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Abstract  
The rapid propagation of vector-borne diseases, such as dengue fever, poses a threat to 

vulnerable populations, especially those in tropical regions. Prompt space-time analyses are 

critical elements for accurate outbreak detection and mitigation purposes. Open access web-

based geospatial tools are particularly critical in developing countries lacking GIS software and 

expertise. Currently, online geospatial tools for the monitoring of surveillance data are confined 

to the mapping of aggregated data.  In this paper, we present a web-based geospatial toolkit with 

a user-friendly interactive interface for the monitoring of dengue fever outbreaks, in space and 

time. Our geospatial toolkit is designed around the integration of (1) a spatial data management 

module in which epidemiologists upload spatio-temporal explicit data, (2) an analytical module 

running an accelerated Kernel Density Estimation (KDE) to map the outbreaks of dengue fever, 

(3) a spatial database module to extract pairs of disease events close in space and time and (4) a 

GIS mapping module to visualize space-time linkages of pairs of disease events. We illustrate 

our approach on a set of dengue fever cases which occurred in Cali (659 geocoded cases), an 

urban environment in Colombia. Results indicate that dengue fever cases are significantly 

clustered, but the degree of intensity varies across the city. The design and implementation of the 

on-line toolkit underscores the benefits of the approach to monitor vector-borne disease 

outbreaks in a timely manner and at different scales, facilitating the appropriate allocation of 

resources. The toolkit is designed collaboratively with health epidemiologists and is portable for 

other surveillance data at the individual level such as crime or traffic accidents. 
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1. Introduction 
The rapid propagation of vector-borne diseases, such as dengue fever, poses a threat to 

vulnerable populations, especially in tropical regions (Gubler and Trent 1993; Gubler and Clark 

1995; Bhatt et al. 2013; San Martín et al. 2010). Urban and suburban environments are 

particularly vulnerable due to rapid population movement and the abundance of potential 

breeding sites. In Colombia, South America, dengue fever reemerged in the 1970s after being 

eradicated in the 1950s and 1960s (Romero-Vivas, Leake, and Falconar 1998; Ocampo and 

Wesson 2004). Ever since, the disease has become endemic, presenting periodic outbreaks in 

1991, 1994, 1998, 2001, and 2006. In 2010 alone, the city of Cali suffered one of its most 

significant outbreaks (11,760 cases), resulting in 16 reported deaths (population of Cali for the 

2006 Census was close to 2.5 million, (Cali 2008)). To facilitate the monitoring of vector-borne 

disease outbreaks in space and time, we develop an interactive on-line GIS toolkit which was 

collaboratively designed and enhanced through consultation with spatial epidemiologists in the 

city of Cali, Colombia. 

The contributions of exploratory spatial data analysis, including point pattern and kernel 

density estimation (KDE), to the monitoring of vector-borne diseases are well documented in the 

literature (Kulldorff 1997; Eisen and Eisen 2011; Delmelle et al. 2011; Cromley and McLafferty 

2011). Prompt space-time analyses are critical for accurate outbreak detection and mitigation of 

vector-borne diseases (Vazquez-Prokopec et al. 2009; Kitron 1998; Kitron 2000; Eisen and Eisen 

2011). Spatial analytical methods can generate disease distribution maps revealing significant 

information in terms of direction, intensity of a disease, as well as its likelihood to spread to new 

regions (Duncombe et al. 2012; Yoon et al. 2012). However, recent efforts to estimate the space-

time signature of vector-borne diseases have primarily been focused at the aggregate level, 

mainly due to the scale at which data are generally reported (Young and Jensen 2012; Hsueh, 

Lee, and Beltz 2012). 

As underscored by Boulos and Wheeler (2007), there is an increasing interest among health 

communities to disseminate analytical functionality over the internet, partly due to the 

availability of massive epidemiological datasets (e.g. social network such as twitter, Chunara et 

al. 2012). Second, the participation of volunteers in mapping health information has the inherent 

potential to promote community involvement, ultimately improving public health (Cromley and 

McLafferty 2011; Skinner and Power 2011; Eisen and Eisen 2011; Eisen and Lozano-Fuentes 

2009; Delmelle et al. 2013; Dickin, Schuster-Wallace, and Elliott 2014). This latter is critical in 

developing countries with constrained financial capabilities and where GIS expertise is limited 

(Fisher and Myers 2011; Duncombe et al. 2012; Kienberger et al. 2013).   

