Downloaded 04/25/18 to 152.15.112.215. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sc1. COMPUT. (© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. B259-B282

ACCURATE AND EFFICIENT NYSTROM VOLUME INTEGRAL
EQUATION METHOD FOR ELECTROMAGNETIC SCATTERING
OF 3-D METAMATERIALS IN LAYERED MEDIA*

DUAN CHENT, MIN HYUNG CHO?¥, AND WEI CAI#$

Abstract. In this paper, we develop an accurate and efficient Nystrom volume integral equa-
tion (VIE) method for the Maxwell equations to compute the electromagnetic scattering of three-
dimensional metamaterials in layered media. The VIE for meta-atom scatterers in a layered medium
is derived using dyadic Green’s functions for layered media where Cauchy Principal Values are eval-
uated accurately using a finite-size exclusion volume with the help of some correction integrals of
removable singularities. Several desingularization techniques are also introduced for the VIE, in-
cluding interpolated quadrature formulas with tensor-product quadrature nodes for self-integration
terms of typical meta-atoms, a regularization scheme for closely packed meta-atoms, and adaptive
integration approaches for high gradient components of the dyadic Green’s functions. The resulting
Nystrém method demonstrates fast numerical convergence with high accuracy and efficiency with
only a small number of collocation points in calculating the scattered fields and reflection coefficients
of metamaterials of cubic, spherical, and cylindrical shapes.
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1. Introduction. Metamaterials (MMs) are a type of composite materials fab-
ricated using structured or random nanoscale objects (i.e., meta-atoms) in possibly
layered media. Not found in nature, these artificially designed materials can achieve
dramatic optical reflection and absorption properties and thus can be tailored to ma-
nipulate light waves for desired effective properties and functionalities. MMs have
a wide range of applications, ranging from solar cells [4] to superresolution imaging
devices [22, 15], in which the interaction of light with surface plasmons on roughened
metallic surfaces produces surface plasmon polaritons [3, 23] and plays a critical role.
In addition, surface-enhanced Raman scattering [24] is closely related to the excita-
tion of surface plasmons on rough or nanopatterned surfaces by incident light and is a
very useful tool in fingerprinting chemical components of a molecule, single-molecule
detection, DNA detection, biosensing, etc. [16].

In a solar cell’s absorber based on a metasurface, a typical constitutive structure
corresponds roughly to an area of 100 x 100 nm? unit cell; a macroscopical area of
1 cm? on a solar cell gives 10'° degrees of freedom. Therefore, efficient computational
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Fic. 1. Illustration of light reflection on MMs.

algorithms and optimization techniques are indispensable to bridging the macroscopic
length scale of the solar cell absorber and the nanoscale of the underlying feature sizes.
Due to the very-large-scale-integration technologies widely used in the fabrication pro-
cess, MMs are composed of meta-atoms integrated into a layered background medium,
such as in Figure 1. Numerous computational methods for electromagnetic (EM)
scattering in inhomogeneous and layered media have been developed in past decades,
including the finite element method [21] or the finite difference method [10, 29], with
proper choices of perfectly matched layer boundary conditions [25, 27] and boundary
integral equations for periodic scatterers [6, 7, 11]. The integral equation method is
another popular method for computing scattering in layered media and requires the
computation of dyadic Green’s functions in terms of Sommerfeld integrals. Readers
are referred to a recent review [20] and related literature therein.

In this paper, a volume integral equation (VIE) method for the EM scattering of
MMs will be designed for such a layered structure where dielectric interface and radi-
ation conditions at the infinite are accounted for through the layered dyadic Green’s
functions.

Our approach relies on the VIE representation for the solution of the time har-
monic Maxwell equations with a dyadic layered Green’s function Gg(r,r’). To find
the solution, the VIE is only discretized over the meta-atoms embedded in the layered
media where the electric field will be found. Meanwhile, the EM field elsewhere can
be available through the volume integral representation. The dyadic Green’s func-
tion Gg(r,r’) will ensure that the scattering field, expressed in terms of equivalent
current sources inside the scatterer, satisfies interfacial conditions along horizontal
layer interfaces as well as the Silver—Miiller radiation conditions at infinity. The VIE
method is especially suitable for computing EM scattering inside a large number of
small meta-atoms in either a regular or a random distribution in layered materials.

