interactions never change from one CTF to

another, whereas the probability for a H-bond to form is described

by the variable Pnat. Fig. 1 compares the PG and VPG des-

criptions of a toy network with eight nodes, where quenched

covalent bonds are solid and H-bonds are dashed. Two possible

H-bonds exist in this example, leading to an ensemble of 22 PG

networks. Within each realization, the H-bond is either fully

present with probability Pnat or not with probability (1{Pnat).
The PG properties are determined by averaging over the

ensemble generated by Monte Carlo sampling. Conversely, the

VPG requires only one probabilistic network to describe the

ensemble because the presence of a H-bond is directly quantified

by its probability, Pnat, to be present.

The VPG Algorithm
The three main elements of the PG algorithm are pebbles, vertices

and distance constraints, which respectively represent DOF, rigid

bodies and intramolecular interactions [28]. Note that the

justification for the mapping between atoms and rigid bodies,

and switching the PG applicable on a bar-joint network to a body-

bar network are thoroughly explained in prior works [10,28].

When the body-bar pebble game initiates, all vertices are

unconnected and each is ascribed six free pebbles that describe

its position and orientation in 3D. When an independent interaction

is placed into the network, six trivial DOF are fixed on either one

of its incident vertices while the number of distance constraints

modeling it are consumed. In the language of the PG algorithm,

distance constraints are recursively added to the network, and free

pebbles cover the new constraints if they are independent,

accounting for DOF removal from the system. Pebbles are not

always locally available, but can often be transfered from remote

regions of the network. That is, network rigidity is a long-range

interaction that can propagate across the network [36,37]. This

pebble search function is possible given that pebbles provide

directionality in the network, dependent upon which vertex has

provided them. A constraint is redundant when a pebble cannot be

transferred to cover it.

The search for pebbles in the directed network resembles a

network flow problem [38,39], given that the covered capacity of

any edge will determine the maximal flow of pebbles through that

edge. In a recursive fashion one edge at a time is placed in the

network, always following the described process. This way the PG

accomplishes its main goal, determining if an edge is independent

(fully covered) or redundant (partially or none covered). When a

search for pebbles fails and consequently a redundant constraint is

found, all the vertices that were involved in the search collapse into

a single vertex (with its six trivial DOF), and defines a minimally

rigid graph [40], which we loosely refer to as a Laman subgraph

[41] because of the analogous concept in two dimensions. This fact

allows the PG to run virtually in linear time with the number of

vertices in protein-like networks.

The crucial difference between the VPG and the original PG

algorithm is the assignment of pebble capacity to edges, and to

handle fractional pebbles. The capacity of an interaction

represents the maximum number of DOF that it can consume;

for linker and intra-residue interactions the capacity is six and five

DOF, respectively. The capacity of a H-bond is defined as the

product of its probability, Pnat, and the number of distance

constraints used to model it, which is three. Therefore, consider a

network consisting of vertices fvng,n~1,2, . . . N, with a list of

edges femg,m~1,2, . . . M. The capacity for the m-th edge is

denoted by cm. The VPG follows the following procedures and

operations:

1. Initialize the graph with a set of isolated vertices fvng, with the

free DOF of each vertex vi being 6.

2. From the list of edges femg, insert edge ek with capacity ck into

the graph. Let vi and vj be the two incident vertices for edge ek.

3. Collect 6 pebbles for vertex vi by doing a breadth first search.

4. Flag vertex vi as visited, try to collect ck pebbles for vertex vj by

doing a breadth first search while holding the 6 pebbles on vi in

place. If not all ck pebbles can be found in one trial, continue to

collect more pebbles by carrying out the search repetitively

until there are enough free pebbles on vj to cover edge ek, or if

no new pebbles are found (a failed search).

5. If ck or more pebbles are collected on vertex vj , cover edge ek

with ck pebbles. Otherwise, all the visited vertices within the

failed search are condensed into a single vertex. If femg is not

empty, go to step 2.

