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ABSTRACT: 

 

Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, 

diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in 

a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between 

computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal 

domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive 

decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects 

near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and 

temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. 

We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne 

disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches 

substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great 

accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.  
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1. INTRODUCTION 

Performance and computational complexity have hampered 

scientific investigations and decision making, which is 

especially dreadful in such arenas as spatial epidemiology, 

where inefficient computation may impact the timely detection 

of infectious disease clusters. First, the amount of data collected 

increases by orders of magnitude with the advancement of, for 

example, sensor systems and automated geocoding abilities 

which allows for increasingly realistic representations of spatial 

processes. Second, many geographic models are 

computationally intensive because of search strategies that 

explode as a function of problem size due to multiple levels of 

nested iterations. As more scientists discover new analysis 

paradigms that are data-intensive, increasing computational 

requirements raise the need for high performance computing 

(Armstrong, 2000). Implementing parallel strategies has the 

potential to meet the demand for increased processing power 

(Wilkinson and Allen, 1999). Therefore, we need to design, 

modify, or extend new geographic algorithms, taking advantage 

of parallel computing structures, and allowing us to mitigate 

performance and computational complexity issues for better 

support of scientific discovery and decision making.  

Parallel computing allows for time-efficient processing of 

massive datasets, but to prevent workload imbalance and 

therefore, processing inefficiency, their spatiotemporal 

characteristics have to be accounted for (Wang and Armstrong, 

2003). The general strategy is to decompose the spatiotemporal 

domain of a dataset, distribute the resulting subdomains to 

multiple computing resources for concurrent processing, and 

finally collect and reassemble the results (Wilkinson and Allen, 

1999).  While random or uniform data can be decomposed by 

non-adaptive column-wise division or regular tessellations, 

doing so for clustered datasets results in heterogeneous 

subdomains in terms of computational intensity as they contain 

uneven quantities of data (Ding and Densham, 1996). 

Therefore, subdomains of similar or equal computational 

intensity are conducive for load balancing and for flexibility in 

distributing jobs to processor queues. Consequently, adaptive 

and recursive domain decomposition methods, such as 

quadtrees, have been widely used for mitigating workload 

imbalance for 2D models within the geographical realm 

(Turton, 2003; Wang and Armstrong, 2003). 

However, the recent trend within geographic research to include 

time as a third dimension, together with the advent of big 

spatiotemporal data, further increase the importance of 

strategies to handle complex computations on massive datasets 

(Kwan and Neutens, 2014). Therefore, we need to revisit the 

domain decomposition strategy, and complement it with the 

ability to handle real-world massive spatiotemporal data, in 

order to meet the recently emerging requirements of scientific 

investigation and decision making. To our knowledge, the 

recursive decomposition of massive spatiotemporal datasets for 



 

parallel processing has been insufficiently addressed in the 

literature so far.  

In this study, we perform octtree-based recursive decomposition 

of the space-time domain for parallel computation of kernel 

density on a spatiotemporally explicit dataset. In order to handle 

edge effects near subdomain boundaries, we implement 

spatiotemporal buffers to include adjacent data points that are 

within the spatial and temporal bandwidths, but outside the 

subdomain under consideration. To balance workloads among 

processors, we quantify the computational intensity of each 

subdomain for subsequent distribution among processor queues, 

equalizing the cumulative computational intensity among them. 

We illustrate the benefits of our methodology using a space-

time epidemiological dataset of Dengue fever, an infectious 

vector-borne disease. We report metrics and results that 

illustrate gain in performance and workload balance of our 

parallel implementation. Our work contributes to the 

advancement of parallel strategies for complex computations 

associated with the analysis of massive spatiotemporal datasets 

and their inherent heterogeneity. 

 

 

2. DATA 

Dengue fever is vector-borne disease which is transmitted 

between humans by mosquitoes of the genus Aedes, posing 

severe problems to communities and health care providers 

(Delmelle et al., 2014). We used geocoded cases of Dengue 

fever in the city of Cali, Colombia during the epidemic of 2010. 