However, numerically solving the VIE faces several difficulties due to the hyper-
singularity of the dyadic Green’s function Gg(r,r’), as we are required to calculate
integrals of the form

(1 | aGeero),

i

where ¢(r) is a smooth function and €; is a meta-atom in the three-dimensional (3-D)
space. Since the Green’s function Gg(r,r’) has an O (75 ) singularity at r =1’ € €;,
solving the VIE requires the use of the Cauchy Principal Value (CPV or simply
p.v.) of (1), which calls for algorithms for their accurate and efficient computa-

tions. Various computational algorithms and analysis have been developed for this
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Lippmann—Schwinger-type equation [1, 26, 31]. Especially, previous work on how to
handle singular integrals for VIE methods include mixed potential formulation [14],
singularity subtraction [18], locally corrected Nystrom scheme [19], direct integra-
tion of the singularity [28], etc. Recently, a Nystrom method based on interpolated
quadrature weights [9] was developed to solve the VIE for multiple 3-D scatterers in
a homogeneous medium with special interpolated quadrature weights [32]. Accuracy
and efficiency of the VIE solution have been demonstrated for meta-atoms of some
canonical geometries (cubes, spheres, and cylinders) in MMs.

There are still several outstanding issues in applying the algorithms in [9, 32] to
VIE with layered Green’s functions for general configurations of scatterers. First, the
interpolated weights developed in [32] require an analytic expression for the integrand
with (weak, strong, or hyper-) singularities while only numerical values of layered
Green’s functions are available. Second, the interpolated weights developed in [32]
are designed for the case when both the source point r and the field point r’ are
located within the same scatterer. In realistic simulations of MMs, two meta-atoms,
say, €); and 2, could be very close to each other. In such a case, it remains a big
challenge to evaluate the integral in (1) for r € ; since Gg(r,r’) may have a large
gradient even though it is a regular bounded function in the domain ;. The naive
approach of using large number of Gauss quadrature points to integrate the high
gradient integrand will result in prohibitive computational cost, especially when a
large number of meta-atoms are simulated. Finally, calculation of layered Green’s
function Gg(r,r’) requires many Sommerfeld integrals and is also computationally
costly.

We will develop computational techniques in this paper to tackle these difficulties.
First, the layered Green’s function will be decomposed into a singular and a regular
part. The singular part resembles the analytic dyadic Green’s function in the free
space, which can be handled by the interpolated weights developed in [32]. On the
other hand, the regular part will be computed using Sommerfeld integrals numerically,
which has no singularity and thus can be handled with regular quadrature rules.
Second, a regularization scheme, based on volume-to-surface integral conversions, is
proposed to accurately calculate (1) with a small number of quadrature points when
r ¢ ; but close to ;. Finally, an interpolating tabulation of the layered Green’s
function will be adopted, avoiding computing Sommerfeld integrals on the fly. This
treatment is efficient for the simulation of a large number of meta-atoms.

The rest of the paper is organized as follows. Section 2 presents the VIE for the
Maxwell equations in layered media under incident waves as well as a brief derivation
(details are given in an appendix), formulation of the layered Green’s function, and
some analysis of the CPV of the VIE. Numerical methods are presented in section 3,
consisting of the discretization of the VIE and different computational treatments of
matrix entries. In section 4, accuracy and efficiency of the proposed algorithms are
demonstrated. Finally, the paper ends with a conclusion in section 5.

2. Volume integral equation method.

2.1. VIE for the Maxwell equations in layered media. Consider an N;-
layered medium, labeled as L; ~ Ly, as shown in Figure 2, with the top layer as air.
All the dielectric boundaries S; ~ Sn,—1 are assumed to be parallel in the zy-plane,
and the location of the top dielectric boundary Sy is at z = 0. Permittivity and
permeability for each layer are denoted as ¢; and p;, respectively. A 3-D scatterer
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Fic. 2. Illustration of a scatterer in a layered medium.