6. End of VPG.

Rigid Cluster Decomposition
After having placed all the constraints, the PG and VPG

algorithms determine the number of DOF left in the network. The

trivial case is when there are just six DOF remaining, indicating

that the network is globally rigid and all vertices are contained in a

single rigid cluster. When there are greater than six remaining

DOF, pebble location identifies which regions of the protein

network are flexible or rigid. Excess pebbles identify flexible

Figure 1. The respective network descriptions are compared.
Equilibrium rigidity properties (designated as PG ) are calculated by
averaging across an ensemble of binary networks where H-bonds are
either present or not. Conversely, the VPG describes the network with
H-bond probabilities.
doi:10.1371/journal.pone.0029176.g001
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regions, whereas rigid regions occur when no free pebbles beyond

6 are accessible. From this information, it is possible to apply a

Rigid Cluster Decomposition (RCD) to localize groups of vertices that

move together as a rigid body. A rigid cluster is a subgraph with all

of its vertices completely rigid among themselves.

The process of finding rigid clusters in the VPG proceeds as

follows: for any pair of vertices add a hypothetical edge, then try to

cover it with ew0 DOF, while six DOF are fixed on one of the

incident vertices. If an excess number of DOF is found, then both

vertices do not belong to the same rigid cluster, otherwise a failed

search is declared and all the vertices involved in the search are

part of the rigid cluster. Fig. 2 presents two example RCD cases.

Notice that all the edges have been covered and they have

different capacities. In the first case (Fig. 2a), there is a total of 7.4

available DOF. Therefore for any pair of vertices in the network, it

will always be possible to gather 6+e DOF with ew0 representing

excess DOF, which indicates all constraints are independent and

the network is globally flexible. For the second case (Fig. 2b), the

number of available DOF is exactly six (on vertex four). Therefore,

no excess DOF (i.e. e~0) will be found under any circumstance,

and this condition indicates that a rigid cluster is present that

includes all five vertices.

It is worth emphasizing that the point of these examples is to

show that the data structure for the VPG is essentially the same as

the PG. On the other hand, the edge pebble capacities are not

shown in Fig. 2 for either example. Yet, it can be surmised that the

capacities of each edge in example (a) is precisely equal to the

numbers assigned to the edges (i.e. 5, 5 and 0.6). If this were not

the case, assuming one of these edges had a greater capacity, then

some or all of the excess 1.4 DOF that is currently remaining

would be used to cover the edges. Conversely, because there are

no excess DOF in example (b) it is clear that either all the edges

are being covered at their maximum capacity, or, their capacity is

larger than the sum of the number of pebbles that cover the edge

(on both sides must be added). If the capacity of an edge is larger

than the total amount of pebbles covering it, then this would

indicate that the edge is redundant. If this were the case, many

vertices could be collapsed into a single vertex as explained above

in regards to failed pebble searches, and creation of Laman

subgraphs.

Network Similarity Metrics
We employ two distinct metrics to compare the networks

identified by the VPG and PG algorithms. To quantify rigid

cluster similarity, we employ the Rand Measure (RM) [42]. The

RM is a very well suited metric to compare clustering within a

network. In the case of rigid cluster decomposition, both the body-

bar PG and its VPG counterpart assign a unique label to each

vertex to indicate the cluster it belongs to within the network. The

network will generally consist of many rigid clusters. The RM is a

combinatory count of all possible pairs of vertices where it counts

all the cluster composition coincidences between the two networks

generated by the two approaches. If both networks have the exact

same rigid cluster decomposition, then RM is equal to 1. In

Figure 2. Two different rigid cluster decomposition examples are compared. In the first example, (a), there are 1.4 free pebbles available
(located on vertices V1 and V2), whereas the capacities of edges (V1,V2), (V1,V3), and (V2,V3) is, respectively, 0.6, 5.0, 5.0. If a hypothetical edge is
added between any pair of vertices, there is always going to be possible to find DOF, therefore the three vertices result in single bodies (highlighted
by color differences). Conversely, in the second example, (b), only the six trivial DOF can be found (on vertex V4). That is, no free pebbles remain in
the network (they have all be consumed by the edges). As such, the five vertices belong to a single rigid cluster.
doi:10.1371/journal.pone.0029176.g002
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general the RM has a range between 0 to 1. Zero is only possible if

one network consist of all vertices within one cluster, while in the

other network all vertices are in separate clusters (each vertex has

its own unique label).

For a specific pair of vertices, there are two cases in which a

match is found between the two networks. In the first case, the two

vertices in network 1 belong to the same cluster (they have the

same cluster label) and likewise, in network 2 both vertices belong

to the same cluster. In the second case, the two vertices have

different labels in network 1, indicating they belong to two

different clusters, and likewise, in network 2 the two vertices

belong to two different clusters. On the other hand, a match is not

found if in one network the two vertices belong to the same cluster,

while in the other network they belong to two different clusters.