The importance of collaboration between health epidemiologists and research institutions has 

recently been underscored by Robinson, MacEachren, and Roth (2011) and Granell, Fernández, 

and Díaz (2013). Several agencies such as World Health Organization (WHO); the Center for 

Disease Control (CDC) and the European Center for Disease Prevention and Control (ECDC) 

have taken significant steps towards the development of infectious disease surveillance/tracking 

systems on the web. An example is CDC WONDER which allows individuals to query 

information of a disease while results are presented through Web browsers in multiple forms 

(EPI 2012). DengueNet was developed by the World Health Organization to compare disease 

burden between countries, but the quality of the underlying data remains a challenge (WHO 

2009; Duncombe et al. 2012). Huang et al. (2012) propose an application that combines datasets 

on modeled diseases, vector distribution and air network traffic. This application is particularly 
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useful in an educational setting when identifying the risk posed by transportation networks to the 

spread of an infectious disease. 

Web-based GIS applications for the storing, analysis, and visualization of epidemiological 

data can potentially disseminate spatial analytical concepts (and their results) to virtually anyone 

(Boulos and Wheeler 2007; Boulos et al. 2011; Zook et al. 2010, Chapman et al. 2013). In spatial 

epidemiology, Gao et al. (2008) designed an interoperable service-oriented architecture 

framework based on Open Geospatial Consortium (OGC) standards to share spatio-temporal 

disease information. Newton, Deonarine, and Wernisch (2011) developed a web application 

interacting with an R web-user interface to map disease locations. Highfield et al. (2011) 

designed Community Health Information System (CHIS), an online mapping system using a 

Google mapping interface to facilitate the dissemination of health-related geospatial data. Foley 

et al. (2010) introduced MosquitoMap, a web-based spatial database of mosquito collection 

records and distribution models, which can integrate geographical data from different sources at 

various scales. Moncrieff et al. (2013) design and implement an open-source server-side web 

mapping framework for the analysis of health data, relying on Open Geospatial Consortium 

(OGC) web map service standard. Their framework, which can handle data query, was applied to 

the mapping of aggregated population distribution and disease rate. 

A common characteristic of these applications is that their spatial analytical capabilities are 

restricted to the mapping of aggregated data. A notable exception is the work by Dominkovics et 

al. (2011) who used a commercial geoprocessing service to generate spatial density maps of 

turbeculosis based on individal observations.  Despite these recent technological advances, there 

remain critical hurdles to the effective development of Web-based GIS applications in the field of 

spatial epidemiology. First, the functionality that is generally available over the web is restricted 

to aggregate data since individual-based analysis poses computational challenges. Second, there 

is a lack of spatial and temporal query capabilities (Boulos 2003, Thompson et al. 2009). Last, 

interaction between users and the system is generally passive in that individuals cannot analyze 

their own data. 

In this article, we present an interactive web-based GIS toolkit (OnTAPP: an On-line Toolkit 

for the Analysis of Point Patterns), collaboratively designed with epidemiologists from 

Colombia (South America) with the objective to monitor dengue fever outbreaks over the 

Internet and conduct spatial analysis in a limited timeframe. Our toolkit allows to 1) analyze 

epidemiological information at the individual level, 2) conduct temporal and spatial query, 3) 

generate spatial density distribution maps across a region to better determine the occurrence of 

hot spots, and 4) visualize space-time connections at a local scale. Our article is structured as 

follows. The implementation framework is described in section 2 (Methodology), and modules to 

conduct space-time query and visualize events close in space and time and density surface are 

presented. The effectiveness of the toolkit to identify clusters of dengue fever during an outbreak 

is illustrated in section 3 (Monitoring Dengue Fever Outbreaks). Section 4 is devoted to 

conclusions and future developments. 

