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Inferring 3D structures of chromatins and chromosomes from ex-

perimental data is critical to understand biological functions of

DNAs, and various computational algorithms have been developed

in the past a few years. All algorithms are subject to the challenge

of high computational cost if the number of loci in the target chro-

mosome is large. In this paper, we tackle this difficulty and develop

a set of fast algorithms for the manifold-based optimization (MBO)

model, which is a popular method to reconstruct 3D chromosomal

structures from Hi-C data. The proposed algorithms are based on

random projection theory. We first approximate the column (row)

space of the original data in a reduced dimension. Then interpola-

tive decomposition technique is used to decompose the data matrix

into a product of two matrices, each of which has a much smaller

dimension comparing to the number of degree of freedom of the

problem. With this low-rank approximation, all components in the

gradient descent method of the optimization, including calculat-

ing gradient, line search, and solution updating, have the linear

complexity, with respect to the total number of loci in the tar-

get chromosome. At last, a randomly perturbed gradient descent

method is adopted so one can effectively escape saddle points of the

non-convex optimization. In simulations, a synthetic simple helix

and a simulated chromosomal structure are used to validate our

algorithms, suggesting its highly enhanced efficiency and desired

ability to recover structures from data subject to random lost and

mild contamination of noises.
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1. Introduction

Genetic information of almost every living organism is encoded in deoxyri-
bonucleic acid (DNA), which is critical for development and functions of
the organism. DNAs organize into chromosomes and the collection of all
chromosomes is called genome, existing in the nucleus of nearly all cells
of alive eukaryotic organisms. Besides linear genetic information of DNA,
it is crucial to understand and identify three dimensional (3D) structures
of chromosomes (or their fundamental components, chromatins), because
spatial organization of DNA essentially affects genome functions, such as
transcription and its efficiency, spatial regulation, and genome interpreta-
tion [11, 21, 37, 39]. It is also meaningful from disease diagnosis and treat-
ment, to drug design. 3D structures of chromatins and chromosomes can be
inferred from experimentally obtained inter- and intra- chromosomal inter-
actions. Chromosome conformation capture (3C) [10] with next-generation
sequencing, including 5C [13], Hi-C [33, 44], TCC [29] and GCC [45] are
able to quantitatively measure the number of interactions between genomic
loci across large genomic regions or entire genomes. Processes of these tech-
niques can be briefly summarized as the following [33, 40, 5, 22]. Pairs of
chromosomal loci are first cross-linked, and then fragmented, with the size
of restriction fragments determining the resolution of interaction mapping.
After the next step of random ligation, interacting loci are quantified by
amplifying ligated junction by PCR methods. High-throughput methods,
such as Hi-C method, are able to quantify interactions between all possible
pairs of genomic loci fragments simultaneously. Contact frequency, referring
to the measured number of interactions between two loci in a population of
cells, are typically presented as a matrix. The optimal 3D structures of chro-
mosomes can be inferred from the data of frequency matrix, or Hi-C contact
map, because it has (unknown) relation to the average in vivo 3D distance
between loci and thus presumably reflects the average spatial organization
of the corresponding chromosomes.

Recently, many computational algorithms have been developed to infer
the coordinates of genomic loci in a chromosome from Hi-C contact ma-
trices. A straightforward approach is the classic multidimensional scaling
(MDS) [30]. In this method, the Hi-C data need to be first translated into a
Euclidean distance matrix (EDM) that satisfying distance geometry prop-
erties such as triangle inequalities, then the EDM is linearly mapped to
the Gram matrix. Eventually the coordinates are obtained by performing
singular value decomposition (SVD) of the Gram matrix [12]. Forming the
EDM in the first step is the most important process and a specific algorithm
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was proposed in [30]. Other model-based methods include inferring struc-
tures by maximum likelihood algorithms [42], Markov Chain Monte Carlo
method [26, 46], and simulated annealing methods [48, 41, 3], etc. More gen-
erally, it can be formulated as a low-rank optimization problem for distance
matrix completion [4, 3, 19, 52, 38, 28, 43]. The optimization-based meth-
ods are (almost) assumption-free, data-driven approaches that can handle
nosiness, incompleteness, uncertainty of data in a systematic way. Thus,
they are the major interests of our work. Regardless of methodologies, all
numerical algorithms encounter challenge of great computational costs at
high resolution Hi-C data. According to [44], recent experiments have been
able to provide Hi-C data at resolution as high as 1-5 kilo-base pair (kbp)
for several human lines. Comparing to the magnitude of billion-base pair of
the whole chromosome, the number of loci in the data set, or the number of
degree of freedom N , could easily reach the scale of 105 ∼ 106. At this scale,
the computational cost and memory requirement are extremely high, if not
prohibitive. For example, performing SVD of a N by N matrix is of complex-
ity O(N3). In optimizations, it requires O(N2) complexity of matrix-vector
multiplication in gradient calculation and line search, and this process is
repeated in a large amount of overall iterations. On the other hand, due to
the imperfectness of experiments, the contact frequency data is subject to
sparseness, noisy nature, and experimental uncertainty. As consequence, fast
and robust computational algorithms are indispensable and have priority to
highly-accurate ones, to analyze Hi-C data at high resolution.