The RM is calculated by the total number of matches divided by

the total number of possible pairs. A RM greater than
3

4
is a strong

indicator of good agreement. A formal definition as given in [42]

is: given N points, X1,X2,:::,XN , and two clusterings of them

Y~fY1,:::,Yk1
g and Y ’~fY ’1,:::,Yk2

g there is defined

c(Y ,Y ’)~SN
ivjlij=

N

2

� �

where lij~1 if k,k’ A such that Xi and Xj are in both Yk and Y ’k’
or if Xi is in both Yk and Y ’k’ while Xj is in neither Yk nor Y ’k’,
otherwise lij~0.

We also compare the rigidity assessment between the majority

vote from PG to the VPG assignment for each non-linker torsion

bond in a protein. This provides a very sensitive metric to assess

how well the VPG reflects the consensus results from a large

sampling of PG runs. That is, we count the number of times that

both approaches agree in their rigid versus flexible assessment,

normalized by the total number of comparisons. This calculation

leads to an agreement measure (AM) that ranges from 21 to 1.

When the rigidity estimate from VPG matches the majority vote

among all PG realization (i.e., a rotatable torsion by consensus in

PG corresponds to a flexible torsion in VPG, whereas a locked

torsion by consensus in PG corresponds to a rigid torsion in VPG),

the AM equals 0. When the VPG fails to match the majority of PG

designations, the AM varies towards +1 (21 = flexible and +1 =

rigid). The variance from 0 indicates the proportion of

disagreement. To calculate the AM index for the n-th torsion,

we implement the following algorithm defined as:

if (NwrongwNagree)

if (VPG deemed as rigid the n{th torsion)

measure~50{49|(Nwrong{Nagree)=Ntotal

else

measure~50z49|(Nwrong{Nagree)=Ntotal

else

measure~50

AM~(measure{50)=49

where Nwrong is the count of times that PG disagreed with VPG,

Nagree is the count of times that PG matched the VPG, and

Ntotal~NagreezNwrong is the total number of realizations for the

PG. For instance, if a particular torsion has a value of AM~{1,

it indicates that the VPG assesses the torsion to be rigid, whereas

the PG indicates the opposite (flexible) in all of the realizations.

When AM~0, this is considered perfect agreement, and when

0vjAMjv0:1, there is disagreement between the consensus PG

vote and the VPG prediction, but the minority and majority votes

from PG are very close, where the difference is comparable to the

intrinsic sampling error bars.

Rigidity Profiles
To complement the analysis above, we also graphically compare

two additional descriptions of network rigidity that resemble

contact maps. The Rigid Cluster Map (RCM) is a N|N symmetric

matrix that identifies co-rigid a{carbon pairs within protein

structure. By definition the main diagonal is rigid (an a{carbon is

rigid with respect to itself). When constructing the RCM matrix, if

a pair of a{carbons belong to the same rigid cluster a value of 1 is

assigned to the intersection of both vertices (specifying the row/

column of the matrix), else 0 is given. For one run of the PG, the

RCM is a binary plot simply highlighting co-rigid residue pairs.

The PG RCM plots are based on a majority rule across the

ensemble. That is, if 50% or more of the realizations is rigid a 1 is

assigned, otherwise 0 is assigned. For the VPG, there is only one

run, and the output will be 1 or 0. Since the RCM is symmetric,

the lower triangle shows the VPG, while the upper triangle shows

the PG results.

Further, we also employ Mechanical Coupling Maps (MCM) to

characterize how flexibility propagates throughout structure. The

MCM quantifies the degree of flexibility of each a{carbon in a

protein relative to a reference a{carbon, which serves as a rigid

body anchor to eliminate the trivial rigid body translations and

rotations. To calculate the MCM, the maximum number of excess

DOF shared between the a{carbon of interest and the reference

a{carbon must be determined. Operationally, this is accom-

plished by first fixing the trivial six DOF on the reference

a{carbon, and then launch a pebble search on the other

a{carbon to gather the maximum number of internal DOF. Note

that the result does not depend on which a{carbon is selected as a

reference, as the result depends only on the a{carbon pairs. For

normalization purposes, the number of internal DOF found is

divided by six (being the maximum number of DOF that an

a{carbon can have). This information is presented using a color

code scheme in the MCM that ranges from 0 to 1. Since the

number of DOF that can be found in the VPG can be fractional

(not binary like the RCM), the proper comparison to PG requires

the MCM values from the PG runs to be averaged across the

ensemble. The MCM thus provides a more nuanced view of

network rigidity than the RCM. Because the MCM is also

symmetric, again the lower triangle shows the VPG, while the

upper triangle shows the PG results.

