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Abstract. In this paper, we develop an accurate and efficient Nyström volume integral equa-
tion (VIE) method for the Maxwell equations to compute the electromagnetic scattering of three-
dimensional metamaterials in layered media. The VIE for meta-atom scatterers in a layered medium
is derived using dyadic Green’s functions for layered media where Cauchy Principal Values are eval-
uated accurately using a finite-size exclusion volume with the help of some correction integrals of
removable singularities. Several desingularization techniques are also introduced for the VIE, in-
cluding interpolated quadrature formulas with tensor-product quadrature nodes for self-integration
terms of typical meta-atoms, a regularization scheme for closely packed meta-atoms, and adaptive
integration approaches for high gradient components of the dyadic Green’s functions. The resulting
Nyström method demonstrates fast numerical convergence with high accuracy and efficiency with
only a small number of collocation points in calculating the scattered fields and reflection coefficients
of metamaterials of cubic, spherical, and cylindrical shapes.
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cipal Value, layered Green’s function
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1. Introduction. Metamaterials (MMs) are a type of composite materials fab-
ricated using structured or random nanoscale objects (i.e., meta-atoms) in possibly
layered media. Not found in nature, these artificially designed materials can achieve
dramatic optical reflection and absorption properties and thus can be tailored to ma-
nipulate light waves for desired effective properties and functionalities. MMs have
a wide range of applications, ranging from solar cells [4] to superresolution imaging
devices [22, 15], in which the interaction of light with surface plasmons on roughened
metallic surfaces produces surface plasmon polaritons [3, 23] and plays a critical role.
In addition, surface-enhanced Raman scattering [24] is closely related to the excita-
tion of surface plasmons on rough or nanopatterned surfaces by incident light and is a
very useful tool in fingerprinting chemical components of a molecule, single-molecule
detection, DNA detection, biosensing, etc. [16].

In a solar cell’s absorber based on a metasurface, a typical constitutive structure
corresponds roughly to an area of 100 × 100 nm2 unit cell; a macroscopical area of
1 cm2 on a solar cell gives 1010 degrees of freedom. Therefore, efficient computational

∗Submitted to the journal’s Computational Methods in Science and Engineering section December
21, 2016; accepted for publication (in revised form) September 26, 2017; published electronically
February 7, 2018.

http://www.siam.org/journals/sisc/40-1/M110900.html
Funding: This work was supported by the U.S. Army Office of Research (grant W911NF-17-1-

0368) and U.S. National Science Foundation (grant DMS-1802143). The first author’s work was also
supported by UNCC faculty research grant (2015-2017). The second author’s work was supported
by a grant from the Simons Foundation (404499).
†Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte,

NC 28223 (dchen10@uncc.edu).
‡Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA 01854

(MinHyung Cho@uml.edu).
§Corresponding author. Department of Mathematics, Southern Methodist University, Dallas, TX

75275 (cai@smu.edu).

B259

D
ow

nl
oa

de
d 

04
/2

5/
18

 to
 1

52
.1

5.
11

2.
21

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/40-1/M110900.html
mailto:dchen10@uncc.edu
mailto:MinHyung_Cho@uml.edu
mailto:cai@smu.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B260 DUAN CHEN, MIN HYUNG CHO, AND WEI CAI

Fig. 1. Illustration of light reflection on MMs.

algorithms and optimization techniques are indispensable to bridging the macroscopic
length scale of the solar cell absorber and the nanoscale of the underlying feature sizes.
Due to the very-large-scale-integration technologies widely used in the fabrication pro-
cess, MMs are composed of meta-atoms integrated into a layered background medium,
such as in Figure 1. Numerous computational methods for electromagnetic (EM)
scattering in inhomogeneous and layered media have been developed in past decades,
including the finite element method [21] or the finite difference method [10, 29], with
proper choices of perfectly matched layer boundary conditions [25, 27] and boundary
integral equations for periodic scatterers [6, 7, 11]. The integral equation method is
another popular method for computing scattering in layered media and requires the
computation of dyadic Green’s functions in terms of Sommerfeld integrals. Readers
are referred to a recent review [20] and related literature therein.

In this paper, a volume integral equation (VIE) method for the EM scattering of
MMs will be designed for such a layered structure where dielectric interface and radi-
ation conditions at the infinite are accounted for through the layered dyadic Green’s
functions.

Our approach relies on the VIE representation for the solution of the time har-
monic Maxwell equations with a dyadic layered Green’s function GE(r, r′). To find
the solution, the VIE is only discretized over the meta-atoms embedded in the layered
media where the electric field will be found. Meanwhile, the EM field elsewhere can
be available through the volume integral representation. The dyadic Green’s func-
tion GE(r, r′) will ensure that the scattering field, expressed in terms of equivalent
current sources inside the scatterer, satisfies interfacial conditions along horizontal
layer interfaces as well as the Silver–Müller radiation conditions at infinity. The VIE
method is especially suitable for computing EM scattering inside a large number of
small meta-atoms in either a regular or a random distribution in layered materials.

However, numerically solving the VIE faces several difficulties due to the hyper-
singularity of the dyadic Green’s function GE(r, r′), as we are required to calculate
integrals of the form

(1)

∫
Ωi

dr′GE(r, r′)φ(r′),

where φ(r) is a smooth function and Ωi is a meta-atom in the three-dimensional (3-D)
space. Since the Green’s function GE(r, r′) has an O

(
1
R3

)
singularity at r = r′ ∈ Ωi,

solving the VIE requires the use of the Cauchy Principal Value (CPV or simply
p.v.) of (1), which calls for algorithms for their accurate and efficient computa-
tions. Various computational algorithms and analysis have been developed for this
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Lippmann–Schwinger-type equation [1, 26, 31]. Especially, previous work on how to
handle singular integrals for VIE methods include mixed potential formulation [14],
singularity subtraction [18], locally corrected Nyström scheme [19], direct integra-
tion of the singularity [28], etc. Recently, a Nyström method based on interpolated
quadrature weights [9] was developed to solve the VIE for multiple 3-D scatterers in
a homogeneous medium with special interpolated quadrature weights [32]. Accuracy
and efficiency of the VIE solution have been demonstrated for meta-atoms of some
canonical geometries (cubes, spheres, and cylinders) in MMs.

There are still several outstanding issues in applying the algorithms in [9, 32] to
VIE with layered Green’s functions for general configurations of scatterers. First, the
interpolated weights developed in [32] require an analytic expression for the integrand
with (weak, strong, or hyper-) singularities while only numerical values of layered
Green’s functions are available. Second, the interpolated weights developed in [32]
are designed for the case when both the source point r and the field point r′ are
located within the same scatterer. In realistic simulations of MMs, two meta-atoms,
say, Ωi and Ωj , could be very close to each other. In such a case, it remains a big
challenge to evaluate the integral in (1) for r ∈ Ωj since GE(r, r′) may have a large
gradient even though it is a regular bounded function in the domain Ωi. The naive
approach of using large number of Gauss quadrature points to integrate the high
gradient integrand will result in prohibitive computational cost, especially when a
large number of meta-atoms are simulated. Finally, calculation of layered Green’s
function GE(r, r′) requires many Sommerfeld integrals and is also computationally
costly.