Challenges of high computational complexity can be tackled by ran-
dom numerical linear algebra (RNLA) [18, 25]. Morden problems in applied
mathematics (such as scientific computing in numerical partial differential
equations (PDEs), integral equations (IEs), non-local interactions, or numer-
ical linear algebra) and applied statistics (least-squares regression, quantile
regression, machine learning) are usually associated with matrices at extra
large scale. Using Monte Carlo methods, RNLA can provide computational
algorithms for large-scale matrix operations with enhanced efficiency and
controllable accuracy in high probability. Roughly speaking, there are two
directions of RNLA. One is stochastic matrix approximation: comparing to
its traditional deterministic counter parts such as SVD or QR, only par-
tial information is extracted, from at most two passes, by some statistical
strategies to approximate the original data matrix, such that fundamental
matrix operations (e.g. matrix-vector multiplication) enjoy high efficiency
(usually O(N)) and require less CPU memory. Specific algorithms include
random matrix-vector multiplication [14], random SVD [15], random CUR
decomposition [16, 17], or random interpolative decomposition (ID) [34, 35].
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The other direction is subspace embedding: though random projection tech-

nique, the column (row) space of the original data matrix is embedded to

a much smaller subspace with low distortion [51, 47]. As a result, either

dimension or conditional number of the data matrix in regression problems

is greatly reduced. In this approach, no matrix needs to be approximated

but the overall iteration is speed-up. Various algorithms have been proposed

for lp regressions [9, 49, 7, 8, 6, 36, 50]. A broader review of RNLA can be

found in [18, 25, 32].

The objective of this work is to develop high-efficient and reliable compu-

tational algorithms for optimization, to reconstruct 3D chromosomal struc-

tures from Hi-C data, using RNLA techniques. First, the problem is summa-

rized as a manifold-based optimization (MBO) problem to the Hi-C data.

In this work, we first assume a known a prior relation between loci distance

and contact frequency as in other literatures, then the contact frequency

matrix is converted to a “pseudo” distance matrix. Next, the data matrix is

approximated as the product of two low dimension matrices. Thus, in the

gradient descent method of solving the optimization problem, the compu-

tations of evaluating the objective function, gradient and step lengths all

have complexity of O(N) in each iteration. Additionally, a stochastic per-

turbation method is introduced to efficiently escape from the saddle points

of the non-convex optimization. As analyzed in [23], approximation of the

minimizer can be obtained in O(poly(logN)) iterations. Therefore, the total

computational complexity of our algorithm in time is O(Npoly(logN)) and

memory requirement is O(N). Synthetic data and realistic Hi-C data will

be used to verify the proposed algorithms.

The rest of the paper is organized as follows: Section 2 briefly reviews the

manifold based optimization (MBO) used in Hi-C data analysis. In Section 3,

a set of random algorithms, including random matrix low-rank approxima-

tion, the resulting gradient descent algorithm, and a saddle point escaping

method, are introduced. Numerical results of the proposed fast algorithms

in analyzing both simple synthetic and Hi-C data are presented in Section 4.

The paper ends with conclusion in Section 5.

2. Manifold based optimization for chromosome structures

In this section we review the basic concepts of manifold based optimization

(MBO) and how it is related to chromosome structure recovering. More

detailed description of MBO can be found in [28, 38, 2, 43].
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2.1. Manifold based optimization (MBO)

In this problem, the original or pre-processed experimental data is repre-
sented by a matrix S ∈ R

N×N , whose entries are measured as contact fre-
quencies among loci of a chromosome. The size N of the so-called dissimilar-
ity data depends on the experimental resolution (in terms of kilo-base-pair,
or kbp). The fundamental assumption is that the contact frequency sij be-
tween loci i and j is related to their physical distance. Then the goal is to
solve a matrix completion problem with a relation function g : R → R, i.e.,
loosely speaking

(1) min
D∈EDM(N)

‖D− g(S)‖,

where the variable D is a N×N rigorous Euclidean distance matrix (EDM),
whose entries are actually the distance-square of loci, i.e., d2ij . The matrix
g(S) is from entry-wise evaluation of S, i.e., g(S)ij = g(sij). A commonly
used empirical choice [33] of the function g is

(2) g(sij) =

{
s−α
ij if i �= j

0 if i = j

for some 0 < α < 1, while more recent work suggests treating the function
g itself as unknown. The matrix norm ‖ · ‖ measures the difference between
the data and prediction. For simplicity, the square of Frobenius norm ‖ · ‖2F
is used in this work. Note that in Eq. (1) the matrix S is subject to different
levels of noise and missing entries.

The EDM D has a structure. Actually, consider the 3D structure of the
target chromosome as Y ∈ R

N×3, with each row of Y being the (x, y, z)
coordinates of the corresponding loci. Then its Gram matrix is defined as
G = YY′, where Y′ is the transpose of Y. Obviously it has rank of three
and it has a relation with the EDM as

(3) D = κ(G) = Diag(G)1′ + 1Diag(G)′ − 2G,

where Diag(G) ∈ R
N is the column vector made of diagonal entries from

G and 1 ∈ R
N has all entries being one. With this relation, optimization

problem (1) is on a low-dimensional space

(4) min
G�0

‖κ(G)− g(S)‖2F , s.t. rank(G) = 3
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where G � 0 is positive semidefinite (PSD) matrix, from which the 3D
structure Y will be recovered.