The data stems from the public health surveillance system and 

contains 9,555 records, for which coordinates and a timestamp 

(x, y, t) are provided. The dataset is highly clustered in space 

and time, as the majority of cases occurred within certain 

neighborhoods during the first 4-5 months of the year. The 

Dengue cases were geocoded to the closest street intersection, 

which guarantees a certain degree of confidentiality. The 

spatiotemporal cuboid envelope of our study area/period, 

defined by minimum/maximum values of Dengue cases, spans 

over 14,286 m in east-west direction, 21,349 m north-south, and 

over 362 days.  

 

 

3. METHOD 

3.1 Space-Time Kernel Density Estimation (STKDE) 

In order to reveal spatiotemporal patterns in our data, we 

performed STKDE for each subdomain resulting from the 

decomposition separately. STKDE is an extension of the 

traditional kernel density estimation (KDE), and has shown 

promising results in identifying spatiotemporal patterns of 

underlying datasets when visualized within the space-time cube 

framework (Delmelle et al., 2014; Demšar and Virrantaus, 

2010; Nakaya and Yano, 2010), where spatiotemporal data are 

displayed using two spatial (x, y) and a temporal dimension (t). 

 

The output is a 3D raster volume where each voxel (volumetric 

pixel) is assigned a density estimate based on the surrounding 

point data. The space-time density is estimated by Equation 1 

(same notation as Delmelle et al., 2014): 

 

 
 

(1) 

Density of each voxel s with coordinates (x, y, t) is 

estimated one-by-one, based on data points (xi, yi, ti) 

surrounding it. Each point that falls within the neighborhood of 

the voxel is weighted using a spatial and temporal kernel 

function, ks and kt, respectively. We used the Epanechnikov 

kernel (Epanechnikov, 1969) where each data point is weighted 

according to its proximity in time and space to the voxel s in 

question (the closer the data point, the higher the weight). The 

spatial and temporal distances between voxel and data point are 

given by di and ti respectively. The indicator function I(di < hs; 

ti < ht) takes on a value of 1 when di and ti are smaller than the 

spatial (hs) and temporal bandwidth (ht) respectively, otherwise 

0. The values of hs and ht are usually identified by a preliminary 

computation of space-time K-function. For STKDE of the 

Dengue fever dataset, we set hs and ht to 750 meters and 3 days, 

respectively, which was determined by Delmelle et al. (2014). 

We used a spatiotemporal voxel-resolution of 100m * 100m * 1 

day within our experimental treatments. 

 

3.2 Spatiotemporal Domain Decomposition 

To perform parallel STKDE, we decomposed the Dengue fever 

dataset for subsequent distribution of the resulting subdomains 

to processor queues for concurrent processing. We created 

subdomains of similar computational intensity in order to 

achieve equal workloads among CPUs. Computational intensity 

of STKDE mainly depends on 1) the number of data points 

within the subdomain, 2) the number of voxels, which is given 

by subdomain size, as voxels are structured within a regularly 

spaced 3D grid. In order to account for Dengue fever data 

structure, we used recursive spatiotemporal domain 

decomposition. Recursion is a method where the solution to a 

problem depends on solutions to smaller instances of the same 

problem (Graham, 1994). Most programming languages support 

recursion by allowing a function to call itself, given that the 

stopping criterion is not met yet (we use Python 3.3.5).  

 

The algorithm starts with defining the bounding box of the 

dataset, using the minimum and maximum values of each 

dimension. Step 1 initializes the first level of decomposition 

(LD1) by dividing each of the three axes into two equal parts 

(23=8), generating 8 cuboid subdomains (Figure 1). Step 2 

iterates through each subdomain and records the number of data 

points Np and the number of voxels Nv found within. If Np is 

above a specified threshold Np(max) or if the minimum level of 

decomposition LD(min) is not reached yet, step 3 will further 

decompose the subdomain in a recursive manner (reaching 

LD2), again into 8 subdomains, starting again from step 1. If Np 

is below the threshold and if LD(min) is reached, step 4 writes 

the space-time coordinates of data points that are within the 

current subdomain to a file and the algorithm iterates to the next 

subdomain. If Np = 0, it moves on without recording any 

coordinates. Movement across subdomains takes place in 

Morton order, describing a space-filling z-curve that maps 3D 

space to one dimension while preserving locality of the data 

(Bader, 2012). The decomposition produces subdomains that 

share a set of characteristics: 1) They contain a number of data 

points Np below a specified threshold Np(max). 2) Their size is 

restricted by the minimum level of decomposition LD(min), 

which results in subdomains of smaller or equal size than what 

LD(min) allows for. The size of the subdomains, and therefore, 

the number of voxels they contain Nv, decreases with increasing 

LD in a stepwise manner. The minimum level of decomposition 

restriction guarantees a certain degree of homogeneity in 

subdomain size as it prevents the formation of extraordinarily 

large subdomains that contain only few data points but 



 

countless voxels, which proved to be detrimental to workload 

balance. For our experimental treatments, we set Np = 50 and 

LD(min) = 4.  