(1, placed in layer Ly above Si, is characterized by a different dielectric function €1+
Ae(r). For any r’ € Q, the dyadic Green’s function Gg(r,r’) is defined by

(2) LGg(r,r')— w?er(r)GE(r, 1) = %ié(r —1'), r € R3,
w
where
1
(3) L=V x ;Vx, er(r)=¢;, r€L;

w is the frequency, §(r — r’) is the Dirac delta function, and I is the unit dyad.
From some derivation given in the appendix, we obtain the following volume
integral equation:

C-E(r) = E"(r) 4+ uw? p.v. /Ae E(r') - Gg(r,r)dr’

4) + pw / Ae(r )- Gy (r,r')dr’,
where
(5) Gg(r,r') = Gy(r,r') + Gy (r,r')

with Gg(r,r’) being the free space Green’s function

) Ga(rx') = (T4 599 ) gtrx)

1 efikR

o o
R R=|r—1'|

(7) g(r,x') =

The other part Gy (r,r’) is nonsingular, and its definition is given in section 2.2.
The coefficient matrix on the left-hand side of (4) is given by C = I + Ly; - Ae(r),
and the source term E®*™ is

E¥(r) = / m- (E™ xV x Gg+V x E" x Gg) ds’
o

(8) +/ n. - (B x ¥ x Gp + V x E™ x Gg) d'
S1
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where E™° is the given incident wave. Finally, the CPV in (4) is defined as

9)  pw. / dr’ Ae(r)E(r') - Gg(r',r) = lim dr’' Ae(r)E(r') - Gy (', 1).
Q 6—0 Q\Vs

We have shown that the limit of the integral on the right-hand side can be com-
puted with a finite & associated with the help of some correction terms similar to
[9, 14]. As a result, the VIE (4) becomes

C-E=E"r)+ pw2/ dr’' Ae(r)E(r) - Gg(r,r) + uw2/ dr' Ae(r)E(r') - Gg ' (r, 1)

Q\ Vs Q
+ pw® ; dr’ Ae(r')E(r) - (é;;(r,r/) - %vv%)
s
(10) + /%;2 /v dr'VVgo(r,r') [Ae(r)E(r') — Ae(r)E(r)],
s
where
(11) go(r,r') = ﬁ

Now the VIE (10) holds for any finite § > 0 as long as Vs C 2, and all the involved
integrals are well-defined provided that Ae(r)E(r) is Holder continuous. The last two
terms in (10) can be understood as correction terms for computing the CPV with a
finite-sized exclusion volume Vj, and both are weakly singular integrals of removable
singularities by a spherical coordinate transform of order O(5%)[9].

Furthermore, calculations of the surface integrals on the surfaces S; and 99 in
(8) can be avoided for special incident waves. Note that the source term E®¢ has no
dependence on the function Ae(r). Therefore, if the incident wave is a plane wave and
Ae(r) = 0, the source term E® can be found analytically, which remains the same
for general nonzero Ae(r). In fact, ES° is exactly the sum of the incident wave and its
reflection by the layered medium. For example, for a two-layered medium with €1, €2
and p; = pe = 1, with a plane wave incident TE field E"¢(r) = §E; exp (—ik; - r)
with k; = w(&sin6; + 2cos6;) and 6; as the incident angle, by Snell’s law the trans-
mission angle ¢; is determined by ,/€; sin 0; = /€3 sin 0;, and by Fresnel’s formula the
reflective wave is E"(r) = grsFE; exp (—ik, - r), where k; = w(Zsind; — Zcos6;) and
rs = —sin (0; — 6;)/sin (6; + 0;). Finally, we have for plane incident waves

E™(r)= [ m:(E™xVxGg+VxE"xGg)ds
o0

+/ n; - (E™ x Vx Gg+V x E™ x Gg) ds’
S1
(12) =E"(r) + E"(r) = §E; exp (—ik; - v) + r,E; exp (—ik, - ).

2.2. Dyadic Green’s function in multilayered media. The dyadic Green’s
function is an essential component in the VIE for layered media. In [13], the dyadic
Green’s function for a two-layer material was derived, which has been recently ex-
tended to three layers in [12]. Consider a medium of three layers of dielectric materials
with parameters ¢;, p;,7 = 1,2, 3 and the two horizontal dielectric interface boundaries
denoted as S7 and Sy, respectively. For our applications we assume that all of the
scatterers {{2;} are located within one layer and do not cross any dielectric boundary.
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Fic. 3. Illustration of the layered Green’s function. Interfaces S1 and Sa separate three layers
of materials with dielectric constant €; and permittivity p; (i = 1,2,3). The overall layered Green’s
function is made of a primary, or singular, part and a reqular part. Solid black lines represent the
primary, or singular, part throughout all three layers. Dashed black lines are the reqular part of the
layered Green’s function in the first layer, including the reflected part from S1 and the transmitted
part from the second layer. Red dashed lines are the regular part in the second layer, including the
transmitted part from S1 and the reflected part from Si1. Finally, the blue dashed line represents the
regular part in the third layer, which is the transmitted field from the second layer.