Directly solving Eq. (4) for the full matrix G is expensive and not nec-
essary since the eventual goal is Y. Indeed, solving Y can be investigated in
the geometric framework of optimization on Riemannian manifolds of PSD
matrices. A potential difficulty of solving Y is that G = YY′ is invariant
with respect to the transformation Y �→ YΘ, where Θ ∈ O(3) = {Θ ∈
R
3×3 : Θ′Θ = ΘΘ′ = I}. This property implies that the minima of the cost

function Eq. (4) are not isolated. To address this theoretical issue, the prob-
lem is reformulated as an optimization problem on the quotient manifold
defined as

(5) M .
= S+(3, N) 	 R

n×3
∗ /O(3),

where S+(3, N) = {X ∈ R
N×N : X = X′ � 0, rank(X) = 3} and R

N×3
∗ =

{Y ∈ R
N×3 : det(Y′Y) �= 0}. The manifold M represents a set of equiva-

lence classes of Y as [Y] = {YΘ : Θ ∈ O(3)}.
Based on this manifold, Eq. (4) can be reformulated as an unconstrained

optimization with cost function

(6) min
[Y]∈M

f([Y]) = min
[Y]∈M

‖κ(YY′)− D̃‖2F .

where we denote D̃ = g(S) for convenience. In this current work, we simply
take Eq. (2) for the function g, as in [52, 33]. Note that matrix D̃ from
actual data is not a rigorous EDM; it is rather referred as distance matrix
data.

It is important to note that the cost function f is defined on the manifold
other than an Euclidean space [28]. Computational algorithms for Eq. (6) are
established conceptually on the entire quotient space M but practically in
R
n×3
∗ . Both the first-order gradient descent algorithm and the second-order

trust region method can be used to solve the MBO. But in practice, we will
focus on the gradient descent method because the invariance of solution with
respect to rotation greatly impacts the convergence properties of second-
order method but is not harmful for the first-order methods [1, 2]. Indeed,
the trust-region algorithm can only achieve superlinear convergence for (6)
with carefully tuned parameters. Additionally, gradient descent method is
more straightforward for the non-convex optimization as (6) at large scale,
while the saddle-point escaping algorithms for trust-region methods still
remain open. At last, it is convenient to construct fast algorithms for gradient
descent methods. The last two issues will be further discussed in Section 3.
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2.2. Gradient descent method on a manifold

The gradient of the cost function (at [Y]) on a manifold M is a vector
in its tangent space TYM. For any two vectors ξY and ηY in TYM, the
Riemannian metric is

(7) hY(ξY, ηY) = Tr(ξ′YηY),

where Tr is for the trace operator. The tangent space can be further decom-
posed to two orthogonal subspaces: one is the vertical space VYM and the
other is the horizontal spaceHYM. The former is tangent to the equivalence
class [Y], i.e.

(8) VYM = {YΞ : Ξ ∈ R
3×3,Ξ′ = −Ξ},

while the latter is its orthogonal complement, i.e.

(9) HYM = {ξ̄Y ∈ R
n×3 : ξ̄′YY = Y′ξ̄Y},

Then the skew-symmetric matrix defines a projection of an arbitrary element
ξ ∈ R

N×3 onto the horizontal space HYM by ΠHY
(ξ) = ξ − YΞ, and Ξ

satisfies the Sylvester equation

(10) ΞY′Y +Y′YΞ = Y′ξ − ξ′Y.

Then the gradient of the cost function on the manifold is the unique tangent
vector in TYM that is projected from the gradient of f with respected to
Y ∈ R

N×3. In order to implement line search and update the search variable
on the manifold, a local mapping from TYM to the manifold, or a retraction
is required. According to [28], a simple choice of retraction for the quotient
manifold can be

(11) RY(ξ̄Y) = Y + ξ̄Y.

Computationally, the gradient gradf(Y) satisfies

(12) hY(ξY, gradf(Y)) = Df(Y)[ξY], ∀ξY ∈ TYM,

where the quantity Df(Y)[ξY] is the directional derivative of f on the man-
ifold in the direction of ξY, i.e.,

(13) Df(Y)[ξY] = lim
t→0

f(Y + tξY)− f(Y)

t
.
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Then from the cost function in Eq. (6), the gradient is calculated as

(14) gradf(Y) = 2κ∗(κ(YY′)− D̃)Y,

where κ∗(X) is the adjoint operator of κ and κ∗(X) = 2(Diag(X1)−X).
Given solution Yi at the i-th step, using the retraction in (11), the

gradient descent algorithm for (6) reads

(15) Yi+1 = Yi − 2λiκ
∗(κ(YiY

′
i)− D̃)Yi.

The step size λi > 0 is determined by line search algorithms with the Armijo
criterion, i.e.

(16) f(Yi − λigradf(Yi)) ≤ f(Yi)− cs‖gradf(Yi))‖2F

for some parameter 0 < cs < 1.

3. Fast computational algorithms

Numerically solving the MBO encounters the following difficulties: (i) com-
plexities of calculating all components, including cost function evaluation,
computing gradient, and line search are O(N2). This could be extremely
expensive for handling very high resolution Hi-C data. (ii) The MBO (6) is
a non-convex optimization problem. Fortunately, it has been proved in [24]
that all local minima are equivalent to the absolute minimum for this type
of optimization, while special care needs to be taken to effectively escape
saddle points in order to avoid high computational cost. In this section, we
introduce fast computational algorithms to address these issues, including
random low-rank approximation of matrix data and randomly perturbed
saddle point escaping method.