 

 
 

Figure 1: Steps of the recursive octtree-based spatiotemporal 

domain decomposition algorithm. 

 

 

3.3 Space-Time Buffer Implementation 

In order to avoid edge effects in the STKDE which are likely to 

occur near subdomain boundaries due to the spatial (hs) and 

temporal bandwidth (ht), we implemented space-time buffers of 

distance hs and ht around all subdomains. Therefore, if a data 

point falls outside a subdomain but inside the buffer, the point 

will still be assigned to that subdomain (and contribute to Np). 

For sake of simplicity and for easier visualization, Figure 2 

provides a conceptual view of the space-time buffer 

implementation in 2D. As the same concepts apply for 3D, we 

assume the reader is able to expand her/his mental model of the 

2D buffer representation to the spatiotemporal domain (3D). 

Since the buffers from neighboring subdomains overlap each 

other, as well as they overlap the neighboring subdomains 

themselves, data points that fall within these areas are assigned 

to both subdomains. Therefore, a data point can be assigned to a 

maximum of 8 subdomains, possibly creating considerable data 

redundancy, which, however, has not been a problem in our 

work so far. 

 

3.4 Load Balancing 

For each subdomain SDi that resulted from the decomposition, 

we quantified computational intensity CI as a function of the 

product of 1) the number of data points Np(SDi) and 2) the 

number of voxels Nv(SDi) that are contained in the 

corresponding subdomain (Equation 2). 

 

     (2) 

 

To ensure balanced workloads, we distributed the sequence of 

subdomains (SD1, SD2, …, SDi), resulting from 3D to 1D 

mapping by space filling curve, to the processors by equalizing 

the cumulative CI. Figure 3 provides a conceptual illustration of 

the approach, where processors receive variable numbers of 

subdomains but similar workloads. The importance of 

accurately quantifying CI for our endeavour cannot be stressed 

enough, as failure of doing so results in failure of balancing 

workloads. In order to evaluate the accuracy of our 

quantification of CI, we compared it to execution time T(SDi) 

for each subdomain. T(SDi) is the actual manifestation of the 

workload which CI represents, therefore we used linear 

regression and report R2 to indicate quantification accuracy. 

 

 
 

Figure 2: Buffer implementation in 2D with example data 

points. Each subdomain (solid black lines) is surrounded by a 

buffer (dashed grey lines), that therefore, overlap with each 

other and neighboring subdomains. Example: Point 1 belongs to 

SD1 and to the buffer of SD3. Point 2 belongs to SD2, and to the 

buffers of SD1, SD3, SD4. 

 

 

 
 

Figure 3: Conceptual illustration of load balancing. The 

cumulative computational intensity CI is evenly distributed 

among processors by assigning a varying number of 

subdomains. 



 

3.5 High-Performance Parallel Computing 

After decomposing the dataset and establishing balanced 

workloads, we performed STKDE in parallel on the VIPER 

high-performance computing cluster at the University of North 

Carolina at Charlotte, which has 97 nodes and 984 CPUs that 

are dual Intel Xeon 2.93 GHz 4-8 core processors with 24-128 

GBs of RAM. We varied the number of CPUs in several 

treatments by varying the number of nodes, choosing one CPU 

per node. VIPER is a Linux-based cluster that runs TORQUE 

job scheduling software. We employ the metric of speedup S to 

evaluate the performance of our parallel STKDE 

implementation. Speedup is widely used in many parallel 

applications (Wilkinson and Allen, 1999) and is defined as the 

ratio between the execution time of the sequential algorithm Ts 

by that of the parallel algorithm Tp (see Equation 3), which is 

determined by the slowest processor: 

 

 

                   (3)        

 

 

The closer the speedup is to the number of processors, the better 

the performance of the parallel algorithm (except in the case of 

superlinear speedup, when the parallel algorithm uses 

computing resources more efficiently than the sequential one). 