Within each scatterer, the primary, or singular, part Gg(r,r'), is the Green’s func-
tion in the free space defined in (6)—(7), and the remaining part is the regular part
a;:eg(r,r/ ), which is singularity free at r = r’. Figure 3 illustrates the components
of the dyadic Green’s function in the three layers, where the primary, or singular,
part is represented by the black solid line and the regular, or reflected, part due to
dielectric boundaries is shown as the two dashed black lines. In the second layer,
the Green’s function only contains a regular part, representing the transmitted field
through boundary S; (dashed red line) and the reflected field from Sy (dot-dashed
red line). In the third layer, the Green’s function only contains a regular part as the
transmitted field through Sy (the dashed blue line). Details of the derivation of lay-
ered Green’s function can be found in [12]. Here, we list the case when the scatterers
are in the first layer or when both source and field points are in the first layer.

In this situation, the regular part of the layered Green’s function is the reflected
fields from the lower two layers, which is given by

Glxw Gl,zy Gl,xz

_ —R 1 ’
(13) Ggg(r,r’) =G (r,r’) = T Snlweaes Giyz Giryy Giy: )
0=t l,zz 1,zy 1l,zz

where

GR__}R 12__/2 R

lzz = 5915 + P (W —=v)") 91>
1 1

Gy = 5915 — <202 —(y- y’)2> 916

GlL. =917 Gl =Gl = (x—2" )y —y gl

Gﬁz = _G{%zz = —Z(SL’ - xl)g{:f&
(14) Gﬁ/z = 7Giy = 71(1/ - y,)g{?&
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where p = \/(z — 2/)2 + (y — y’)? and all the elements gf,,,m = 5,6,7,8 are defined
in terms of Hankel integrals as

k- B k ZRTM k2
=k RIM — kl RIY, §ie = 1 k212 I kZI; RTE
~ k2
(15) 957 k1. R12 ) 918—R1T2M,
and
g’ = 277/ k‘sgﬁsa}o(ksp)eik1Z(z+Z/)dks,
0
= J S 7 z+z
g{%:gﬁ/ k3G {?6# etz (22) g
0 P
g7 = 277/ ks@f?w]o(ksp)eiklz(z“/)dks,
J ) ;
(16) 9{2,8 — 271_/ k2g{%8 1(p ) zklz(z+z )dks,
0

where k2 = k2 + ki, ki, = /k? — k2, and J, is the nth-order Bessel function. Defi-

s
STM,TE
Ry,

nitions of the generalized reflection coefficients and a general formulation of

the layered Green’s function can be found in [12, 13].
3. Numerical methods.

3.1. Discretization of the VIE. The computational domain € is assumed
to be comprised of N nonoverlapping meta-atom elements Q; ,i = 1,2,...,N. On
each element (2;, we assign M tensor-product collocation nodes, for which M scalar
interpolant Lagrange basis functions ¢;;,j = 1,2,3,..., M are defined. Then we can
write the solution as

N M
(17) E(I‘) = Z ZEij¢ij(r)7 r EQi,

i=1 j=1
where E;;,1 <ij < M N are the M N unknown vectorial nodal values of the numerical

solution E(r) at the jth node r;; in the element ;. Inserting (17) into (10), we obtain

the linear equations for E;;,

N M
C-Ejy=El+wn> Y l / dr' Ae(r )Gy (rij, ) dnm (') | - B
n=1m=1 Qn\Vs
+w ,uz Z E,m - {/ dr’Ae(r')Ggg(rij,r’)(bnm(r')}
n=1m=1 Qp
M 1
+win > l y dr’ Ae(r') (G;;(r,r') - vag()) Gim(r)| - Eim
m=1 84
MwQ M
(18) N /V AV g0 (15, 1) [Ae(t')Gim () — Acij bim (637)] - B,
6

or, in a matrix form,

19 Z Z Anm +Bnm . nm+ Z sz B <1 + ;Aeij) I3><3 EJ - E?§C7

n=1m=1
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where
(20) A, = —w2u/ dr’Ae(r’)C;:(r,-j,r’)gi),,m(r')
2.\ Vs
(21) BI = —w?u [ dr'Ae(r' )Gy (rij, t)dpm(r))
Q,
and
Con =~ [ dr'Be(t')g(rij. ") ()
Vi,
w2.u / ’ ~ / ’
T ), dr’Ae(r')VVg(rij, ') dim (1)
5
WQ,U 12 / ’ /
(22) - ?/\/ dr'V=go(rij, 1) [A€(r") dim (r') — Aéijdim (riz)] -
544

Note that transpose of matrix B,,,, is necessary since the dyadic égg is not symmet-
ric.