3.1. Randomized low-rank matrix approximation

We are motivated by the special structures in the gradient method (14)-
(15): according to the relation (3), the unknown EDM κ(YY′) in Eq. (6)
is actually at most of rank 5. Since the data D̃ is supposed to be “close”
to the EDM, its rank is significantly smaller than its dimension. So we will
try to represent the distance matrix data D̃ in low-rank approximation, i.e.,
D̃ ≈ LR, where L ∈ R

N×k and R ∈ R
k×N . The parameter k 
 N is called

the numerical rank, which is usually larger than 5 since the data distance
matrix is subject to missing entries or noises. With such an approximation,
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complexity of matrix operations, such as matrix-vector multiplication can
be greatly reduced.

Traditional methods, such as truncated singular value decomposition
(SVD) can accomplish this low-rank approximation. However, these deter-
ministic methods could be even more expensive than the optimization prob-
lem itself when N is large. For example, it is well-known that the complexity
of SVD is O(N3). Further, it is difficult to implement SVD or LU for Hi-C
data since a large portion of entries of the distance matrix data are not
available. To tackle these challenges, we proposed to use random projection
method to obtain a low-rank approximation of the original data matrix more
efficiently, without the need of all matrix entries.

Generally, to achieve a low-rank approximation of the matrix A, a ran-
dom matrix Ω ∈ R

N×(k+p) is first multiplied to it to form a projection,
i.e.,

(17) ΠCA = AΩ,

where k 
 N is the targeted rank and p (usually less than 10) is the over-
sampling parameter. A conventional choice of Ω is an N×(k+p) normalized
Gaussian matrix. In the second step, QR decomposition is applied to ΠCA
to obtain the orthornomal vectors denoted by Q ∈ R

N×(k+p). Then a direct
approximation is formed, L = Q, R = Q′A, and A ≈ LR.

However, this straightforward approximation is not quite efficient since
computations for ΠCA and R are still of complexity O(N2). To solve the
first issue, a very fast random projection method [31] can be applied, in
which the random matrix Ω is taken as

(18) Ωij =

⎧⎪⎪⎨
⎪⎪⎩
−1 with probability 1

2
√
s

0 with probability 1− 1√
s

1 with probability 1
2
√
s

.

With such choice, only a small portion of the original data is needed since
majority ofΩ entries are zeros by controlling the parameter s, which could be
as large as N . Thus, the computational efficient is greatly enhanced despite
little loss in accuracy.

The efficiency of random projection method can be further improved by
combining with interpolative decomposition (ID) [34, 35]. In this approach,
one does not need to compute R = Q′A. Instead, an ID is implemented on
the small matrix Q, such that Q ≈ XQ(J, :), where X ∈ R

N×k contains a
k × k identity matrix, i.e., X(J, :) = Ik and other entries bounded by two,
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and J is a subset of row index of Q with size k. Hence there obtains a more

efficient way to approximate the data, i.e.

(19) A ≈ QQ′A ≈ XQ(J, :)Q′A ≈ XA(J, :).

Note that in the last approximation of Eq. (19), no matrix-vector multi-

plication is needed. One only needs to extract J entries of A and the ID

is implemented on the small matrix Q. The above description of low rank

approximation is summarized in Algorithm 1.

Algorithm 1 Random Low-rank approximation of distance matrix

Input: Raw data: distance matrix A ∈ R
N×N , parameter k, p 
 N .

Output: Matrices L ∈ R
N×k and R ∈ R

k×N such that A ≈ LR.
1. Random projection with oversampling: ΠCA = AΩ, where Ω ∈ R

N×(k+p)

being the conventional Gaussian matrix or the very fast projector in (18);
2. QR decomposition of ΠCA to obtain the reduced approximation of orthonor-
mal column basis Q ∈ R

N×(k+p) of A;
3. Apply ID to Q to obtain X and J
4. Return L = X and R = A(J, :)

3.2. MBO with low-rank approximation

With such low-rank approximation of data D̃ ≈ LR, the MBO (6) can

be implemented efficiently. For the gradient defined in (14), now we have

approximation

(20) gradf(Y) ≈ 2κ∗(κ(YY′)− LR)Y.

It is obvious that computation of the right hand side of (20) is of complexity

O(k2N). We only need to reformulate the computation of the cost-function:

Generally, for a matrixA ∈ R
M×N , letA(j) ∈ R

M andA(i) ∈ R
N denote

its j-th column and i-th row, respectively. For any matrices A ∈ R
M×N and

BN×p, we have

(21) AB =

N∑
k=1

A(k)B(k)

Then if A ∈ R
M×k, C ∈ R

k×k and B ∈ R
k×N , the trace of ACB can be
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calculated as

Tr(ACB) = Tr

⎛
⎝ k∑

i,j=1

cijA
(i)B(j)

⎞
⎠ =

k∑
i,j=1

cijTr
(
A(i)B(j)

)

=

k∑
i,j=1

cij〈A(i),B′
(j)〉,(22)

where 〈·, ·〉 represents the inner product of two column vectors. In this way,

the cost function can be evaluated as

‖κ(YY′)− LR‖2F = Tr
(
(κ(YY′)− LR)′(κ(YY′)− LR)