 

 

4. RESULTS 

4.1 Execution Times and Speedup 

The decomposition resulted in i = 7,177 subdomains, which 

itself required 62.96 seconds to compute. We applied 5 different 

treatments, assigning the subdomains to 1, 2, 4, 6, 8 processors 

for parallel STKDE. With increasing CPUs, execution time T 

decreased from 1377.54 seconds (sequential time) to 182.90 

seconds (parallel time using 8 CPUs) while speedup S increased 

from 1.93 (2 CPUs) to 7.53 (8 CPUs), both in a non-linear 

manner (Figure 4). The resulting 3D grid of density values 

contains 6,302,800 voxels. 

 

 
 

Figure 4: Execution time (T) in seconds and Speedup (S) for 1, 

2, 4, 6 and 8 CPUs. 

 

 

4.2 Quantification of Computational Intensity 

The relationship between our quantification of computational 

intensity CI(SDi) and execution time T(SDi) per subdomain, 

which is the actual manifestation of the workload it represents, 

is linear, with an R2 of 0.99. Figure 5 reveals the presence of 

outliers where CI was either under- or overestimated. 

Subdomain execution times remain below 1.6 seconds. 

 

 
 

Figure 5: Quantification of computational intensity CI versus 

execution time T(SDi) in seconds (for each subdomain). 

 

 

4.3 Load Balancing 

The accuracy in quantifying CI results in a high level of 

workload balance, which improves when increasing the number 

of processors. Figure 6 illustrates execution time T per 

processor for our 4 parallel experimental treatments. Using 2 

processors, the gap between fastest and slowest processor is 

53.67 seconds. This gap decreases to 19.19 seconds when using 

8 processors. 

 

 
 

Figure 6: Load balancing, execution time (T) per processor in 

seconds. 

 

 

5. DISCUSSION AND CONCLUSIONS 

The reduction of execution time when increasing the number of 

processors suggests that our approach of spatiotemporal domain 

decomposition for parallel STKDE was effective. The use of 

recursive octree decomposition mitigated the problem of 

workload imbalance between processors and therefore, 

successfully handled heterogeneity in spatiotemporal data.  The 

quantification of computational intensity is accurate enough to 



 

allow for balanced workloads. Our implementation of space-

time buffers prevented edge effects in the resulting 3D grid of 

space-time kernel density values of Dengue fever cases during 

the 2010 epidemic in Cali, Colombia. 

 

Improvements of our approach will focus on eliminating 

outliers in computational intensity (Figure 5), which we suspect 

are caused by the spatiotemporal structure of data points within 

the subdomain. However, the potential of the outliers to create 

workload imbalance is limited, as they make up a small fraction 

of the entire dataset (0.1%) and none of their execution times 

exceeded 1 second. To date, decomposition time has not been 

an issue yet, but it might become as we tackle bigger datasets. 

In addition, as the level of recursion supported by the 

programming environment may be limited, we anticipate an 

impediment of our approach when attempting fine-grain 

decomposition of big datasets.         

 

Our future research will be directed towards testing robustness 

of the decomposition algorithm by performing sensitivity 

analysis through parameter variation and subsequent analysis of 

the effect on execution time and workload balance. Parameters 

of interest are the maximum number of data points per 

subdomain, the spatiotemporal resolution of the resulting kernel 

density grid, the size of the space-time buffers, and the size of 

the input dataset. We recognize that, due to its limited size, the 

Dengue fever dataset cannot be described as “massive”, but it is 

rich in hidden patterns and we see it as a useful first step for the 

development of our parallel approach before moving on to 

bigger datasets. However, since performing STKDE is 

computationally challenging, as is illustrated by the large 

number of voxels in the resulting density grid, we consider it a 

“massive” computation.           

 

Our decomposition strategy can be applied to other space-time 

analysis methods as well. This work contributes to the 

advancement of parallel strategies for analysis of big 

spatiotemporal data. We hope that the concepts and methods 

presented here will benefit related fields, such as spatial 

epidemiology, and enable decision-making that is informed by 

the capacity of big data analytics. 
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