3.2. Computation of matrix entries. Calculating integrals in (20)—(22) for
the matrix filling process is one of the most time-consuming tasks in solving the VIE.
There are O(N?M?) operations of calculating integrals (20)—(21), and the evaluation
of correction terms (22) involves O(NM?) operations as the corrections take place
locally. We denote the total numbers of quadrature nodes to evaluate integrals (20),
(21), and (22) as M4, Mg, and M., respectively.

Because the total number of meta-atom scatterers is large most of time, it is
beneficial to use small number M for M4, Mp, and M in each scatterer while
maintaining satisfactory accuracy.

3.2.1. An efficient Nystréom method with interpolated weights. When
the source point r;; is located in a scatterer €, a direct evaluation of (20) requires
a very large number M4 (~ 10°) in order to obtain an accurate result for A,
since the function G (r:;,r’) is hypersingular at v/ = r;;[32]. This direct brute-force
method will make computation prohibitively expensive even for a small number of
collocation points. To overcome this difficulty, an efficient Nystrom-type method was
developed in [9] by choosing ¢, as basis functions with Kronecker delta property,
and a set of quadrature points coincide with the collocation points; i.e., My = M
are used. Consequently, calculation of (20) becomes a pointwise evaluation of the
function Ae(r’)ag(rij, r'), ie.,

A = / A/ Ae(r) G (157, ') (r')
Qn \V5

Z ’lU AE rn m/)GE(r'Lja 'y m/)¢nm(rn 'm/’ )

n'm’=1

(23) = W}, Ae(Tnm) Gr(Tij, Tnm),

nm

so the total operation is reduced to O(NM). Furthermore, a set of specially designed
interpolate quadrature weights % = in [32] can be used to handle the hypersingularity
when the source point r;; is in the scatterer 2;. In this approach, high accuracy of the
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solution is maintained while the computational efficiency is greatly improved. This
algorithm is summarized as follows [9]:

Anm— ZZAEzm |:< m Jm+fﬁmw‘§7m+ %_;m+fiw;7m> IB><3
where
in (kR,, in (kR,,
e A L
o .cos(kRy)  .sin(kR,) 3 cos(kRy,)
(25) f'm__Z k +1 kQRm ’ fm__Ta

R,, = |rij — rim|, and J; is the Jacobian from the reference domain to the physical
domain €2;. Details of the formulations (24) and (25), as well as the interpolated
weights w”) , Wi, @ ©F A;fn, 3 m,A; m-and A% can be found in [9, 32].

When i # n, i.e., the source point r;; is not in the element 0, (20) becomes

(26) A = / dr' Ae(r') Gy (x5, ) b (1),

where the function é;(rij, r’) is not singular in €, and hence no CPV treatment is
needed. Generally, the M4 (= M) Gaussian points r,, in €, with the corresponding
weights wy,,, can be used. Then we have

Ay = / dr' Ae(r') G (rij, t') i (1)
Q

n

M
Z Wn/m’Ae(rn’m’ )C;:] (rija rn’m’)¢n7n(rn’m’)

n'm’=1
—*

(27) = wnmAe(rnm>GE (rij7 rnm);
where wy,,,, are the regular Gaussian quadrature weights.

3.2.2. A regularization scheme for close neighboring scatterers. When

—*

€; is a close neighbor to €2, the function G (r;;,r’) is not singular in Q,, if r;; € €,
but it will have large derivatives. Thus, calculation of the matrix A, by (27) may
lead to a low accuracy. One way to address this issue is to oversample with more
Gaussian points to improve the accuracy at the expense of causing a large increase
in computational time. Here, we propose a regularization scheme for spherical and

cubic scatterers to keep the simple form of (27) while maintaining high accuracy.
For illustration, we consider the integral

[ arGaraen) = [ o {Toea) + 5V o) - i)l f o)
(28) + [ ax'Trafo) o)+ o(s%) [ 'V,

where r* € ) is a point chosen to be close to the source point r.
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The integrand of the integral on the left-hand side of (28) is of O(1/R3) around
the point r. However, on the right-hand side, the first and second integrands are of
O(1/R) and O(1/R?), respectively, provided that r* is close to r. Thus, it is easier to
obtain accurate results for these two integrals. Analytical evaluation can be carried
out for the last integral in (28) for canonical geometries of meta-atoms, such as cubes
and spheres. Therefore, decomposition of the integrals as in (28) will give better
accuracy than directly computing the left-hand side.