)
= Tr

(
κ(YY′)′κ(YY′)

)
− 2Tr

(
R′L′κ(YY′)

)
+ Tr(R′L′LR)(23)

By definition (3) and denote V = Diag(YY′) ∈ R
N×1, the first term in the

traces of Eq. (23) reads

κ(YY′)′κ(YY′) = (Diag(YY′)1′ + 1Diag(YY′)′ − 2YY′)2

= 4Y(Y′Y)Y′ +V(1′V)1′ + 1(V′1)V′ + 2V(1′1)V′

− 4V(YY′)(1′Y)Y′ − 4Y(Y′1)V′,(24)

where we have used the fact Tr(AA′) = Tr(A′A). The second term in Eq.
(23) is

(25) κ(YY′)LR = −2Y(Y′L)R+V(1′L)R+ 1(V′L)R.

Using Eqs. (24)-(25), computations of all traces in Eq. (23) can reduced to
complexity of O(k2N) based on Eq. (22).

3.3. Error analysis

Low-rank approximation of matrix data can significantly improve the com-

putational efficiency, but we need to know how different the resulting 3D
structure from the one using original data. In this section we present some

preliminary error analysis. Define

(26) Y∗ = arg min
[Y]∈M

‖κ(YY′)− D̃‖2F
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and

(27) Ỹ∗ = arg min
[Y]∈M

‖κ(YY′)− LR‖2F

as the recovered 3D structures from the original data and its low-rank ap-
proximation, respectively. Since the solution is invariant to rotation, it is
more reasonable to check the difference between the corresponding EDMs
defined by Y∗ and Ỹ∗. Denote the EDM constructed by Y∗ as E(Y∗) =
κ(Y∗Y′

∗) and E(Ỹ∗) is defined similarly. Then we have the following result:

Theorem 3.1. Assume LR is the low rank approximation of the original
data D̃ by Algorithm 1, Y∗ and Ỹ∗ are the recovered structures via Eqs.
(26)-(27). Then we have the estimate

E

[
‖E(Ỹ∗)− E(Y∗)‖F

]
≤

√√√√ N∑
i=6

σ2
i (D̃) +

√√√√
E

[
k∑

i=6

σ2
i (LR)

]

+ C(N, k, p)

√√√√ N∑
i=k

σ2
i (D̃),(28)

where C(N, k, p) =
(
1 + k

p−1

)1/2 (
1 +

√
k + 4k(N − k)

)
, and E [·] represent

the expectation value.

Proof. First we have

‖E(Ỹ∗)− E(Y∗)‖F ≤ ‖κ(Y∗Y
′
∗)− D̃‖F + ‖κ(Ỹ∗Ỹ

′
∗)− LR‖F

+ ‖D̃− LR‖F(29)

For the first two norms in (29), recall the fact that the rank of κ(Y∗Y′
∗) is

exactly 5 and Y∗ is the minimizer of the MBO, then we have

(30) ‖κ(Y∗Y
′
∗)− D̃‖F =

√√√√ N∑
i=6

σ2
i (D̃),

according to the Eckart-Young theorem [20], where σ2
i (D̃) is the singular

value of D̃. By the same argument,

(31) ‖κ(Ỹ∗Ỹ
′
∗)− LR‖F =

√√√√ k∑
i=6

σ2
i (LR).
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Estimations in (30)-(31) purely depend on the inherent qualities of the data.
The last term in (29) is about the low-rank approximation error. According
to Theorem 10.5 in [25], if the fundamental random projection is applied
with the conventional choice of Gaussian matrix, one has

(32) E

[
‖D̃−QQ′D̃‖F

]
≤

(
1 +

k

p− 1

)1/2

√√√√ N∑
i=k

σ2
i (D̃),

Further, if the ID algorithm is used, the efficiency of the matrix compressing
is enhanced while the error bound in (32) will be enlarged by a factor.
By an argument similar to Lemma 5.1 in [25] and notice that we use the
Frobenius norm here, this factor is 1+

√
k + 4k(N − k). Combining this fact

and estimates (30)-(31), we obtain (28) and finish the proof.

Remark 1. Future work needs to be done to improve the result of The-
orem 3.1, such that the second term in (28) is also bounded by data D̃.
However, the third term in (28) is the dominant one and it heavily depends
on σi(D̃), i ≥ k if D̃ involves noises. In practice, the second term is negligible
when k is taken small.

Remark 2. Although a sharp result on ‖Ỹ∗ − Y∗‖F is not provided, Eq.
(28) indicates that the accuracy of the fast algorithm depends on the quality
of the distance matrix data D̃, i.e., how “close” it is to a perfect EDM. In
the extreme case that D̃ is indeed an EDM, then rank(D̃) = 5 and the fast
algorithm will obtain the same structure as the original MBO does.

Remark 3. Generally, we want to prepare matrix data D̃ such that its
numerical rank as low as possible, in order to reduce the magnitude of the
third term on the right-hand side of Eq. (28). Actually, this should also be the
principle for the original MBO method, since D̃ is assumed as an imperfect
EDM and a structure is to be determined to match it as much as possible.