Results and Discussion

Quantifying Rigid Cluster Similarity
Characterizing the rigid clusters offers a unique view in terms of

the role that chemical interactions play within proteins. In prior

work, we have used rigid cluster decomposition of protein

structure to provide a statistically significant description of

thermodynamic coupling within double mutant cycles [43].

Moreover, there have been many investigations characterizing

the loss of rigidity that occurs upon protein unfolding using a H-

bond dilution model [11,34,44–48]. Finally, PG characterizations

of rigidity have been used to explain the increased stability of

thermophilic proteins [49], RNA function [50], the effects of

ligand binding [5] and the identification of critical interactions

[51]. In these works, an energy cutoff is used to identify which H-

bonds are present. As the energy cutoff is lowered, less H-bonds

Ensemble Averaged Descriptions of Protein Rigidity
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are included in the structure, thus increasing flexibility. Equiva-

lently, as the energy cutoff is raised, more H-bonds are included in

the structure, thus increasing rigidity.

In an analogous way, we vary Pnat from 0 to 1 in order to

control the number of H-bonds present in the network. One

technical difference here, is we treat all H-bonds as equivalent, and

ignore their energies altogether. In the above mentioned previous

works, H-bond energy was used to characterize the strength of a

H-bond so that the weakest H-bonds can be removed before the

strongest H-bonds to study protein unfolding. The reason for

intentionally treating all H-bonds as equivalent in this this work is

because we are interested in testing how good the VPG can

represent PG over the ensemble. If some H-bonds are almost

always present (lowest energy H-bonds) while some H-bonds are

almost always broken (high energy H-bonds), the VPG results will

be closer to the PG results because less fluctuations will occur in

the H-bond network, meaning the comparisons herein correspond

to the worst-case scenario. We have tested and verified this

dependence on the fluctuations present in the H-bond network,

and we will publish a more physically realistic H-bond dilution

protocol elsewhere that models protein unfolding. However, the

interest in this report is to show that the VPG provides an excellent

approach to characterize protein flexibility/rigidity properties

even in the extreme case of uniform H-bond strength.

Under this H-bond dilution strategy, the capacity defined by

3|Pnat is the number of DOF that will be removed from the VPG

when an H-bond is independent (recall each H-bond is described

by three distance constraints). For the PG counter part, a random

number between zero and one is assigned to each possible H-bond

in each PG realization to determine if it is present or not (H-bond

is present if RAND(0,1)vPnat). Note that empirically we find that

for a given Pnat, an ensemble of 200 realizations is typically good

enough to make robust predictions across our protein dataset.

Since we are using PG to define the exact answer to compare

against the VPG, we run the PG 1000 times to reduce statistical

error bars by
ffiffiffi
5
p

relative to what is found in actual applications.

As discussed above, the Rand Measure [42] (RM) compares the

rigid cluster decompositions from the VPG and PG . Fig. 3a

presents the RM calculation across the range Pnat values for four

exemplar protein structures. The four example proteins span a

range of sizes (from 64 to 315 residues) and topological archi-

tectures. Specifically, they are the chemotaxis receptor methyl-

transferase CheR structure (pdbid = 1AF7) [52], the FLAP

endonuclease from M. jannaschii (pdbid = 1A76) [53], a small

scorpion protein toxin (pdbid = 1AHO) [54] and the disulfide

oxidoreductase from P. furiosus (pdbid = 1A8L) [55]. In each,

there is a region where the RM decreases sharply, which

corresponds to the worst-case situation when the fluctuations are

Figure 3. Quantifying PG and VPG similarity. (a) The Rand Measure (RM) is plotted versus Pnat for four exemplar proteins that span a range of
sizes (from 64 to 315 residues) and topological architectures. All proteins across the full dataset have the same characteristic shape where the minima
in RM is related to the protein structure’s rigidity transition. The Pnat value corresponding to the worst RM is defined as PRM . (b) Histogram detailing
PRM values for each protein within our dataset. Encouragingly, an overwhelming majority of cases have RMs greater than 80%. (c) Histogram
detailing the agreement measure for each backbone torsion within our dataset at each protein’s respective PRM value. (d) Histogram detailing the
Pearson correlation coefficient comparing the PG and VPG mechanical coupling maps across the dataset at each protein’s respective PRM value.
doi:10.1371/journal.pone.0029176.g003
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maximized. For most networks the point of maximum fluctuation