2. Methodology 

OnTAPP (Online Toolkit for the Analysis of Point Patterns) is a web-based geospatial toolkit, 

which is designed in a collaborative manner with spatial epidemiologists to assist them in 

identifying putative sources of the diseases, and facilitate the optimal allocation of resources. The 

functional features of the toolkit are designed to address the needs of epidemiologists: (1) 

functionality to upload surveillance information and download results from the analysis, (2) 
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ability to map patterns of raised incidence of disease at large scale (metropolitan level) and at 

small scale (neighborhood level), (3) identification of space-time disease clusters, and (4) 

functionality to identify hotspots of disease outbreaks. These functions are organized into four 

functional modules: geospatial analysis, mapping and visualization, spatial data management, 

and time and space query. 

 

2.1 Modular Design 
Figure 1 summarizes the general framework which is adopted for the design of the OnTAPP 

toolkit and complies with generic Web GIS architecture (Peng and Tsou 2003). The four modules 

mentioned above comprise the primary functionality of the server side. On the client side, users 

which are intended to be health professionals in charge of decision making (public health agency 

or epidemiologists for instance) send requests to the server side, via a Web-based graphic user 

interface. The server carries out the corresponding spatial and temporal functionality and 

conveys the results to the client side for visualization. The framework is scalable and extensible 

so that additional functions or map layers from external data sources can easily be added to the 

application, similar to Beyer, Tiwari, and Rushton (2012).  

Figure 1: Web GIS Framework of OnTAPP for the analysis of spatial point patterns. 
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Data Management Module 
Unlike other online GIS which are generally restricted to aggregated mapping and which follows 

a passive communication, an important feature of OnTAPP is its ability to allow users to upload 

their own data via a Web-based interface. Given privacy issues with health data, the users are 

expected to follow their organization’s rules and geomask the geospatial data accordingly (see 

Kwan et al. 2004, Exeter et al. 2014). The data are generally composed of latitude, longitude, and 

time stamps. Typical format are text files, or CSV format. The data management module 

transforms longitude and latitude to projected coordinate system and converts the data to a KML 

format, which can then be downloaded by the users.  

 

Geospatial Analysis Module 
The objective of this module is to enable functionality to estimate the intensity of disease 

outbreaks and derive hot spots. Kernel Density Estimation (KDE) technology (Silverman 1986) 

is used to summarize the intensity of the geocoded disease events. The KDE algorithm generates 

a so-called heat map (a continuous surface image), in which the value of each grid cell reflects 

the intensity of the disease at that location (Bailey and Gatrell 1995; Kitron 1998; Kitron 2000; 

Morrison et al. 1998; Tran et al. 2004; Delmelle 2009; Peterson et al. 2009; Delmelle et al. 

2011). For vector-borne diseases, KDE maps are used in conjunction with prevention and control 

programs to guide vector control or surveillance activities (Mammen et al. 2008; Eisen and 

Lozano-Fuentes 2009; Eisen and Eisen 2011). 

 

Generic KDE. KDE is computed at each grid cell of the surface, which receives a higher weight 

if it has a larger number of observations in its surrounding neighborhood. Let s (located at (x, y)) 

be a grid location where the kernel density estimation needs to be estimated, and s1…sn (located 

at xi and yi, i =1…n), the locations of n observed events. Following Bailey and Gatrell (1995), the 

density f̂(x, y) at s is estimated by  

 

 f̂(x, y) =
1

ℎ𝐬
2 ∑ 𝐼(d𝐢 < h𝐬)k𝐬 (

x−x𝐢

h𝐬
,

y−y𝐢

h𝐬
)i                 (1)  

 

where 𝐼(d𝐢 < h𝐬) is an indicator function taking value 1 if 𝑑𝒊 < ℎ𝒔 and 0 otherwise. ℎ𝒔 is the 

search radius (or bandwidth), governing the strength of smoothing; and  𝑑𝒊 is the distance 

between location s and event i. The bandwidth can either be calibrated with a K-function or 

cross-validation (Bailey and Gatrell 1995; Delmelle 2009). The term 𝑘𝒔 is a standardized kernel 

weighting function that determines the shape of the weighting function. Constraint d𝐢 < h𝐬, 

indicates that only points falling within the chosen bandwidth contribute to the estimation of the 

kernel density at s. The choice of a kernel density function may affect the computational time 