3.4. Escaping saddle points

It is well-known that one loses the convexity of the optimization problem
when switching to the MBO defined by Eq. (6) from the original matrix
completion formulation (1). For non-convex cases, the first-order stationary
points (points that make gradient zero) could be global minima, local min-
ima, saddle points or even local maxima. Obtaining the global minimum
could be very difficult. However, as studied in [24], all local minima in (6)
are actually global minima. Nevertheless, the gradient descent method is not
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able to distinguish saddle points from local minima, so even we have achieved
barely changed gradient, we may get stuck at saddling points, asymptotically
or for a sufficiently long time. Consequently, the algorithm is not efficient
if no special treatment is applied. In [38], a dimension-by-dimension updat-
ing method was used to escape from the saddle point. But this algorithm
requires computing eigenvalues of large gradient matrix of (1), so it is expen-
sive when the problem size is large. Here we follow the method developed in
[27], and propose to use the randomly perturbed gradient descent method.
Before the algorithm is presented in Algorithm 2, the following definitions
are introduced as in [27].

Definition 1. A differentiable function f(·) is l-smooth if

(33) ‖gradf(Y1)− gradf(Y2)‖ ≤ �‖Y1 −Y2‖

for some l > 0.

Definition 2. A differentiable function f(·) is ρ-Hessian Lipschitz if

(34) ‖Hessf(Y1)−Hessf(Y2)‖ ≤ ρ‖Y1 −Y2‖

for some ρ > 0.

Definition 3. For a ρ-Hessian Lipschitz function f(·), one says Y∗ is a
ε-second-order stationary point if for some small ε > 0

(35) ‖gradf(Y∗)‖ ≤ ε, and λmin (Hessf(Y∗)) ≤ −√
ρε,

where λmin(·) is the smallest eigenvalue of the matrix.

According to [27], problem (6) is �-smooth and ρ-Hessian Lipschitz, thus
we propose to take the following Algorithm 2. The idea is that if the gradient
of the cost function remains small (as ‖gradf(Yi)‖ ≤ c1ε) for a long time
tthres, then a small perturbation ξi is applied, which is uniformly sampled
from a N -dimensional ball B0(c2ε) with radius c2ε. Meanwhile, the solution
before perturbation are recorded as Ytpert

, as well as the moment of pertur-
bation tpert. The iteration continues until the cost function can not be signifi-

cantly reduced comparing to the latest Ytpert
, i.e., f(Yi) > f(Ytpert

)−c3
√
ε3.

This algorithm is intuitive and easy to implemented, while its analysis is not
trivial. The rigorous convergence analysis and explanation of parameters can
be found in [27]. The major conclusion about the total iteration steps of the
algorithm is included in Theorem 3.2.
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Algorithm 2 Randomly perturbed Gradient Descent
Input: Initial guess Y0, error tolerance ε, parameters c1, c2, c3, tthres, initial per-

turbation time tpert = −tthres − 1.
Output: ε-second-order stationary point Y∗

1: for i = 0, 1,... do
2: Calculate gradient gradf(Yi) = 2κ∗(κ(YiY

′
i)− LR)Yi;

3: if ‖gradf(Yi)‖ ≤ c1ε and i− tpert > tthres then
4: Update perturbation time tpert ← i;

5: Record solution before perturbation Ỹtpert ← Ytpert ;

6: Perturb the solution Yi ← Ỹtpert + ξi, where ξi uniformly ∼ B0(c2ε)
7: end if
8: if i = tpert + tthres and f(Yi) > f(Ytpert)− c3

√
ε3 then

9: Return Y∗ = Ytpert ;
10: Break
11: end if
12: Perform line search to get step size ηi
13: Compute Yi+1 = Yi − 2ηiκ

∗(κ(YiY
′
i)− LR)Yi

14: end for

Theorem 3.2 ([27]). Assume the cost function is �-smooth and ρ-Hessian
Lipschitz. Then for any constant δ > 0, ε ≤ �2/ρ, Δf ≥ f(Y0)− f(Y∗), the
randomly perturbed gradient descent method will output an ε-second order
stationary point, with probability 1 − δ, and terminate in the step number
Niter for which

(36) Niter = O

(
�(f(Y0)− f(Y∗))

ε2
log4

(
N�Δf

ε2δ

))

Theorem 3.2 indicates that with the corresponding parameters, one can
escape saddle points and arrive the ε-second order stationary points in
O(log4N) steps with high probability.

4. Numerical results

4.1. Data preparation

The efficiency and accuracy of the proposed fast MBO algorithms (FMBO)
are demonstrated by a synthetic 3D helix data and a simulated chromosome
structure of the yeast genome. The helix structure is calculated by

(37) x(t) = 4 cos(3t); y(t) = 4 sin 3t; z(t) = 2t; 0 ≤ t ≤ 2π,
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while the latter is taken from [19]. The structures and their corresponding
EDMs are shown in Fig. 1. It is easy to control the number of degree of
freedom in the synthetic data for efficiency validation, while the chromo-
some structure is used to verify that our algorithm can handle complicated
data.

Figure 1: 3D structures of simulations and the corresponding distance ma-
trix data: (a)-(b) for a simple helix; (c)-(d) for a simulated chromosomal
structure [19].