Using the Gauss—Green theorem, we have

_
(29) / dr'V?gy = / dsVgo ® 71 = / ds—— @ 7.
Q 0 0 4 R3

For cubic scatterers: When the scatterer € is a cube [zg, 1] X [0, y1] X [20, 21],
the last integral in (29) becomes

faQ mgf: dy'd?, faﬂ zgf: dx'dz’, faQ zgf: dx'dy’
(30) / dsVgo @7 = | [oq pdy'ds’,  [oq Ypida'ds’, [y Yed-da'dy’
o0 faQ z}géz dy/dZ/, faQ Z};}f dx'dz’, faQ z};éz dx'dy’

Denote (u,v,w) as an arbitrary permutation of the coordinates of point (z,y, z); then
the nine integrals in (30) can be represented as two types of integrals as

(31)

! w1 U1 I w1 U1 /
u—1u uU—"u u—1u
/ F—dv'dw' = / / —5— dv'dw’ — / / —5 dv'dw’
o0 R wo Vo R w'=uq wo Vo R u'=ug
and
(32)
/ V1 w1 / V1 Ul /
u—u u—u u—1u
R3 d’ll/d’l/, = / / F du’dv’ - / / ? du’dv'.
o0 V0 ug w'=w1 Vo uo w'=wq

Using Mathematica, it is easy to obtain

w9 [ [ <o ([ AR o)

u—u —i(v—20') w— w

and

o
(34) //%du'dv’:—ln(}%—kv—v’).

Thus, integral (29) can be evaluated exactly by (30)—(34).

For spherical scatterers: When € is a ball of radius a, due to the rotational sym-
metry, we can assume r = (0,0,p) for convenience and use spherical coordinate
r’ = a(sin 6 cos ¢, sin O sin ¢, cos ). Note

(35) R:\/aQSinzﬂJr(acostp)Q:\/a2+p272apcosn9

and 7 = (sin 0 cos ¢, sin 0 sin ¢, cos #); then (29) turns into

2w T
(36) / dsVgo @ i = / / Asy3dfdo,
o 0 0
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where
a® sin® 6 cos? ¢ a® sin® 6 cos ¢ sin ¢ a® sin® 6 cos 6 cos ¢
. . R3 ’ . ﬁfﬁ ) . R3
37) A _ a® sin® 6 cos ¢ sin ¢ a® sin® Osin? ¢ a® sin? 0 cos 0 sin ¢
(37) Mgy = | osin’Ocongsing, atsnfisnts i
a? sin? 6 cos ¢(a cos 0—p) a? sin? 0 sin ¢(a cos 0—p) a? sin 0 cos 0(a cos 6—p)
R3 b R3 ) R3

It is easy to check from (37) that the matrix in (36) is diagonal, so we only need to
handle two types of integrals appearing in the diagonal position of (37):

™ a3 sin® 0 ™ a?sinf cosf(acosh — p
0 0

These integrals can be evaluated as, if A = p/a,

T a3 sin’ 0 4 1 —cos?6 -1 1— a2
——df = —d 0) = —d
/0 RS /0 2 —2rcosd 1 1)z (cs0) /1 2 — 2zt 1)z

A(22 — 1)+ 2\ + Ao — 2% =2

(39) =
BAMVAZ+1 -2z 1
and
™ a%sin @ cos 0(acos § — p) T cos?0 — Acosd
df = d(cos 6
/0 RS /0 7 —2xcos 12 s
/_1 Y
= dz
1 (A2 =2z +1)3/2
2 2_1 2\ — 3 4_2 -1
(40) _ X )+ (2N =Nz + A .

3MVAZ 1 — 2z )

Based on (39)—(40), intergal (29) can be exactly computed from (36)—(37).

For other geometries, such as cylinders studied in [9], it may be difficult to find
the analytic formula for the right-hand side of (29). For those cases, we have to use
M4 > M for close neighbors in order to obtain desired accuracy.