identifies the rigidity threshold, representing the transition from

flexible to rigid. A similar pattern was detected across our entire

dataset, which appears at values as low as Pnat~0:60 and ends at

values as high as Pnat~0:95. To calculate RM at each Pnat, each

one of the 1000 PG realizations is compared to the single VPG

description. The PG RM value is simply the average of the RM

1000 realizations. The Pnat at the minimum in RM, designated

PRM , identifies the worst-case scenario.

The high RM values indicate that the rigid cluster decompo-

sition is very similar across the PG and VPG. To emphasize this

point, we identify the PG realization that yields the median RM

score across the entire ensemble, which is called PGmed . This rigid

cluster decomposition for this point is plotted (using the same four

proteins) in the first column of Fig. 4. Color differences indicate

different rigid clusters, whereas grey indicates a flexible region.

The middle column identifies the rigid clusters identified by the

VPG. While the similarity is apparent by just qualitatively

comparing the rigid cluster decompositions from each algorithm,

the difference plots in the third column are the most compelling.

Red coloring identifies regions that disagree in rigid cluster

composition, whereas grey indicates agreement.

Expanding to our entire dataset, Fig. 3b plots a histogram of all

RM scores at the respective PRM value for each protein. The

worst-case RM scores are encouragingly large (w80%) for an

overwhelming majority of the proteins, thus indicating that the

rigid clusters identified by the two algorithms are quite similar.

Slight shifts to the considered Pnat to just above and below PRM

Figure 4. Rigid Cluster visualizations for four example proteins. The first column highlights the rigid clusters identified within the PG
realization that corresponds to the median RM value, designated PGmed . The middle column corresponds to the rigid clusters identified by the VPG.
Finally, differences between the two algorithms are highlighted in the third column.
doi:10.1371/journal.pone.0029176.g004
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negligibly affects the histograms. Note that when Pnat?0 or

Pnat?1 the fluctuations within the network are suppressed,

meaning the algorithms become identical. Consequently, the

mechanical descriptions converge. Fig. 3a typifies this result,

where the two approaches produce identical results (RM~1) at

small and large values of Pnat.

Over versus Under Prediction of Rigidity
The RM indicates that differences in the rigid cluster

decomposition for PG and VPG occur, but the RM does not

characterize where and how the differences take place. Therefore,

it is important to determine if the VPG tends to systematically

over- or under-estimate rigidity in the protein. To determine how

often each type of error appears, we quantify similarity within the

rigidity of all rotatable backbone (w and y) dihedral angles

(torsions). The agreement measure (AM) described above is

applied here for three specific proteins, and across the entire

dataset. Fig. 5a, b and c present histograms of AM values for three

of the proteins from above. In panel (a), it is shown that the VPG

slightly overestimates the amount of rigidity within the methyl-

transferase CheR structure, whereas panel (b) indicates that it

slightly underestimates the amount of rigidity within FLAP

endonuclease. Panel (c) shows that VPG overestimates the amount

of rigidity within the disulfide oxidoreductase. Fig. 3c presents a

histogram of the entire dataset. Clearly, the overwhelming

majority (w92%) of torsions are in close agreement within

statistical uncertainty of PG . Strong disagreement (jAMjw0:1)

between both algorithms is minimal, especially considering the

Figure 5. Agreement measure (AM) results. AM histograms for the (a) methyltransferase, (b) FLAP endonuclease and (c) disulfide
oxidoreductase at their respective PRM~ values. (d) Differences between the PG and VPG are mapped to the ribosylglycohydrolase structure from
M. jannaschii, which is presented as a typical case. Red coloring indicates that the VPG overestimates rigidity relative to PG , whereas blue indicates
an underestimate. Across our dataset, as shown in this example, differences occur most frequently in loop regions.
doi:10.1371/journal.pone.0029176.g005

Figure 6. Rigid cluster maps (RCM) of chemotaxis receptor
methyltransferase CheR structure is plotted at two different
Pnat values. Red coloring identifies residue pairs that are co-rigid. PG
results are presented in the upper triangle, whereas the VPG is
presented in the lower. At Pnat~0:60, the protein is mostly flexible due
to a lack of crosslinking H-bonds. However, the structure becomes
increasingly rigid as H-bonds are added to the network. At Pnat~0:75,
the VPG slightly under-predicts the extent of rigidity. For this protein
PRM~0:80.
doi:10.1371/journal.pone.0029176.g006
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comparison is at the PRM of each protein that defines the worst-

case. Nonetheless, it is interesting to identify when discrepancies

are most likely to occur. A survey of the differences reveals that

they generally occur in loop regions and edges of secondary

structures, as typified in Fig. 5d.