In order to simulate realistic situations, different levels of noises are
artificially added in the EDMs in Fig. 1(b) and (d). To do this, we first
generate an ideal EDM D by Eq. (3) with the synthetic helix or the known
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simulated chromosome structure. Then different levels of random noises are
added to D in order to generate the actual distance matrix data D̃. The
“polluted” data is generated as D̃ij = (1+cεij)Dij , where 0 < c < 1 is called
the noise level and εij is a uniformly distributed random number in [0, 1].
We investigate the solution quality of the FMBO from two perspectives, the
relative errors and Pearson’s correlations between the numerical solution
Y∗ to the true structures Y. Because of the earlier mentioned invariance of
rotation, the relative error is defined as

(38) Err =
‖Y∗Y

′
∗ −YY′‖F

‖YY′‖F
,

and the Pearson’s correlations has its classical definition on Y∗Y
′
∗.

The numerical rank k is a major parameter in Algorithm 1. So we first
present how the low-rank approximations depend on the choices of k. For the
data from simulated chromosome structures, mean relative errors defined in
(38) are displayed in Table 1, with c = 0.05, c = 0.25, c = 0.5, and various
values of numerical ranks. It can be concluded that the approximation errors
do not heavily depend on k, but rather on the noise level, i.e. how close
the data is close to a rank 5 EDM. These results verify the error bound

in Theorem 3.1: approximation error majorly depends on
√∑N

i=k σ
2
i (D̃),

which is larger if more noises are involved. On the other side, the coefficient
C(N, k, p) increases as k when k < N/2. Similar observations are obtained
for the helix structure. Based on theses considerations, the parameters we
take for the FMBO are k = 5, p = 15, c1 = 5, c2 = 10, c3 = 5, ε = 1× 10−4,
tthres = 200 throughout the rest of simulations.

Table 1: Relative errors of low-rank approximation against k and noise
level c

Noise level c=0.05 c=0.25 c=0.5
k = 5 2.2% 6.2% 16.4%
k = 10 3.0% 6.7% 17.7%
k = 20 3.1% 8.2% 18.6%
k = 40 3.3% 9.1% 22.3%

4.2. Algorithm efficiency

Figure 2 displays the CPU time for the original MBO and the FMBO against
the number of degree of freedom N . For better qualitative illustration, these
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relations are plotted in a log-log form. The red and green lines represent
complexity relations for the original MBO and the FMBO, respectively.
Theoretically, in each single step during iteration, the complexity is O(N2)
for the MBO while O(N) for the FMBO, but the iteration process makes the
overall complexity higher. As illustrated in Theorem 3.2, the total iteration
steps is O(log4N). For simplicity we estimate overall CPU time in terms
of O(Nα), and investigate the number α by checking the slopes of lines
that fit the log-log relation of the two groups of data against N . For the
original MBO, the slope of the line fitting red dots is α = 2.5, while the
line fitting the green dots is estimated as α = 1.5 for the FMBO. The
two methods have the similar number (O(N0.5)) of overall iteration steps,
but the FMBO algorithm exhibits great efficiency (O(N)) over its original
counter part (O(N2)) in each step. The linear relation O(N) is represented
in a dashed black line of slope one for comparison. These results are for the
synthetic helix data, where it is easy to control the number N .

Figure 2: CPU time of algorithms (original optimization and fast optimiza-
tion) agains number of loci N . The relation is rescaled as log-log and the
linear relation O(N) is plotted as dashed line for reference.

Figure 3 records the performance of gradient descent iteration of the
MBO (top) and FMBO (bottom), respectively. Fig. 3(a) and (c) show the
relative cost function f([Y])/‖D̃‖2F , and Fig. 3(b) and (d) represent the
norm of the corresponding gradient during the iteration. With the same set
of parameters, the original MBO and FMBO use similar number of steps
to achieve the approximated minimizer. Further, it clearly shows that the
random perturbation is necessary for these algorithms to escape from saddle
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points: in both cases, norms of gradient drop significantly within several
iterations, and cost functions rapidly achieve equilibrium in the first 200
steps while remain fairly large. Random perturbations happen at the 241st

step in MBO and at the 205th step in the FMBO, successfully helping the
algorithm jump out of the equilibrium and obtain the actual minimum.
These results of algorithm performances are for simulated chromosome data.

Figure 3: Relative value and gradients of cost functions during iteration
processes. (a) Relative cost functions in the MBO; (b) Norm of gradient in
the MBO; (c) Relative cost functions in the FMBO; (d) Norm of gradient
in the FMBO.
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4.3. Algorithm accuracy

Next we investigate the algorithm accuracy. According to analysis (28), both
MBO and FMBO would perfectly recover the corresponding 3D structure
(only subject to iteration error of optimization) in the ideal situation that
the distance matrix data D̃ were exactly an EDM. While in practice, the
data D̃ derived from experiment data is far from perfect, and it is subject
to unknown noise and missing information. We want to examine (i) whether
the efficient FMBO can actually recover the 3D structure accurately if the
distance matrix data is noise free and (ii) the robustness of the FMBO at
different levels of random noises.

Figure 4: Solution accuracy against noise levels in distance matrix data.
(a) For the simple helix data (b) For the simulated chromosomal data.

Figure 4 displays the solution quality against the noise level of data for
the simple helix data (a) and the simulated chromosomal data (b). In both
figures, red curves are Pearson correlation coefficients while the green ones
are relative errors. The results for FMBO are in solid curves while dashed
curves are for MBO. We conclude that both the original MBO and FMBO
can recover the true structures if there is no noise in the distance matrix
data, while the FMBO compromises solution quality comparing to the MBO
as noise levels are increased, especially in the more complicated chromosomal
structure.