We will develop computational techniques in this paper to tackle these difficulties.
First, the layered Green’s function will be decomposed into a singular and a regular
part. The singular part resembles the analytic dyadic Green’s function in the free
space, which can be handled by the interpolated weights developed in [32]. On the
other hand, the regular part will be computed using Sommerfeld integrals numerically,
which has no singularity and thus can be handled with regular quadrature rules.
Second, a regularization scheme, based on volume-to-surface integral conversions, is
proposed to accurately calculate (1) with a small number of quadrature points when
r /∈ Ωi but close to Ωi. Finally, an interpolating tabulation of the layered Green’s
function will be adopted, avoiding computing Sommerfeld integrals on the fly. This
treatment is efficient for the simulation of a large number of meta-atoms.

The rest of the paper is organized as follows. Section 2 presents the VIE for the
Maxwell equations in layered media under incident waves as well as a brief derivation
(details are given in an appendix), formulation of the layered Green’s function, and
some analysis of the CPV of the VIE. Numerical methods are presented in section 3,
consisting of the discretization of the VIE and different computational treatments of
matrix entries. In section 4, accuracy and efficiency of the proposed algorithms are
demonstrated. Finally, the paper ends with a conclusion in section 5.

2. Volume integral equation method.

2.1. VIE for the Maxwell equations in layered media. Consider an Nl-
layered medium, labeled as L1 ∼ LNl as shown in Figure 2, with the top layer as air.
All the dielectric boundaries S1 ∼ SNl−1 are assumed to be parallel in the xy-plane,
and the location of the top dielectric boundary S1 is at z = 0. Permittivity and
permeability for each layer are denoted as εi and µi, respectively. A 3-D scatterer
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Fig. 2. Illustration of a scatterer in a layered medium.

Ω, placed in layer L1 above S1, is characterized by a different dielectric function ε1+
∆ε(r). For any r′ ∈ Ω, the dyadic Green’s function GE(r, r′) is defined by

(2) LGE(r, r′)− ω2εL(r)GE(r, r′) =
1

µ(r)
Iδ(r− r′), r ∈ R3,

where

(3) L = ∇× 1

µ
∇×, εL(r) = εi, r ∈Li,

ω is the frequency, δ(r− r′) is the Dirac delta function, and I is the unit dyad.
From some derivation given in the appendix, we obtain the following volume

integral equation:

C ·E(r) = Esrc(r) + µω2 p.v.

∫
Ω

∆ε(r′)E(r′) ·G∗E(r, r′)dr′

+ µω2

∫
Ω

∆ε(r′)E(r′) ·Greg

E (r, r′)dr′,(4)

where

(5) GE(r, r′) = G
∗
E(r, r′) + G

reg

E (r, r′)

with G
∗
E(r, r′) being the free space Green’s function

(6) G
∗
E(r, r′) =

(
I +

1

k2
∇∇

)
g(r, r′)

and

(7) g(r, r′) =
1

4π

e−ikR

R
, R = |r− r′|.

The other part G
reg

E (r, r′) is nonsingular, and its definition is given in section 2.2.
The coefficient matrix on the left-hand side of (4) is given by C = I + LVδ ·∆ε(r),

and the source term Esrc is

Esrc(r) =

∫
∂Ω

m ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′

+

∫
S1

n1 ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′,(8)
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where Einc is the given incident wave. Finally, the CPV in (4) is defined as

(9) p.v.

∫
Ω

dr′ ∆ε(r′)E(r′) ·G∗E(r′, r) = lim
δ→0

∫
Ω\Vδ

dr′∆ε(r′)E(r′) ·G∗E(r′, r).

We have shown that the limit of the integral on the right-hand side can be com-
puted with a finite δ associated with the help of some correction terms similar to
[9, 14]. As a result, the VIE (4) becomes

C ·E = Esrc(r) + µω2

∫
Ω\Vδ

dr′∆ε(r′)E(r′) ·G∗E(r, r′) + µω2

∫
Ω

dr′∆ε(r′)E(r′) ·Greg
E (r, r′)

+ µω2

∫
Vδ

dr′∆ε(r′)E(r′) ·
(
G
∗
E(r, r′)− 1

k2
∇∇g0

)
+
µω2

k2

∫
Vδ

dr′∇∇g0(r, r′)
[
∆ε(r′)E(r′)−∆ε(r)E(r)

]
,(10)

where

(11) g0(r, r′) =
1

4π|r− r′|
.

Now the VIE (10) holds for any finite δ > 0 as long as Vδ ⊂ Ω, and all the involved
integrals are well-defined provided that ∆ε(r)E(r) is Hölder continuous. The last two
terms in (10) can be understood as correction terms for computing the CPV with a
finite-sized exclusion volume Vδ, and both are weakly singular integrals of removable
singularities by a spherical coordinate transform of order O(δ2)[9].

Furthermore, calculations of the surface integrals on the surfaces S1 and ∂Ω in
(8) can be avoided for special incident waves. Note that the source term Esrc has no
dependence on the function ∆ε(r). Therefore, if the incident wave is a plane wave and
∆ε(r) = 0, the source term Esrc can be found analytically, which remains the same
for general nonzero ∆ε(r). In fact, Esrc is exactly the sum of the incident wave and its
reflection by the layered medium. For example, for a two-layered medium with ε1, ε2
and µ1 = µ2 = 1, with a plane wave incident TE field Einc(r) = ŷEi exp (−iki · r)
with ki = ω(x̂ sin θi + ẑ cos θi) and θi as the incident angle, by Snell’s law the trans-
mission angle θt is determined by

√
ε1 sin θi =

√
ε2 sin θt, and by Fresnel’s formula the

reflective wave is Er(r) = ŷrsEi exp (−ikr · r), where ki = ω(x̂ sin θi − ẑ cos θi) and
rs = − sin (θi − θt)/ sin (θi + θt). Finally, we have for plane incident waves

Esrc(r) =

∫
∂Ω

m ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′

+

∫
S1

n1 ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′

= Einc(r) + Er(r) = ŷEi exp (−iki · r) + ŷrsEi exp (−ikr · r).(12)

2.2. Dyadic Green’s function in multilayered media. The dyadic Green’s
function is an essential component in the VIE for layered media. In [13], the dyadic
Green’s function for a two-layer material was derived, which has been recently ex-
tended to three layers in [12]. Consider a medium of three layers of dielectric materials
with parameters εi, µi, i = 1, 2, 3 and the two horizontal dielectric interface boundaries
denoted as S1 and S2, respectively. For our applications we assume that all of the
scatterers {Ωi} are located within one layer and do not cross any dielectric boundary.
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Fig. 3. Illustration of the layered Green’s function. Interfaces S1 and S2 separate three layers
of materials with dielectric constant εi and permittivity µi (i = 1, 2, 3). The overall layered Green’s
function is made of a primary, or singular, part and a regular part. Solid black lines represent the
primary, or singular, part throughout all three layers. Dashed black lines are the regular part of the
layered Green’s function in the first layer, including the reflected part from S1 and the transmitted
part from the second layer. Red dashed lines are the regular part in the second layer, including the
transmitted part from S1 and the reflected part from S1. Finally, the blue dashed line represents the
regular part in the third layer, which is the transmitted field from the second layer.