(Wand and Jones 1995). The KDE procedure is however more sensitive to the choice of the 

bandwidth and the granularity of the grid at which KDE is estimated. Larger bandwidths and 

smaller cell sizes (finer grid) will generate smoother surfaces, at the cost of a longer 

computational effort. A couple of concerns must be discussed. First, the computation time for the 

KDE is impacted by a larger bandwidth and larger datasets; as such; to accelerate this method we 

propose an accelerated KDE. Second, it is important to keep in mind that epidemiologists are 

generally interested in conducting the analysis with smaller bandwidths to extract locally varying 

patterns.  
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Accelerated KDE. Computational effort is a critical component to be considered when 

deploying a geospatial analytical tool over the web
1
.  However, spatial analysis (such as KDE) 

can become computationally challenging in an Internet environment. Given a level of granularity 

(cell size), the numbers of rows and columns of a KDE image is determined when the study 

region is discretized along in a grid fashion. The estimated running time of the KDE algorithm 

is: row*column*n, with n representing the total number of observed point events across the 

study region.  Hence, a direct implementation from  Equation (1) may result in an unacceptable 

performance within a Web environment when using large data sets since the computation 

requires a full search in order to compare the distance between location s and event i. To address 

this computational challenge, we developed an accelerated algorithm (hereafter “accelerated 

KDE”) with the introduction of an additional constraint which reduces the computational burden.  

In the accelerated KDE, a virtual square window W is constructed around the center of location s.  

This window W has a bandwidth twice as large as the radius size hs , and is tangent to the search 

circle. We determine whether an observation falls within W; if it does, this point is added to the 

estimation of the KDE function; otherwise it moves to the next point. Specifically, given the 

location s at (xs,  ys),  we define the coordinates of W as:  

 

left = xs – bandwidth, bottom = ys– bandwidth                    (2) 

right = xs + bandwidth, top = ys + bandwidth                      (3) 

 

For an arbitrary event (xi, yi), a simple comparison operation using the following logic criterion 

helps to determine whether the point falls within the square window  

 

W:{
𝒊 ∈ 𝑊                    𝑖𝑓 ( 𝑙𝑒𝑓𝑡 <  𝑥𝒊 < 𝑟𝑖𝑔ℎ𝑡) 𝑎𝑛𝑑  ( 𝑏𝑜𝑡𝑡𝑜𝑚 < 𝑦𝒊 <  𝑡𝑜𝑝 )

𝒊 ∉ W 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (4) 

 

To ensure that comparison is conducted in an efficient manner, data pre-processing is done in 

advance in which all points are sorted according to their x and y coordinates. This enables the 

comparison to be conducted within the window. This practice reduces the amount of 

computation, especially in the situation when bandwidth is small. 

 

Mapping and Visualization Module 
The objective of this module is to provide cartographic mapping support for the mapping of 

disease patterns. Different visuals are generated from the OnTAPP toolkit: point layers (original 

geocoded data and selected points from the spatial and temporal query), a line layer connecting 

events close with each other in space and time (shorter lines denote stronger connection among 

events), and an image layer reflecting the kernel density estimation. Similarly to Beyer, Tiwari, 

and Rushton (2012), the outputs are overlaid on geographical layers, which are Google map 

layers in the application (Figure 2). OnTAPP guarantees that each layer aligns with each other.  

All of these layers compose the output map, which allows epidemiologists to better understand 

the association between outbreaks of diseases and the environment.  

 

Database Query Module 
The objective of this module is to provide spatiotemporal querying functionality, following a 

SQL approach (Structured Query Language). The temporal query is defined by a start date and 

                                                        
1
 Computation must be reduced, for instance when using Monte-Carlo simulations in a confirmatory setting. 
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an end date, while the spatial query identifies pairs of events separated by a certain distance. 

Point events that meet either condition are selected from the database and highlighted on the 

map. A combination of both queries (space-time) is also possible and is represented by straight 

line segments. This allows for the visualization of connections in space and time emphasizing 

locations where there is a high concentration of cases in a given space-time threshold.  