Solutions from the synthetic helix data are visualized in Figure 5, with
the distance matrix data being polluted by 5% (left), 25% (middle), and 50%
(right) levels of noises. The first and second rows display the corresponding
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Figure 5: Numerical results for a synthetic helix structure recovered from
distance matrices with 5% (left), 25% (middle) and 50% (right) of noises.
First row: MBO results; Second row: RMBO results.

Figure 6: Numerical results of FMBO for a simulated chromosome structure
recovered from distance matrices with 5% (left), 25% (middle) and 50%
(right) of noise.

recovered helix structures from the MBO and FMBO, respectively. It can

be observed that FMBO can successfully and efficiently recover the major

characteristics of the structure, while the results are noisier than those gen-

erated by the original MBO. This phenomena can be understood by checking

estimate (28): the solution accuracy or error bound mainly depends on the

residual of the singular values of the distance matrix data D̃ after truncation

at k terms. The added noises are full-rank random matrices, so they make

the overall distance matrices have slow decaying singular values. As results,

high level noises lower solution accuracy or introduce larger magnitude of

error bound in Eq. (28). Figure 6 shows the similar results for the simulated

chromosome structures, which are recovered from distance matrices with 5%

(left), 25% (middle) and 50% (right) of noise. Notice that when the noise
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level is high enough, the FMBO will totally miss the topological property of
the original structure. These observations indicate that FMBO can greatly
enhance algorithm efficiency, but it has more strict requirement for the qual-
ity (being close to an EDM) of the distance matrix data. Actually, for most
existing structure-recovering algorithms, how to prepare the good distance
matrix data from the original Hi-C contact map data is itself an important
research topic.

In many cases, the experimental data of Hi-C contact map may be in-
complete, while another advantage of the random projection method is that
one only needs a small portion of original data if the random matrix is chosen
as Eq. (18). For the simulated chromosomal structure case, we test the cor-
relation of recovered 3D structure with different levels of missing data and
the results are shown in Fig. 7. In these simulations, the noise level added to
the EDM is 15%. For each level of data missing, the FMBO is implemented
20 times, then the variation and average of correlations are displayed. It is
shown that from 5% to 50% data missing, the recovered 3D structures do
not present significant differences from the true structure. So we conclude
that the FMBO is robust to data missing in the structure prediction.

Figure 7: Ability of the RMBO to handle incomplete data.

5. Conclusion

Discovering three-dimensional structures of chromosomes is critical to un-
derstand their biological functions. Various models have blossomed over the
past decades for analysis of 3D chromosome structures from Hi-C data.
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Modeling methodologies include deterministic multidimensional scaling, op-
timization, Monte Carlo methods, or deep learning techniques. All models
encounter the challenge of large volume of data at high resolutions. Further-
more, experimental Hi-C data are sparse, noisy, and subject to experimental
uncertainty. The imprecision of the original data essentially limits the inher-
ent solution quality, so it is profligate to pursue highly accurate results by
expensive algorithms. Instead, fast algorithms are indispensable to enable
various models to handle massive data, while balancing desired accuracy
and efficiency.

In this work, we developed a set of randomized algorithms for the mani-
fold-based optimization (MBO) model. The original MBO was verified to be
useful in reconstructing 3D chromosomal structures, but could be extremely
expensive when the total number of the loci N is large. It takes O(N2)
complexity in each step in searching for the optimized structure, and the
total steps needed are not clear due to the non-convexity of the objective
function. Our fast algorithms for the MBO can achieve O(N) complexity in
each step and a total iteration step in the scale of O(log4N) was illustrated.
The linear complexity in each step and polylog complexity in total steps
greatly enhanced the efficiency of the MBO model. To achieve our goal, we
used random projection theory to perform a low-rank approximation of the
target dissimilarity data in the cost function. First, a random test matrix
with small size was multiplied to the original data to approximate its column
space, then interpolative decomposition was implemented to decompose the
original data into a product of two matrices, each of which has a dimension
much smaller than N . With such low-rank approximation of original data,
and the inherent low-rank property of the distance matrix made of the un-
known 3D structure, complexity of computations in calculating gradient of
the cost function, line search, and cost function evaluation become O(N).
Another challenge is effectively escaping saddle points of the non-convex cost
function, we adopted the randomly perturbed gradient descent method to
address this difficulty, with a determined bound of total iteration numbers.

The developed algorithms were validated by two sets of data. One is a
synthetic simple helix structure and the other is a simulated chromosomal
structure from true Hi-C data. Our fast algorithm, termed as FMBO, ex-
hibited greatly improved efficiency over the original MBO, while maintained
satisfactory accuracy. 3D structures of the interested objects were able to be
recovered by the data with different extents of missing entries and noises.
It was also recognized that the FMBO algorithm is less resistant to high
level of noise. In our simulations, the FMBO failed to recover the simulated
chromosomal structure, if the contact frequency data include large noises.
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A possible explanation of this phenomena is that the noises were “blended”

in the useful information when doing the random projection for low-rank

approximation. A thorough investigation of this characteristic and how to

reduce its effects would be the potential future work. Another direction of

future work could be establishing a complete data processing pipeline, such

that the developed fast algorithms can be used on raw biological data.
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