Within each scatterer, the primary, or singular, part G
∗
E(r, r′), is the Green’s func-

tion in the free space defined in (6)–(7), and the remaining part is the regular part
G

reg

E (r, r′), which is singularity free at r = r′. Figure 3 illustrates the components
of the dyadic Green’s function in the three layers, where the primary, or singular,
part is represented by the black solid line and the regular, or reflected, part due to
dielectric boundaries is shown as the two dashed black lines. In the second layer,
the Green’s function only contains a regular part, representing the transmitted field
through boundary S1 (dashed red line) and the reflected field from S2 (dot-dashed
red line). In the third layer, the Green’s function only contains a regular part as the
transmitted field through S2 (the dashed blue line). Details of the derivation of lay-
ered Green’s function can be found in [12]. Here, we list the case when the scatterers
are in the first layer or when both source and field points are in the first layer.

In this situation, the regular part of the layered Green’s function is the reflected
fields from the lower two layers, which is given by

(13) G
reg

E (r, r′) = G
R

1 (r, r′) = − 1

8π2ωε0ε1

 G1,xx G1,xy G1,xz

G1,yx G1,yy G1,yz

G1,zx G1,zy G1,zz

 ,

where

GR1xx = −1

2
gR1,5 +

(
1

2
ρ2 − (y − y′)2

)
gR1,6,

GR1yy = −1

2
gR1,5 −

(
1

2
ρ2 − (y − y′)2

)
gR1,6,

GR1zz = gR1,7, GR1xy = GR1yx = (x− x′)(y − y′)gR1,6,
GR1xz = −GR1zx = −i(x− x′)gR1,8,
GR1yz = −GR1zy = −i(y − y′)gR1,8,(14)
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where ρ =
√

(x− x′)2 + (y − y′)2 and all the elements gR1,m,m = 5, 6, 7, 8 are defined
in terms of Hankel integrals as

g̃R1,5 = k1zR̄
TM
12 −

k2
1

k1z
R̄TE12 , g̃R1,6 =

k1zR̄
TM
12

k2
s

+
k2

1

k2
sk1z

R̄TE12 ,

g̃R1,7 =
k2
s

k1z
R̄TM12 , g̃R1,8 = R̄TM12 ,(15)

and

gR1,5 = 2π

∫ ∞
0

ksg̃
R
1,5J0(ksρ)eik1z(z+z′)dks,

gR1,6 = 2π

∫ ∞
0

k3
s g̃
R
1,6

J2(ksρ)

ρ2
eik1z(z+z′)dks,

gR1,7 = 2π

∫ ∞
0

ksg̃
R
1,7J0(ksρ)eik1z(z+z′)dks,

gR1,8 = 2π

∫ ∞
0

k2
s g̃
R
1,8

J1(ksρ)

ρ
eik1z(z+z′)dks,(16)

where k2
s = k2

x + k2
y, klz =

√
k2
l − k2

s , and Jn is the nth-order Bessel function. Defi-

nitions of the generalized reflection coefficients R̄TM,TE
12 and a general formulation of

the layered Green’s function can be found in [12, 13].

3. Numerical methods.

3.1. Discretization of the VIE. The computational domain Ω is assumed
to be comprised of N nonoverlapping meta-atom elements Ωi , i = 1, 2, . . . , N . On
each element Ωi, we assign M tensor-product collocation nodes, for which M scalar
interpolant Lagrange basis functions φij , j = 1, 2, 3, . . . , M are defined. Then we can
write the solution as

(17) E(r) =

N∑
i=1

M∑
j=1

Eijφij(r), r ∈Ωi,

where Eij , 1 ≤ ij ≤MN are the MN unknown vectorial nodal values of the numerical
solution E(r) at the jth node rij in the element Ωi. Inserting (17) into (10), we obtain
the linear equations for Eij ,

C ·Eij = Esrc
ij + ω2µ

N∑
n=1

M∑
m=1

[∫
Ωn\Vδij

dr′∆ε(r′)G
∗
E(rij , r

′)φnm(r′)

]
·Enm

+ ω2µ

N∑
n=1

M∑
m=1

Enm ·
[∫

Ωn

dr′∆ε(r′)G
reg

E (rij , r
′)φnm(r′)

]

+ ω2µ

M∑
m=1

[∫
Vδij

dr′∆ε(r′)

(
G
∗
E(r, r′)− 1

k2
∇∇g0

)
φim(r′)

]
·Eim

+
µω2

k2

M∑
m=1

∫
Vδij

dr′∇2g0(rij , r
′) [∆ε(r′)φim(r′)−∆εijφim(rij)] ·Eim,(18)

or, in a matrix form,

(19)

N∑
n=1

M∑
m=1

(Anm + Bnm) ·Enm +

M∑
m=1

Cim ·Eim +

(
1 +

1

3
∆εij

)
I3×3 ·Eij = Esrc

ij ,
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where

Anm = −ω2µ

∫
Ωn\Vδij

dr′∆ε(r′)G
∗
E(rij , r

′)φnm(r′)(20)

BT
nm = −ω2µ

∫
Ωn

dr′∆ε(r′)G
reg

E (rij , r
′)φnm(r′)(21)

and

Cim = −ω2µ

∫
Vδij

dr′∆ε(r′)g(rij , r
′)φim(r′)

− ω2µ

k2

∫
Vδij

dr′∆ε(r′)∇∇g̃(rij , r
′)φim(r′)

− ω2µ

k2

∫
Vδij

dr′∇2g0(rij , r
′) [∆ε(r′)φim(r′)−∆εijφim(rij)] .(22)

Note that transpose of matrix Bnm is necessary since the dyadic G
reg

E is not symmet-
ric.

3.2. Computation of matrix entries. Calculating integrals in (20)–(22) for
the matrix filling process is one of the most time-consuming tasks in solving the VIE.
There are O(N2M2) operations of calculating integrals (20)–(21), and the evaluation
of correction terms (22) involves O(NM2) operations as the corrections take place
locally. We denote the total numbers of quadrature nodes to evaluate integrals (20),
(21), and (22) as MA, MB , and Mc, respectively.

Because the total number of meta-atom scatterers is large most of time, it is
beneficial to use small number M for MA, MB , and MC in each scatterer while
maintaining satisfactory accuracy.