Rigidity Profile Similarity
We use Rigid Cluster Maps (RCM) to visually highlight pairwise

mechanical couplings within structure, using red marks to

highlight a{carbon pairs within the same rigid cluster, otherwise

no mark is provided. For ease of comparison, the PG results are

presented in the upper triangle, whereas the VPG results are

presented in the lower triangle. By construction, the protein

backbone corresponding to the RCM diagonal is always rigid in

both variants. Using the methyltransferase structure from above as

a typical case, the two panels in Fig. 6 correspond to two different

values of Pnat, ranging from a completely flexible (unfolded)

structure with few crosslinking H-bonds to a predominantly rigid

structure with many crosslinking H-bonds. As one can see, the

VPG and PG algorithms give very similar results.

Going a step further, Fig. 7 presents the RCMs of our four

example proteins near PRM , thus Pnat is corresponding to the

critical region. The presented values are slightly shifted from exact

PRM values to highlight interesting features. Note that the changes

in Pnat actually make the RCM plots appear more dissimilar. The

large square region along the backbone corresponds to a rigid

a{helix. A similar pattern is observed in the disulfide oxidore-

Figure 7. Rigid Cluster Maps (RCM) for four different example
proteins near their respective PRM values. PG results are
presented in the upper triangle, whereas the VPG is presented in the
lower. Note that the presented proteins are the same from Fig. 3a.
doi:10.1371/journal.pone.0029176.g007

Figure 8. Mechanical Coupling Maps (MCM) provide a more nuanced description of co-rigidity. Specifically, the continuous scale
provides a normalized description of how many free pebbles (DOF) are shared between each residue pair (0 = 0 pebbles, whereas 1 = 6 pebbles).
Again, each MCM is plotted near their respective PRM values for the same four proteins presented Figs. 3a and 7.
doi:10.1371/journal.pone.0029176.g008
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ductase, which also has few crosslinking interactions at this value

of Pnat. Conversely, the off-diagonal features are mostly conserved

in the methyltransferase CheR structure, but the VPG slightly

overestimates the extent of rigidity within the core region (residues

*75{150). The FLAP endonuclease example provides the most

interesting visual differences between the two approaches, where

the VPG underestimates the PG predictions. That is, the VPG

fails to identify rigid clusters present within the PG . However, the

differences are found to be much less severe on closer inspection

regarding the number of available DOF. While there are no free

pebbles within the PG in these regions, the probabilistic VPG

identifies a tiny nonzero fraction (3|10{3). Clearly, this

difference is negligible, but the binary RCM makes the difference

appear much larger than it actually is.

The Mechanical Coupling Maps (MCM) provide a more

nuanced view of rigid cluster decomposition. Unlike the binary

RCMs, MCMs are based on a continuous scale that identifies

the fractional number of pebbles shared between each a{carbon

pair. In this sense, the MCMs are similar to the cooperativity

correlation plots calculated by our statistical mechanical DCM

[18,19,22–25]. Fig. 8 compares the MCMs for the same four

proteins in Fig. 7, using the same Pnat values. The rigidity over-

prediction by the VPG in the methyltransferase example is again

clear. However, there is appreciable co-rigidity within the residue

pairs contained within the range of residues *60{80 and

residues *80{150, which was identified as flexible by the the

RCM. Additionally, the MCMs reveal a more interesting set of

similarities throughout the plots. In the same way, the similarity

within FLAP endonuclease is also more pronounced, although the

VPG again somewhat overestimates the extent of rigidity.

Conversely, the MCMs actually show more dissimilarity within

the two examples without any off-diagonal RCM components. In

both, there is marginal co-rigidity identified by the PG (the

reddish shadowing) due to some rigidity fluctuations throughout

the ensemble that is suppressed by the VPG.