 

2.2 Implementation  
Motivated by Fisher and Myers (2011) and recommendations from epidemiologists, we use  

open-source technologies to implement OnTAPP. MySQL
2
, an open-source relational database 

management system (RDBMS), manages spatial data. Most functions on the server side are 

implemented with PHP, a open source language for server scripting. These functions support 

different tasks, such as interaction with database and back-end computation. The accelerated 

KDE is implemented within the the Python environment on the server side. We use OpenLayers, 

which is a JavaScript library that provides functionality to display and render maps in web pages  

Figure 2 illustrates the primary user interface of the toolkit. The parameters available to conduct 

the spatial analysis of point patterns on the left of Figure 2 are related to KDE, temporal and 

spatial query. 

Figure 2: Client-side interface of the OnTAPP system (parameters on the left pane, and mapping 

environment on the right) 

                                                        
2
 MySQL was preferred to PostgreSQL and PostGIS since it comes as a default configuration on many host servers.  
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The performance of the accelerated KDE algorithm is tested against the generic KDE algorithm 

using datasets of different sizes (n=150, 250, 350, 650, 1250, 2500, 6000 and 12500 points), with 

80% of the samples randomly generated in a 100*100 square, and the remaining 20% randomly 

generated in the lower left 0*50 square, simulating an artificial cluster. Both algorithms were 

tested in a Python environment on an Intel Duo Core 2.1 GHZ, and 1 GB of RAM. Running 

times are reported in seconds.  

Figure 3 reveals a negative exponential relationship between KDE running time and grid cell 

size (in b). The accelerated KDE algorithm requires significantly less computational effort than 

the generic algorithm, especially so for smaller cell sizes.  Table 1 summarizes numerical 

instances of the two types of KDE methods, containing the results from instances with fixed cell 

of size 1 but using different bandwidths and dataset size. The second section lists numerical 

instances when the cell size and dataset size vary but the bandwidth remains at a size of 10. The 

computation time of both KDE and accelerated KDE algorithms increases linearly with larger 

datasets, from 3.4 seconds (150 points) to 6 minutes (12,500 points). Time gain represents how 

much time is gained by using the accelerated KDE. The benefits of the accelerated algorithm 

(TimeGain) are mostly noticeable when using smaller bandwidths (Figure 3a). The column 

percentage improvement indicates that in some circumstances the running time can be reduced 

by nearly 70% (note the maximum reduction is 100% when the running time is equal to 0). 

When the bandwidth is larger than half the size of the study region
3
, computational advantages of 

the accelerated algorithm tend to vanish, which is attributable to the cost of Equation (4) which 

compares the coordinates of a point to the grid cell where kernel density is estimated. Given 

these encouraging computational results, we implemented the accelerated KDE algorithm. 

 
Figure 3: Running time (seconds) of the generic kernel density estimate and accelerated version, 

as a function of the bandwidth and the cell size for a set of n=1,250 points.  

                                                        
3
 Optimal bandwidths are generally determined from a spatial K-function. Large bandwidths may not be 

recommended as they blur the underlying point process due to an “over-smoothing” effect.  
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150 5 1 3.4 1.1 2.3 67.6

150 10 1 3.7 1.5 2.2 59.5

150 25 1 3.8 2.5 1.3 34.2

150 50 1 4.6 4.7 -0.1 -2.2

1250 5 1 25.6 6.1 19.5 76.2

1250 10 1 26.5 8.3 18.2 68.7

1250 25 1 28.7 17.6 11.1 38.7

1250 50 1 35.7 36.7 -1.0 -2.8

2500 5 1 50.4 12.2 38.2 75.8

2500 10 1 51.3 16.5 34.8 67.8

2500 25 1 56.4 34.8 21.6 38.3

2500 50 1 70.1 74.7 -4.6 -6.6

12500 5 1 261.1 63.3 197.8 75.8

12500 10 1 265.3 87 178.3 67.2

12500 25 1 294.1 184 110.1 37.4

12500 50 1 362 383.5 -21.5 -5.9

150 10 0.5 14.5 6 8.5 58.6

150 10 1 3.7 1.5 2.2 59.5

150 10 1.5 1.7 0.7 1.0 58.8

150 10 2 1 0.4 0.6 60.0

1250 10 0.5 107.9 36.2 71.7 66.5

1250 10 1 26.5 8.3 18.2 68.7

1250 10 1.5 12.9 4.1 8.8 68.2

1250 10 2 7.2 2.3 4.9 68.1

2500 10 0.5 219.2 71 148.2 67.6

2500 10 1 51.3 16.5 34.8 67.8

2500 10 1.5 25.4 8 17.4 68.5

2500 10 2 14.6 4.5 10.1 69.2

12500 10 0.5 1146.3 358.4 787.9 68.7

12500 10 1 265.3 87 178.3 67.2

12500 10 1.5 130 40.8 89.2 68.6

12500 10 2 73.2 22.9 50.3 68.7

% improvementTimeGain (s)
Accelerated 

KDE (s)