3.2.1. An efficient Nyström method with interpolated weights. When
the source point rij is located in a scatterer Ωn, a direct evaluation of (20) requires
a very large number MA (∼ 106) in order to obtain an accurate result for Anm

since the function G
∗
E(rij , r

′) is hypersingular at r′ = rij [32]. This direct brute-force
method will make computation prohibitively expensive even for a small number of
collocation points. To overcome this difficulty, an efficient Nyström-type method was
developed in [9] by choosing φnm as basis functions with Kronecker delta property,
and a set of quadrature points coincide with the collocation points; i.e., MA = M
are used. Consequently, calculation of (20) becomes a pointwise evaluation of the

function ∆ε(r′)G
∗
E(rij , r

′), i.e.,

Anm =

∫
Ωn\Vδij

dr′∆ε(r′)G
∗
E(rij , r

′)φnm(r′)

≈
M∑

n′m′=1

w̃ijn′m′∆ε(rn′m′)G
∗
E(rij , rn′m′)φnm(rn′m′)

= w̃ijnm∆ε(rnm)G
∗
E(rij , rnm),(23)

so the total operation is reduced to O(NM). Furthermore, a set of specially designed
interpolate quadrature weights w̃ijnm in [32] can be used to handle the hypersingularity
when the source point rij is in the scatterer Ωi. In this approach, high accuracy of the
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solution is maintained while the computational efficiency is greatly improved. This
algorithm is summarized as follows [9]:

Anm = Aim =
1

4π
Ji

M∑
j=1

∆εim

[(
f0
mω

r,i
j,m + f1

mω
i
j,m + f2

mω̄
i
j,m + f3

mω̃
i
j,m

)
I3×3

+f0
mΛr,ij,m + f1

mΛij,m + f2
mΛ̄ij,m + f3

mΛ̃ij,m

]
,(24)

where

f0
m = −i sin (kRm)

Rm
, f1

m = cos (kRm)− sin (kRm)

kRm
,

f2
m = −icos (kRm)

k
+ i

sin (kRm)

k2Rm
, f3

m = −cos (kRm)

k2
,(25)

Rm = |rij − rim|, and Ji is the Jacobian from the reference domain to the physical
domain Ωi. Details of the formulations (24) and (25), as well as the interpolated
weights ωr,ij,m, ωij,m, ω̄ij,m, ω̃ij,m, Λr,ij,m, Λij,m,Λ̄ij,m,and Λ̃ij,m, can be found in [9, 32].

When i 6= n, i.e., the source point rij is not in the element Ωn, (20) becomes

(26) Anm =

∫
Ωn

dr′∆ε(r′)G
∗
E(rij , r

′)φnm(r′),

where the function G
∗
E(rij , r

′) is not singular in Ωn, and hence no CPV treatment is
needed. Generally, the MA(= M) Gaussian points rnm in Ωn with the corresponding
weights ωnm can be used. Then we have

Anm =

∫
Ωn

dr′∆ε(r′)G
∗
E(rij , r

′)φnm(r′)

≈
M∑

n′m′=1

ωn′m′∆ε(rn′m′)G
∗
E(rij , rn′m′)φnm(rn′m′)

= ωnm∆ε(rnm)G
∗
E(rij , rnm),(27)

where ωnm are the regular Gaussian quadrature weights.

3.2.2. A regularization scheme for close neighboring scatterers. When
Ωi is a close neighbor to Ωn, the function G

∗
E(rij , r

′) is not singular in Ωn if rij ∈ Ωi,
but it will have large derivatives. Thus, calculation of the matrix Anm by (27) may
lead to a low accuracy. One way to address this issue is to oversample with more
Gaussian points to improve the accuracy at the expense of causing a large increase
in computational time. Here, we propose a regularization scheme for spherical and
cubic scatterers to keep the simple form of (27) while maintaining high accuracy.

For illustration, we consider the integral∫
Ω

dr′G
∗
E(r, r′)φ(r′) =

∫
Ω

dr′
{

Ig(r, r′) +
1

k2
∇2 [g(r, r′)− g0(r, r′)]

}
φ(r′)

+

∫
Ω

dr′∇2g0[φ(r′)− φ(r∗)] + φ(r∗)

∫
Ω

dr′∇2g0,(28)

where r∗ ∈ Ω is a point chosen to be close to the source point r.
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The integrand of the integral on the left-hand side of (28) is of O(1/R3) around
the point r. However, on the right-hand side, the first and second integrands are of
O(1/R) and O(1/R2), respectively, provided that r∗ is close to r. Thus, it is easier to
obtain accurate results for these two integrals. Analytical evaluation can be carried
out for the last integral in (28) for canonical geometries of meta-atoms, such as cubes
and spheres. Therefore, decomposition of the integrals as in (28) will give better
accuracy than directly computing the left-hand side.

Using the Gauss–Green theorem, we have

(29)

∫
Ω

dr′∇2g0 =

∫
∂Ω

ds∇g0 ⊗ ~n =

∫
∂Ω

ds
r− r′

4πR3
⊗ ~n.

For cubic scatterers: When the scatterer Ω is a cube [x0, x1] × [y0, y1] × [z0, z1],
the last integral in (29) becomes

(30)

∫
∂Ω

ds∇g0 ⊗ ~n =


∫
∂Ω

x−x′
R3 dy′dz′,

∫
∂Ω

x−x′
R3 dx′dz′,

∫
∂Ω

x−x′
R3 dx′dy′∫

∂Ω
y−y′
R3 dy′dz′,

∫
∂Ω

y−y′
R3 dx′dz′,

∫
∂Ω

y−y′
R3 dx′dy′∫

∂Ω
z−z′
R3 dy

′dz′,
∫
∂Ω

z−z′
R3 dx

′dz′,
∫
∂Ω

z−z′
R3 dx

′dy′

 .

Denote (u, v, w) as an arbitrary permutation of the coordinates of point (x, y, z); then
the nine integrals in (30) can be represented as two types of integrals as

∫
∂Ω

u− u′

R3
dv′dw′ =

∫ w1

w0

∫ v1

v0

u− u′

R3

∣∣∣∣
u′=u1

dv′dw′ −
∫ w1

w0

∫ v1

v0

u− u′

R3

∣∣∣∣
u′=u0

dv′dw′

(31)

and

∫
∂Ω

u− u′

R3
du′dv′ =

∫ v1

v0

∫ u1

u0

u− u′

R3

∣∣∣∣
w′=w1

du′dv′ −
∫ v1

v0

∫ u1

u0

u− u′

R3

∣∣∣∣
w′=w0

du′dv′.

(32)

Using Mathematica, it is easy to obtain

(33)

∫ ∫
u− u′

R3
dw′dv′ = Im

(
ln

[
−4(w − w′ +R)(u− u′)

u− u′ − i(v − v′)
− 4(u− u′)2

w − w′

])
and

(34)

∫ ∫
u− u′

R3
du′dv′ = − ln (R+ v − v′).