Expanding across the entire dataset, Fig. 3d provides a

histogram of the Pearson correlation coefficient between the

MCM matrices calculated by the PG and the VPG. Clearly,

the VPG is consistently a good estimator of the PG behavior.

This point is strengthened by Fig. 9, which compares the Pearson

correlation coefficients of the MCM of each unique PG

realization to the PG plot for the same four proteins considered

Figure 9. Boxplots describing the ensemble of Pearson correlations coefficients comparing each PG realization to the PG behavior.
The red line represents the correlation between the PG and the VPG. In all cases, the PG to VPG similarity is greater than the 75th percentile of the
intrinsic fluctuations within the PG ensemble.
doi:10.1371/journal.pone.0029176.g009
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above. That is, the boxplots describe the intrinsic variability

across the PG ensemble. Within each boxplot, the horizontal grey

line indicates the median RM value across the PG distribution,

whereas the top and bottom of the box indicates the upper and

lower quartiles. The whiskers describe the rest of the distribution,

and the dots identify outliers (corresponding to the default settings

of R). The red line corresponds to the similarity between the PG

and VPG MCMs, which is encouragingly strong. In fact, the

VPG similarity to the PG behavior is better than the third

quartile in all cases. This result clearly indicates that VPG

approximates PG behavior better than the vast majority of the

single PG realizations. These comparisons are calculated at the

same value of PRM as above, meaning they again correspond to

the critical region.

The Rigidity Transition
Following earlier works [18,19,22,25,34], we define Pt (for

transition) as the peak in the rigid cluster susceptibility (RCS)

curve, which is defined as the reduced second moment in rigid

cluster size. That is, the peak in RCS identifies the point in which

the rigid cluster sizes are maximally fluctuating, indicating a

transition from a globally flexible to globally rigid network. Twelve

examples (including the four proteins discussed above) of RCS

curves using the PG and VPG approaches are shown in Fig. 10,

all of which are qualitatively similar. As shown by the scatter plot

in Fig. 11a, the rigidity transitions identified by the PG and VPG

algorithms are highly correlated. In addition, the Average Cluster

Size (ACS) at Pt is also highly correlated across the two algorithms

(Fig. 11b). Since Pt identifies the Pnat value with maximal

Figure 10. Rigid Cluster Susceptibility (RCS) is plotted versus Pnat for 12 typical protein examples (PG = solid line and VPG =
dashed line). Note that the proteins presented in the first column are the same from Fig. 3a.
doi:10.1371/journal.pone.0029176.g010

Ensemble Averaged Descriptions of Protein Rigidity

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e29176



variability within the rigid cluster sizes, it is expected to be related

to the PRM because the single VPG mean-field calculations

suppresses fluctuations. This is indeed the case as indicated by the

strong correlation between Pt and PRM for both the PG and VPG

algorithms (Fig. 11c–d).

Conclusions
In this report, we demonstrate that ensemble averaged PG

properties, which requires sampling, is approximated well by a

single mean field calculation. That is, the probabilistic VPG

accurately reproduces a number of ensemble-averaged network

rigidity properties. The high values of the RM clearly indicate that

the rigid cluster decompositions are very similar, especially for

jPnat{PRM jw0:2. The AM and structural comparisons of the

rigid clusters respectively provide quantitative support for this

point. Comparisons of the RCM and MCM rigidity profiles

between the PG and VPG variants also indicate that the

calculated rigidity properties are highly similar. In fact, the PG
to VPG MCMs are much more similar than the intrinsic

variability across the ensemble of PG snapshots. Finally, the

mechanical transitions identified by the peak in the rigid cluster

susceptibility curves are highly correlated across the two variants.

Taken together, these results collectively demonstrate the utility

and power of the virtual pebble game that deals with the

probability of finding pebbles rather than the pebbles themselves.
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Figure 11. Rigidity transition effects. (a) The rigidity transition (Pt) is compared across the PG and VPG algorithms. (b) Similarly, the
average cluster size (ACS) at their respective Pt values are compared across the two algorithms. The value of Pnat with the worst RM (called PRM ) is
compared to Pt calculated using the (c) VPG and (d) PG . The linear relationships occur because the mean field approximation is maximally inaccurate
in this range. Note, a few proteins do not have completed peaks in their rigid cluster susceptibility curves because the protein never crosses the
rigidity transition, which have been excluded from panels (c) and (d).
doi:10.1371/journal.pone.0029176.g011
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