__3.2.3. Computation of coefficients B, and Cj;p,. Since the regular part
Ggg(rij, r’) is singularity free, (21) can be carried out in a similar way as (27), namely,

Ban/ dr/Ae(r’)agg(rij,r/)¢nm(r’)
Qn
Mp L
(41) ~ Z Wn’m’A€(rn’m')GEg(rijarn’m’)¢nm(rn’m’)-

n'm’=1

Generally, when the source point r;; is fairly far away from the planar dielectric
interfaces, we can take Mp = M; then the evaluation of (41) becomes a pointwise
calculation wnmAe(rnm)agg(rU,rnm). Unfortunately, when r;; is very close to a
planar interface, using Mp = M will yield low accuracy. Moreover, no regularization
scheme is available. In this case, we just take Mp > M adaptively to ensure a
satisfactory accuracy.

Another challenge in (41) is that of computing the regular part of layered Green’s
function G- (r,r’) numerically through the Sommerfeld integral for each pair of
(r,r’). It is not practical to perform these computations on the fly, which requires
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O(N?M?Mpg) Sommerfeld integrals. To tackle this issue, tables of values of integrals
(16) are precalculated and stored for a fixed grid, and interpolations of the values on
the grid are used for other collocation points in the VIE solution.

Finally, computing C;,,, in (22) is straightforward since the integrands have at
most O(ﬁ) singularity. Thus, a spherical coordinate transform can eliminate the
singularity, and the number M, does not need to be large.

4. Numerical results. We will present three sets of numerical tests on the pro-
posed VIE. First, the efficiency and accuracy of the interpolation scheme for the lay-
ered dyadic Green’s function are examined. Second, we test the numerical convergence
of the VIE solutions for a single scatterer in layer media. Finally, we demonstrate the
capability of the proposed method to calculate the reflection property of several MMs
made of cubic, spherical, and cylindrical meta-atoms in layered media.

4.1. Accuracy and efficiency of interpolating layered Green’s function.
Fast matrix filling is much needed since it contributes major CPU time in the VIE
method. When calculating the coefficient in (20), as the Green’s function in free space
a;:(rij, r’) has an analytic formula and related interpolated weights are precalculated,
the time spent in calculating (24)—(27) is not a big concern, and details for this step
can be found in [9]. In contrast, calculating (21), involving the regular part of the
layered Green’s function éfbfg(rij?r’ ), requires expensive numerical computation of
the Sommerfeld integral for each pair of source and field points. As mentioned above,
the regular part will be precalculated and stored for a fixed set of grid points, and
interpolated values can be then used for arbitrary points later.

According to (14), only the integrals gfm defined by (16) need to be interpolated
in terms of the variables z + 2’ and p, respectively. Figure 4 shows the graphs of the
integrals gf's, gi's, and g{%; in the domain (0,3A] x [0,6A] along z and p directions,
respectively, where A = 27 /w. These integrals take large values as z + 2z’ — 0 and
p = 0 and decay rapidly otherwise.

To test the accuracy of the interpolations, we take A = 1 and place a unit dipole «
oriented in the direction (sin {j cos 75, sin {5 sin 7, cos 75 ) at (2',y',2") = (0,0,0.01),
and the resulting field E = o - Gg is calculated with the original and the interpo-
lated regular part. The pointwise relative errors of the electric field E calculated by
the two methods at 2’ = 0.01 and interpolation resolution (Ap,Az) = (0.2,0.05),
(0.1,0.025), (0.05,0.0125) decrease from 4.0 x 1072 to 4.6 x 1072 and to 6.2 x 1074,

Matrix filling CPU time (in seconds) for the VIE is compared between on-the-fly
and interpolation computation of layered Green’s function in Table 1. For this case, a
single cube (IV = 1) and 27 collocation points (M = 27) are used. When calculating
integral (41), the number of quadrature points Mp = 3,4,5,7, and 16 are used to
show the improvement in CPU time.

From the table we can see that direct calculation of the layered Green’s function on
the fly is computationally very expensive: Even with parallelization, it takes minutes
for Mp = 3,4,5,6,7 and hours for Mg = 16. In later numerical results, we will see
that the solution of VIE would not converge until Mp = 16. Therefore, it is necessary
in practice to use interpolated layered Green’s function in order to obtain accurate
solutions within a reasonable time.

4.2. Validation of VIE method in layered media.
e Accuracy of dyadic Green’s functions in layered media
In order to validate the formula for the layered Green’s functions, we exam its lim-
iting behavior when it approaches the Green’s function in free space, i.e., e =3 —¢€7.
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