Thus, integral (29) can be evaluated exactly by (30)–(34).
For spherical scatterers: When Ω is a ball of radius a, due to the rotational sym-

metry, we can assume r = (0, 0, ρ) for convenience and use spherical coordinate
r′ = a(sin θ cosφ, sin θ sinφ, cos θ). Note

(35) R =

√
a2 sin2 θ + (a cos θ − ρ)2 =

√
a2 + ρ2 − 2aρ cos θ

and ~n = (sin θ cosφ, sin θ sinφ, cos θ); then (29) turns into

(36)

∫
∂Ω

ds∇g0 ⊗ ~n =

∫ 2π

0

∫ π

0

A3×3dθdφ,
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where

(37) A3×3 =


a3 sin3 θ cos2 φ

R3 , a3 sin3 θ cosφ sinφ
R3 , a3 sin2 θ cos θ cosφ

R3

a3 sin3 θ cosφ sinφ
R3 , a3 sin3 θ sin2 φ

R3 , a3 sin2 θ cos θ sinφ
R3

a2 sin2 θ cosφ(a cos θ−ρ)
R3 , a2 sin2 θ sinφ(a cos θ−ρ)

R3 , a2 sin θ cos θ(a cos θ−ρ)
R3

 .

It is easy to check from (37) that the matrix in (36) is diagonal, so we only need to
handle two types of integrals appearing in the diagonal position of (37):

(38)

∫ π

0

a3 sin3 θ

R3
dθ and

∫ π

0

a2 sin θ cos θ(a cos θ − ρ)

R3
dθ.

These integrals can be evaluated as, if λ = ρ/a,∫ π

0

a3 sin3 θ

R3
dθ =

∫ π

0

1− cos2 θ

(λ2 − 2λ cos θ + 1)3/2
d(cos θ) =

∫ −1

1

1− x2

(λ2 − 2λx+ 1)3/2
dx

=
λ2(x2 − 1) + 2(λ3 + λ)x− 2λ4 − 2

3λ3
√
λ2 + 1− 2λx

∣∣∣∣−1

1

(39)

and ∫ π

0

a2 sin θ cos θ(a cos θ − ρ)

R3
dθ =

∫ π

0

cos2 θ − λ cos θ

(λ2 − 2λ cos θ + 1)3/2
d(cos θ)

=

∫ −1

1

x2 − λx
(λ2 − 2λx+ 1)3/2

dx

= −λ
2(x2 − 1) + (2λ− λ3)x+ λ4 − 2

3λ3
√
λ2 + 1− 2λx

∣∣∣∣−1

1

.(40)

Based on (39)–(40), intergal (29) can be exactly computed from (36)–(37).
For other geometries, such as cylinders studied in [9], it may be difficult to find

the analytic formula for the right-hand side of (29). For those cases, we have to use
MA > M for close neighbors in order to obtain desired accuracy.

3.2.3. Computation of coefficients Bnm and Cim. Since the regular part
G

reg

E (rij , r
′) is singularity free, (21) can be carried out in a similar way as (27), namely,

Bnm =

∫
Ωn

dr′∆ε(r′)G
reg

E (rij , r
′)φnm(r′)

≈
MB∑

n′m′=1

ωn′m′∆ε(rn′m′)G
reg

E (rij , rn′m′)φnm(rn′m′).(41)

Generally, when the source point rij is fairly far away from the planar dielectric
interfaces, we can take MB = M ; then the evaluation of (41) becomes a pointwise
calculation ωnm∆ε(rnm)G

reg

E (rij , rnm). Unfortunately, when rij is very close to a
planar interface, using MB = M will yield low accuracy. Moreover, no regularization
scheme is available. In this case, we just take MB > M adaptively to ensure a
satisfactory accuracy.

Another challenge in (41) is that of computing the regular part of layered Green’s
function G

reg

E (r, r′) numerically through the Sommerfeld integral for each pair of
(r, r′). It is not practical to perform these computations on the fly, which requires
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O(N2M2MB) Sommerfeld integrals. To tackle this issue, tables of values of integrals
(16) are precalculated and stored for a fixed grid, and interpolations of the values on
the grid are used for other collocation points in the VIE solution.

Finally, computing Cim in (22) is straightforward since the integrands have at
most O( 1

|r−r′|2 ) singularity. Thus, a spherical coordinate transform can eliminate the

singularity, and the number Mc does not need to be large.

4. Numerical results. We will present three sets of numerical tests on the pro-
posed VIE. First, the efficiency and accuracy of the interpolation scheme for the lay-
ered dyadic Green’s function are examined. Second, we test the numerical convergence
of the VIE solutions for a single scatterer in layer media. Finally, we demonstrate the
capability of the proposed method to calculate the reflection property of several MMs
made of cubic, spherical, and cylindrical meta-atoms in layered media.

4.1. Accuracy and efficiency of interpolating layered Green’s function.
Fast matrix filling is much needed since it contributes major CPU time in the VIE
method. When calculating the coefficient in (20), as the Green’s function in free space

G
∗
E(rij , r

′) has an analytic formula and related interpolated weights are precalculated,
the time spent in calculating (24)–(27) is not a big concern, and details for this step
can be found in [9]. In contrast, calculating (21), involving the regular part of the
layered Green’s function G

reg

E (rij , r
′), requires expensive numerical computation of

the Sommerfeld integral for each pair of source and field points. As mentioned above,
the regular part will be precalculated and stored for a fixed set of grid points, and
interpolated values can be then used for arbitrary points later.

According to (14), only the integrals gR1,m defined by (16) need to be interpolated
in terms of the variables z + z′ and ρ, respectively. Figure 4 shows the graphs of the
integrals gR1,5, gR1,6, and gR1,7 in the domain (0, 3λ] × [0, 6λ] along z and ρ directions,
respectively, where λ = 2π/ω. These integrals take large values as z + z′ → 0 and
ρ = 0 and decay rapidly otherwise.

To test the accuracy of the interpolations, we take λ = 1 and place a unit dipole α
oriented in the direction (sin π

18 cos π
18 , sin

π
18 sin π

18 , cos π
18 ) at (x′, y′, z′) = (0, 0, 0.01),

and the resulting field E = α · GE is calculated with the original and the interpo-
lated regular part. The pointwise relative errors of the electric field E calculated by
the two methods at z′ = 0.01 and interpolation resolution (∆ρ,∆z) = (0.2, 0.05),
(0.1, 0.025), (0.05, 0.0125) decrease from 4.0× 10−2 to 4.6× 10−3 and to 6.2× 10−4.

Matrix filling CPU time (in seconds) for the VIE is compared between on-the-fly
and interpolation computation of layered Green’s function in Table 1. For this case, a
single cube (N = 1) and 27 collocation points (M = 27) are used. When calculating
integral (41), the number of quadrature points MB = 3, 4, 5, 7, and 16 are used to
show the improvement in CPU time.

From the table we can see that direct calculation of the layered Green’s function on
the fly is computationally very expensive: Even with parallelization, it takes minutes
for MB = 3, 4, 5, 6, 7 and hours for MB = 16. In later numerical results, we will see
that the solution of VIE would not converge until MB = 16. Therefore, it is necessary
in practice to use interpolated layered Green’s function in order to obtain accurate
solutions within a reasonable time.

4.2. Validation of VIE method in layered media.
• Accuracy of dyadic Green’s functions in layered media

In order to validate the formula for the layered Green’s functions, we exam its lim-
iting behavior when it approaches the Green’s function in free space, i.e., ε2 = ε3→ ε1.