Generic 

KDE (s)
n hs cell size

 

Table 1: Computational performance of the generic Kernel Density Estimation and its 

accelerated version, for different bandwidths (hs), cell sizes and sample sizes (n). 
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3. Monitoring Dengue Fever Outbreaks 
We illustrate OnTAPP’s functionality for the visualization and exploration of vector-borne 

surveillance data in an urban environment. We use a geocoded dataset of dengue fever events in 

the city of Cali, Colombia, during an outbreak in 2010. During that time period, a total of 

n=11,760 cases were extracted from the Public Health Surveillance System (SIVIGILA). 

Currently, the city of Cali, Colombia produces a map on aggregated data annually at a very 

coarse geographical level (commune level), and a finer level (neighborhood) when deemed 

necessary. 

 

 

Figure 4: Illustration of spatial analysis results of OnTAPP. a): dengue fever cases for the city of 

Cali, Colombia for the first two weeks of February 2010 (n=659). b): kernel density estimation 

with a radius of 1,000 meters. c): space-time connections of 5 days and 1,000 meters. d): patients 

February 1-Februrary 2, 2010 are selected, with separation of 250 meters and 500 meters). 
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Individuals reported dengue fever symptoms at local hospitals on a daily basis (unit=Julian 

date). We use patients for the first two weeks of February 2010 (see Figure 4a), which 

corresponds to an outbreak with n=659 cases successfully geocoded and geomasked at the street 

intersection level for confidentiality purposes (Delmelle et al. 2013). 

The Accelerated KDE algorithm is applied with spatial bandwidth ℎ𝒔=1,000 meters (based on 

a K-function algorithm) and a cell size of 25 m. Different clusters become noticeable, in the 

northeast of the city along main arterial streets and populated areas (Figure 4b). Compactness 

and geographic extent of clusters varies significantly:  a detailed description of these clusters is 

also given by Delmelle et al. (2013). Pairs of points separated by 5 days or less and within 1,000 

meters of one another are connected together and visualized by straight line segments (Figure 

4c). Epidemiologists are also interested to identify the space-time signature of a disease, for 

instance by using space-time linkages, at a local scale. This in turn allows identifying focal 

points from where the disease is spreading. The number of connections varies when the space-

time constraint becomes stricter (Figure 4d). In our web application, the user can easily zoom in 

and out to identify local variability in the kernel density estimation and distribution of events.  

 

4. Discussion and Conclusions 
Our web-based GIS toolkit

4
 can conduct exploratory spatial data analysis at individual-level 

point data and facilitates the discovery of underlying spatial patterns. The toolkit was specifically 

designed for health authorities with limited access to GIS software, and improved sequentially 

with feedback from epidemiologists. The results were used by local epidemiologists in the city of 

Cali in order to help them better understand the variation of dengue fever outbreaks at a 

neighborhood level. From a public health perspective, OnTAPP has a strong potential for health 

professionals with limited GIS access or capabilities to generate hypotheses based upon these 

patterns, and then conduct in-depth investigation to estimate the relationship between the spatial 

distribution of an infectious disease and socio-economic status after more spatially explicit 

information such as demographic information, income, age data etc. are added. 

During the design phase of the application with epidemiologists, it became obvious that (1) 

there was a critical need to support cartographic solutions at a local scale level (not aggregated), 

which could potentially increase individual awareness of the spread of the disease. We therefore 

added the functionality of space-time linkages, and (2) the computational performance of the 

Kernel Density Estimation algorithm was accelerated by restraining the search locally. Our 

proposed framework complies with the generic Web GIS architecture where the client side sends 

requests to the server side, while the server carries out corresponding spatial analytical functions 

and returns the results to the client side for visualization. The benefits of our web-based toolkit 

were illustrated using an example of the outbreak of dengue fever, an infectious disease.   