D
ow

nl
oa

de
d 

04
/2

5/
18

 to
 1

52
.1

5.
11

2.
21

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCURATE NYSTRÖM VIE METHODS FOR METAMATERIALS B271

Fig. 4. Behaviors of the Hankel integrals used in the layered Green’s function. From top to
bottom are for the integrals gR1,5, gR1,6, and gR1,7. The left panel is the real part, and the right panel
is the imaginary part.

Table 1
Comparison of matrix filling time (seconds) in solving VIE with the original and interpolated

layered Green’s function.

MB 3 4 5 6 7 16
Original 52 127 247 417 677 7606

Interpolated 0.0123 0.018 0.03 0.045 0.0608 0.86

A unit dipole α is located at r′ = (0, 0, 0.01) and oriented in the direction (sin π
18 cos π6 ,

sin π
18 sin π

6 , cos π
18 ); the electric field E(r) = α·GE(r, r′) with the choices of ε1 = 1, ε2 =

ε3 = 1.1, 1.01, 1.001, and 1.0001 will be compared with the field E′(r) = α ·G∗E(r, r′),

where G
∗
E is the free space Green’s function with ε0 = 1. Figure 5 shows the limiting

behavior of the difference |E−E′| in Ex, Ey, and Ez at (x, 0, 0.01) in (a)–(c), respec-
tively. In these results, we take λ = 1, and the x-coordinate of r varies from −6 to 6,
while y and z are fixed at y = 0 and z = 0.01, respectively. It can be concluded that as
ε2 and ε3 tends to ε1, the electric field tends to that generated by the free space Green’s
function. The imaginary part of the electric field has a similar limiting behavior.
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Fig. 5. Limiting behavior of the layered Green’s function. Electric field generated by a unit
dipole located at (0, 0, 0.01) and oriented in the direction (sin π

18
cos π

6
, sin π

18
sin π

6
, cos π

18
). Differ-

ences between the electric fields with the layered Green’s function and with the free space Green’s
function are plotted. (a) Ex; (b) Ey; (c) Ez.

Table 2
Error of regular part of layered Green’s function in the Maxwell equation.

Component h = 0.8 h = 0.4 h = 0.2 h = 0.1(
G

err
E

)
xx

4.92E-3 1.60E-4 2.95E-5 1.20E-5(
G

err
E

)
yy

4.95E-3 1.63E-4 2.91E-5 1.19E-5(
G

err
E

)
zz

4.93E-3 1.66E-4 2.98E-5 1.10E-5

Another way to validate the results of the Green’s functions is to check whether the
nonsingular part of the layered Green’s function satisfies the homogeneous Maxwell
equation. The error matrix

(42) G
err

E = LG
reg

E (r, r′)− ω2εL(r)G
reg

E (r, r′)

is calculated, and the modulus of diagonal entries is listed in Table 2. In the com-
putation, standard finite difference with discretization step lengths h = 0.8, 0.4, 0.2,
and 0.1 are used to approximate the differential operator. The source and field points
are taken as r = r′ = (0, 0, 1). Dielectric constants are taken as ε1 = 1 and ε2 = 4,
and the wavenumber is k = 1. The errors decrease in the same order of the central
difference scheme, validating the accuracy of the computed Green’s functions.

The accuracy can also the checked by examining the continuity of layered Green’s
function at interfaces, as done in [12].

• Validation of VIE method for scattering of a sphere over the half-space
Next, we solve the VIE with ε2 = ε3 → ε1 in a unit sphere placed on top

of a layered medium and compare the solution E(r) to the analytic Mie solution
EMie(r) [9] in the free space. In this test, we set the parameters ω = 1, ε1 = 1, and
ε2 = ε3 = 10, 1.01, and 1.0001. The differences |E(r)−EMie(r)| are shown pointwisely
for coordinates (r, θ, φ) of the collocation points in Figure 6. As the layered Greens’
function tends to the free space Green’s function, the electric field tends to the Mie
solution.

The total electric field, both inside and outside of a ball of radius 0.5 on top of
a dielectric boundary, is given in Figure 7. In this case, we take the incident wave

Einc = iye
i(
√

2x−
√

2z) and ε1 = 1, ε2 = ε3 = 4, wavelength λ = 3. The real part of the
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Fig. 6. Asymptotic behavior of electric field in a unit sphere. Differences between the VIE
solutions with the layered Green’s function and with the free space Green’s function are plotted. (a)
Ex; (b) Ey; (c) Ez.
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Fig. 7. Electric field components Ex (a), Ey (b), and Ez (c) in a ball of radius 0.5 on top of
a dielectric boundary.

electric field at y = 0 for the domain (x, z) = [−1.5, 1.5]× [−0.5, 2] is plotted in a 2-D
contour. The dielectric boundary is marked as the blue line at z = 0.

• Validation of VIE method for scattering of a cube on the half-space
Next, we check the accuracy of the quadrature rule when the scatterer is near the

dielectric boundary. The VIE method is used to compute the scattering of a cube of
size 2 on top of a dielectric medium with ε1 = 1 and ε2 = ε3 = 10. The accuracy of
its solution is measured by the L2 relative error:

(43) Error =
‖Ep −Eref‖L2(Ω)

‖Eref‖L2(Ω)
,

where Ep is the numerical solution of the VIE with p collocation points in each coor-
dinate direction and Eref is a reference solution. The L2 norm integral is discretized
with the quadrature formula used in the VIE. In the tests, we take incident wave
Einc = ixe

i(2y+2z) and use E7 with MA = 73 and MB = 163 as the reference solution.
Figure 8 displays convergence of electric field Ep computed with collocation point

per coordinate direction p = 3, 4, 5, 6. First we take MA = MB = M = p3, and the
convergence of the VIE solution in free space is shown in red for reference. When

the cubic scatterer is
1

6
λ away from the dielectric boundary at z = 0, a similar

convergence pattern is obtained, as shown in the green curves with diamond points.
However, when the scatterer is right on top of the dielectric boundary, no convergence
is achieved even with MB = 73 for p = 3, 4, 5, 6, as shown by the black dashed curve.
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Fig. 8. Convergence of electric field Ep in a cubic scatterer in a layered medium. log10 errors
agains number of collocation points in one direction.
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Fig. 9. Electric field components (a) Ex,(b) Ey, and (c) Ez in a unit cube on top of a dielectric
boundary.

However, numerical convergence is obtained when we take MB = 163. This test shows
that, in order to achieve solutions with a reliable accuracy, we have to take MB = 163

for this incident wave when the scatterers are sitting right on top of the dielectric
boundary. With the CPU time shown in Table 1, it is clear that we have to use the
procedure of interpolating the Green’s function for realistic computation time.

In an additional case where ε1 = 1, ε2 = ε3 = 6 and Einc = iye
i(−3

√
2x−3

√
2z),

the total electric field, both inside and outside of a unit cube on top of a dielectric
boundary, is given in Figure 9. In this case the wavelength λ = 1, and the real part
of the electric field at y = 0 for the domain (x, z) = [−1.5, 1.5] × [−0.5, 2] is plotted
in a 2-D contour. The dielectric boundary is marked as the blue line at z = 0.

4.3. EM scattering for MMs of multiple meta-atoms. First, we will show
that the regularization scheme enhances the accuracy and efficiency of calculating
integral in (26) when a source point rs is outside of Ω but very close to it. In these
tests, the computational domain Ω is taken as a cube of unit length, the coordinate
of the source point rs is (−0.112702, 0.112702, 0.112702), and the coordinate of the
first collocation point r11 is (0.112702, 0.112702, 0.112702). This is a case in which
two cubes Ωi and Ωj are adjacent to each other. We consider the integral

(44)

g11, g12, g13

g21, g22, g23

g31, g32, g33

 =

∫
Ω

dr′G
∗
E(rs, r′)φ11(r′),

where φ11(r) is the basis function associated with the point r11.
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Table 3
Comparison of accuracy between evaluating integral by direct Gauss quadrature and the regu-

larization scheme. Reference solution: g11 = 0.185619291.

MA Direct integration Error Regularization Error

33 0.297879946851 1.12E-1 0.195762381208 1.01E-2
53 0.133973629562 5.16E-2 0.170687175937 1.49E-2
73 0.205909568022 2.03E-2 0.187653409324 2.03E-3
163 0.185672156283 5.28E-5 0.185642045643 2.27E-5

Table 4
Comparison of accuracy between evaluating integral by direct Gauss quadrature and the regu-

larization scheme. Reference solution: g12 = 0.191817954

MA Direct integration Error Regularization Error

33 0.305344867573 1.14E-1 0.203232071458 1.14E-2
53 0.139964096534 5.19E-2 0.215028770323 2.32E-2
73 0.212156313739 2.03E-2 0.193901024185 2.10E-3
163 0.191870838667 5.28E-5 0.191840738376 2.28E-5

Table 5
Comparison of accuracy between evaluating integral by direct Gauss quadrature and the regu-

larization scheme. Reference solution: g22 = g33 = −0.092809645473

MA Direct integration Error Regularization Error
33 −0.148939973426 5.61E-2 −0.097881190604 5.10E-3
53 −0.066986814781 2.58E-2 −0.104520889503 1.17E-2
73 −0.102954784011 1.01E-2 −0.093826704662 1.01E-3
163 −0.092836078142 2.64E-5 −0.092821022821 1.14E-5

Tables 3–5 show the accuracy of calculating the matrix entries g11, g12, and g13

in (44) with and without the regularization scheme for MA of Gaussian points. In
these calculations, the reference solutions are computed with 32 (MA = 323) Gaussian
quadrature points in each direction. From the tables we can see that the results from
the regularization scheme are more accurate than direct integration. Especially when
the number of collocation points is 33 and 73, the accuracy is improved by one order
of magnitude.

Next, we apply the proposed algorithm to compute the scattering of a MM with
multiple meta-atom scatterers. Specifically, we consider the extreme (trivial) situation
when the cubic meta-atom scatterers are adjacent to each other. This is done by
dividing a single cube [0, 2]3 into N = h3, h = 1, 2, 3, 4, 5, 6, 8 cells. The solution of
the VIE in each case is denoted as Eh, and the solution E8 is taken as the reference
solution. In order to handle a large number of scatters in realistic applications, only a
small amount of collocation points in each cell is used. In this test, M = 27 collocation
points are used in each cell. As shown in Figure 10, if no regularization scheme is
applied, the solution of VIE will not converge to the reference solution when the cube
is divided into smaller cells. In contrast, the VIE solution displays a convergence
pattern when the regularization scheme is applied.

Cross sections of the VIE solution E8 at z = 0.0281 are shown in Figure 11, which
lists the real parts of the solutions for Ez component. Figure 11(a) and 11(b) shows
solving the VIE equation without and with the regularization scheme, respectively.
In both cases, only 27 collocation points are used in each cell. Without the regular-
ization scheme, this amount of Gaussian points is not enough to obtain an accurate
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Fig. 10. Convergence of the VIE solution in a cube [0, 2] × [0, 2] × [0, 2] divided into 1 × 1 × 1,
2 × 2 × 2, 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5, and 6 × 6 × 6 cells, with 27 collocation points in each cell.
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Fig. 11. VIE solutions for Ez in a cube at z = 0.0281: (a) without regularization scheme and
(b) with regularization method.

enough integral for matrix entries, so the resulting VIE solutions are spurious and
not accurate. In contrast, if the regularization scheme is used, the resulting solution
is smooth and gives convergence as shown in Figure 11. Similar phenomena are also
found in Ex and Ey.

Comparing the results using regularization with MA = 3, Tables 3–5 indicate
that in order to obtain similar results without the regularization scheme, at least
7 × 7 × 7 = 343 collocation points in each cells are needed, so the computation will
be increased rapidly. Figure 12 summarizes the CPU time in the matrix filling process
for a different number of MA and a different number of cells. For M = 27 collocation
points in each cell, it takes around 793 seconds to fill the matrix when there are 512
cells, but it will take 21,311 seconds when there are 343 collocation points in each
cell. So the regularization scheme is important for a large number of meta-atoms.

It should be noted that the Lippmann–Schwinger equation for Maxwell equations
is not a second kind of integral equation [17]; thus, the condition number of the
matrix will grow with its size and the frequency of the incidence wave. In our current
numerical examples, we consider up to 100 scatterers, and the frequency lies in the
visible light range. Thus, the matrix size is moderate (up to 50,000×50,000), thanks to
the special quadrature rules used in our method. In general, if possible, it is preferable
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Fig. 13. Electric field component Ez in 10 × 10 scatterer arrays with a TE incident wave in
a half-space: (a) cubic scatterer with 27 collocation points in each, (b) spherical scatterer with 72
collocation points in each, and (c) cylindrical scatterer with 72 collocation points.

to use a direct matrix solver rather than an iterative one for robust numerical results,
such as the LU solver from LAPACK [2]. For a large number of scatterers with high
frequencies in applications, iterative methods with proper preconditioners may be the
only alternative, which will be studied in our future work. In our computations, an
incomplete LU factorization preconditioned GMRES method from PETSc [5] is also
used.

Finally, we calculate the reflection coefficients of a MM in a layered medium. As
an example, we place an array of 10 × 10 cubes, balls, and cylinders on a dielectric
boundary with ε1 = 1, µ1 = 1, and ε2 = 6, µ2 = 1, respectively. Each scatterer element
is 100 nm in each dimension (cubes) or 100 nm in diameter (balls and cylinders). These
scatterers are 15 nm apart while their positions are slightly perturbed. Then the VIE
is solved with an incident wave in TE mode:

(45) Einc = [0, e−i(kxx+kyy+kzz), 0]T , (kx, ky, kz) = k(sin θ, 0, cos θ),

where θ is angle between the incident wave and the z-axis. Figure 13 displays the
electric fields in meta-atoms for cubes (a), balls (b), and cylinders (c) with θ = π/4,
respectively.