From a public health perspective, OnTAPP has a strong potential for health professionals with 

limited GIS access or capabilities to generate hypotheses based upon these patterns, and then 

conduct in-depth investigation to estimate the relationship between the spatial distribution of an 

infectious disease and environmental factors. In the case of the city of Cali, the Health 

Municipality has two objectives while monitoring and controlling dengue fever: environmental 

health and public health epidemiological surveillance. Currently, the environmental health 

dependency has an external contractor managing the system, while the public health 

                                                        
4
 A short movie highlighting the application is available at 

https://docs.google.com/open?id=0ByYHaCP6iioTdE1WUzFLVkl2aXM 
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epidemiological surveillance group consists of two to three individuals including the head 

epidemiologist. The staff of the epidemiological unit relies on Epi info™, an open source 

software distributed and developed by the Center of Disease Control (CDC) for disease 

surveillance. However, Epi info™ lacks strong spatial analytical methodologies, therefore 

shifting to the web-based toolkit presented here should be simple with basic training. The web-

based toolkit will allow the health municipality staff conduct analysis that currently is not 

available, in real time, allowing them to make quick decisions that can aid in the control and 

spread of the dengue virus. 

Our web-based toolkit addresses some of the critical limitations of current web-based GIS, 

specifically 1) improved (faster) spatial analytical capabilities at the individual level, 2) 

interaction between the user and the system is two-ways (users can contribute data to the server 

and access to the spatial analysis results) and 3) support for spatial and temporal querying 

capabilities.  Our proposed framework is scalable and extensible; suggesting that integration for 

additional analytical functions or map layers from external data sources is feasible.  More data 

layers can easily be integrated in our framework, from different sorts of data sources as Web map 

service. In addition, new analytical functions can be plugged in the application without 

modification of existing functions, such as confirmatory approaches. As an extension to our 

toolkit, several Monte Carlo simulations can easily be conducted to extract associated statistical 

significance, or p-values (Sabel et al. 2006; Delmelle et al. 2011) and these simulations can be 

exported to commercial GIS software. Although not reported here, we tested the significance of 

our results running multiple Monte-Carlo simulations of dengue fever cases. The set of Monte 

Carlo simulations represented dengue fever cases at the individual level, where neighborhoods of 

higher population density received a greater amount of cases. In all instances (except outside the 

city boundary), the observed KDE values were higher than the ones obtained for Monte-Carlo 

simulations, using similar bandwidth and cell size.  

The set of online geospatial analytical tools presented in this study can be beneficial for 

public health professionals to conduct timely monitoring and mapping over the Web, which is 

particularly effective in developing countries when GIS resources are scarce. This information 

can be used in concert with predicted risk maps (Hongoh et al. 2012), for instance for cities that 

maintain a database with absence/presence of vectors. Since the toolkit only requires 

spatiotemporally explicit coordinates at the individual point level, its use can be applied to other 

disciplines such as criminology (Chainey and Ratcliffe 2005) and ecology, for instance, to 

determine animal home range. 

We see several areas for future research. First, the classification procedure that is used to 

generate the image produced by the KDE algorithm assumes that the kernel density map is 

normally distributed. Second, other cartographic classifications algorithms (Jenks 1967) could 

easily be embedded. Along those lines, user interactivity can be enhanced by manually selecting 

the number of classes for KDE mapping. Third, introducing a bandwidth slide bar can give the 

user higher flexibility to discover and explore unknown patterns in the data. The fourth issue that 

merits further investigation is the computational performance of the accelerated KDE, for 

instance, through parallel computing or batch processing, which can be particularly useful when 

using adaptive bandwidth for non-homogeneous populations (Carlos et al. 2010). On-line 

geocoding tools could potentially be linked to the OnTAPP interface (Roongpiboonsopit and 

Karimi 2010). Additional avenues of future research include the implementation of the 

Accelerated Kernel Density Approach onto a network (Xie and Yan 2008). Finally, the Kernel 

Density Estimation does not include a temporally explicit component (temporal segments of the 
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data can be queried, however). We are currently working on an extension of the KDE in time 

(Delmelle et al.  2014). 
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