The scattering field is calculated on a square surface with length 1.2 mm and 5
mm above those scatterers. The reflection coefficient is then calculated as the inten-
sity ratio of the scattering field and the incident wave. Figure 14 shows the reflection
coefficients against the incident angle in (a) and (b) and against the wavelength in
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Fig. 14. Reflection coefficients calculated from the VIE for 3-D MMs in a half-space: (a) and
(b) against incident angle and (c) and (d) against wavelength of a TE incident wave.

(c) and (d), respectively. In Figure 14(a) and 14(b), the reflection coefficients of the
layered medium without scatterers are calculated by Fresnel’s formulae and given
in magenta. Reflection coefficients with cubic, spherical, or cylindrical scatterers at
wavelengths λ = 350 nm and 500 nm are plotted as dots, respectively. In Figure
14(c) and 14(d), the angle of incident wave is fixed at 0 or π/4, and the correspond-
ing reflection coefficients without scatterers are marked as dashed magenta lines for
comparison. It can be concluded that 3-D meta-atoms contribute to more significant
changes in reflection coefficients when the incident angles are smaller than π/4 or
wavelengths are below 450 nm.

5. Conclusions. In this paper, we have presented an efficient numerical method
based on a new volume integral equation of the Maxwell equations for the scattering of
3-D MMs in layered media. The VIE equation is formulated with the dyadic Green’s
functions for the layered media so that only the meta-atoms in the MMs need to be
discretized. To address the difficulties of integrating the Green’s functions in elements
containing hypersingularities or high gradients, we split the dyadic Green’s function
into an analytic singular part in the form of free space Green’s function and a smooth
component. For the former, we treat the CPV using a finite exclusion volume together
with some correction terms of removable singular integrals, both of which could be
handled with a specially designed tensor-product quadrature. For the integrations
in elements with high gradients, a regularization procedure is proposed converting
volume integrals to surface integrals, which are amendable to analytic integration for
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meta-atoms of cubes and spheres. For the smooth part of the dyadic Green’s func-
tion in the physical space, a tabulation technique is also used to precompute various
Hankel integrals, and an adaptive quadrature rule strategy is adopted to enhance
computational efficiency. The proposed VIE method is validated by examining so-
lution accuracy and computing the reflection coefficients of MMs of cubic, spherical,
and cylindrical meta-atoms over a half-space. Future research will focus on fast solver
for the VIE linear systems using preconditioned iterative methods.

Appendix A.
To derive the VIE for the layered medium, we take a small volume centered at

r′, Vδ = Vδ(r
′) ⊂ Ω, and the outward unit normal vectors of ∂Vδ and ∂Ω are labeled

as n and m, respectively. Normal directions of planar dielectric boundaries pointing
upward are denoted as ni, i = 1, 2, . . . , Nl − 1, as shown in Figure 2. Let the electric
field E(r) in R3 be denoted by

(46) E =


Eint(r), r ∈ Ω,
Einc(r) + E+(r), r ∈ Ωc ∩ L1,
E−i (r), r ∈ Li, i = 2, 3, . . . , Nl,

where Eint(r) is the electric field inside the scatterer Ω. The electric field in the air but
outside the scatterer, namely, Ωc ∩L1, consists of the incident wave Einc(r), assumed
to be a plane wave, and the reflected wave E+(r). In the ith layer in the medium
below S1, the electric field is denoted as E−i (r). Overall, we have

(47) LE(r)− ω2εLE(r) = −iωJeq, r ∈ Ω,

where Jeq = iω∆ε(r)Eint(r) for r ∈ Ω and Jeq = 0 otherwise.
By multiplying (47) from the left by GE and multiplying (2) from the right by E

and taking the differences, we have

(48) LE ·GE −E · LGE = −iωJeq ·GE −
1

µ(r)
IEδ(r− r′).

Integrating (48) on the domain R3\Vδ, we have the following equation, after switching
r and r′:

−iω
∫

Ω\Vδ
Jeq ·GEdr

′ =

∫
Ω\Vδ

dr′(LEint ·GE −Eint · LGE)

+

∫
Ωc∩L1

dr′(LE+ ·GE −E+ · LGE)

+

N∑
i=2

∫
Li

dr′(LE−i ·GE −E−i · LGE)

= I + II + III.(49)

Note that to obtain the second integral II on the right-hand side of (49), we have
used the facts

(50) ∇×∇×Einc − ω2ε1E
inc = 0 and LGE(r, r′)− ω2εL(r)GE(r, r′) = 0

in the domain Ωc ∩ L1.
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Using the vector-dyadic form of the Green’s theorem, the first integral on the
right-hand side of (49),

I = −
∫
∂Vδ

n · 1

µ

(
Eint ×∇×GE +∇×Eint ×GE

)
ds′

+

∫
∂Ω

m · 1

µ

(
Eint ×∇×GE +∇×Eint ×GE

)
ds′.(51)

Similarly, the second integral II becomes

II = −
∫
∂Ω

m · 1

µ

(
E+ ×∇×GE +∇×E+ ×GE

)
ds′

−
∫
S1

n1 ·
1

µ

(
E+ ×∇×GE +∇×E+ ×GE

)
ds′

+

∫
∂Γ∞

n∞ ·
1

µ

(
E+ ×∇×GE +∇×E+ ×GE

)
ds′,(52)

and the third integral becomes

III =

∫
S1

n1 ·
1

µ

(
E−1 ×∇×GE +∇×E−1 ×GE

)
ds′

−
N−1∑
i=2

∫
∂Ω

ni ·
1

µ

(
E−i ×∇×GE +∇×E−i ×GE

)
ds′

+

N−1∑
i=2

∫
∂Ω

ni ·
1

µ

(
E−i+1 ×∇×GE +∇×E−i+1 ×GE

)
ds′

+

∫
∂Γ−∞

n−∞ ·
1

µ

(
E−N ×∇×GE +∇×E−N ×GE

)
ds′.(53)

Summing up the integrals above and using the radiation boundary condition at
infinity and continuity conditions of the electric field and Green’s function on planar
interfaces, we can simplify (49) to

−iµω
∫

Ω\Vδ
Jeq ·GEdr

′ = −
∫
∂Vδ

n ·
(
E×∇×GE +∇×E×GE

)
ds′

+

∫
∂Ω

m ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′

+

∫
S1

n1 ·
(
Einc ×∇×GE +∇×Einc ×GE

)
ds′,(54)

where the superscript “int” has been dropped.
Next we will take the limit in (54) as δ → 0 after using the decomposition in (5).

As shown in [8],

(55) − lim
δ→0

∫
∂Vδ

n ·
(
E×∇×G

∗
E +∇×E×G

∗
E

)
ds′ = E(r) + iµωJeq · LVδ ,

where LVδ is the Vδ shape-dependent dyadic whose formulations for various geometric
shapes are given in [30], and we have LVδ = 1

3I for a spherical exclusion volume.
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On the other hand,

(56) − lim
δ→0

∫
∂Vδ

n ·
(
E×∇×G

reg

E +∇×E×G
reg

E

)
ds′ = 0

since G
reg

E is bounded.
Inserting (55) and (56) into (54) and recalling Jeq(r) = iω∆ε(r)E(r), we

obtain (4).
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