

SPATIOTEMPORAL DOMAIN DECOMPOSITION FOR MASSIVE

PARALLEL COMPUTATION OF SPACE-TIME KERNEL DENSITY

Alexander Hohl a,b*, Eric M. Delmelle a,b, Wenwu Tang a,b

a Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte,

NC, 28223, USA
b Center for Applied Geographic Information Science, University of North Carolina at Charlotte, 9201 University City Blvd,

Charlotte, NC, 28223, USA

Email: (ahohl, Eric.Delmelle, WenwuTang)@uncc.edu

KEY WORDS: Domain Decomposition, Parallel Computing, Space-Time Analysis, Octtree, Kernel Density Estimation

ABSTRACT:

Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size,

diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in

a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between

computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal

domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive

decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects

near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and

temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors.

We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne

disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches

substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great

accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.

* Corresponding author

1. INTRODUCTION

Performance and computational complexity have hampered

scientific investigations and decision making, which is

especially dreadful in such arenas as spatial epidemiology,

where inefficient computation may impact the timely detection

of infectious disease clusters. First, the amount of data collected

increases by orders of magnitude with the advancement of, for

example, sensor systems and automated geocoding abilities

which allows for increasingly realistic representations of spatial

processes. Second, many geographic models are

computationally intensive because of search strategies that

explode as a function of problem size due to multiple levels of

nested iterations. As more scientists discover new analysis

paradigms that are data-intensive, increasing computational

requirements raise the need for high performance computing

(Armstrong, 2000). Implementing parallel strategies has the

potential to meet the demand for increased processing power

(Wilkinson and Allen, 1999). Therefore, we need to design,

modify, or extend new geographic algorithms, taking advantage

of parallel computing structures, and allowing us to mitigate

performance and computational complexity issues for better

support of scientific discovery and decision making.

Parallel computing allows for time-efficient processing of

massive datasets, but to prevent workload imbalance and

therefore, processing inefficiency, their spatiotemporal

characteristics have to be accounted for (Wang and Armstrong,

2003). The general strategy is to decompose the spatiotemporal

domain of a dataset, distribute the resulting subdomains to

multiple computing resources for concurrent processing, and

finally collect and reassemble the results (Wilkinson and Allen,

1999). While random or uniform data can be decomposed by

non-adaptive column-wise division or regular tessellations,

doing so for clustered datasets results in heterogeneous

subdomains in terms of computational intensity as they contain

uneven quantities of data (Ding and Densham, 1996).

Therefore, subdomains of similar or equal computational

intensity are conducive for load balancing and for flexibility in

distributing jobs to processor queues. Consequently, adaptive

and recursive domain decomposition methods, such as

quadtrees, have been widely used for mitigating workload

imbalance for 2D models within the geographical realm

(Turton, 2003; Wang and Armstrong, 2003).

However, the recent trend within geographic research to include

time as a third dimension, together with the advent of big

spatiotemporal data, further increase the importance of

strategies to handle complex computations on massive datasets

(Kwan and Neutens, 2014). Therefore, we need to revisit the

domain decomposition strategy, and complement it with the

ability to handle real-world massive spatiotemporal data, in

order to meet the recently emerging requirements of scientific

investigation and decision making. To our knowledge, the

recursive decomposition of massive spatiotemporal datasets for

parallel processing has been insufficiently addressed in the

literature so far.

In this study, we perform octtree-based recursive decomposition

of the space-time domain for parallel computation of kernel

density on a spatiotemporally explicit dataset. In order to handle

edge effects near subdomain boundaries, we implement

spatiotemporal buffers to include adjacent data points that are

within the spatial and temporal bandwidths, but outside the

subdomain under consideration. To balance workloads among

processors, we quantify the computational intensity of each

subdomain for subsequent distribution among processor queues,

equalizing the cumulative computational intensity among them.

We illustrate the benefits of our methodology using a space-

time epidemiological dataset of Dengue fever, an infectious

vector-borne disease. We report metrics and results that

illustrate gain in performance and workload balance of our

parallel implementation. Our work contributes to the

advancement of parallel strategies for complex computations

associated with the analysis of massive spatiotemporal datasets

and their inherent heterogeneity.

2. DATA

Dengue fever is vector-borne disease which is transmitted

between humans by mosquitoes of the genus Aedes, posing

severe problems to communities and health care providers

(Delmelle et al., 2014). We used geocoded cases of Dengue

fever in the city of Cali, Colombia during the epidemic of 2010.

The data stems from the public health surveillance system and

contains 9,555 records, for which coordinates and a timestamp

(x, y, t) are provided. The dataset is highly clustered in space

and time, as the majority of cases occurred within certain

neighborhoods during the first 4-5 months of the year. The

Dengue cases were geocoded to the closest street intersection,

which guarantees a certain degree of confidentiality. The

spatiotemporal cuboid envelope of our study area/period,

defined by minimum/maximum values of Dengue cases, spans

over 14,286 m in east-west direction, 21,349 m north-south, and

over 362 days.

3. METHOD

3.1 Space-Time Kernel Density Estimation (STKDE)

In order to reveal spatiotemporal patterns in our data, we

performed STKDE for each subdomain resulting from the

decomposition separately. STKDE is an extension of the

traditional kernel density estimation (KDE), and has shown

promising results in identifying spatiotemporal patterns of

underlying datasets when visualized within the space-time cube

framework (Delmelle et al., 2014; Demšar and Virrantaus,

2010; Nakaya and Yano, 2010), where spatiotemporal data are

displayed using two spatial (x, y) and a temporal dimension (t).

The output is a 3D raster volume where each voxel (volumetric

pixel) is assigned a density estimate based on the surrounding

point data. The space-time density is estimated by Equation 1

(same notation as Delmelle et al., 2014):

(1)

Density of each voxel s with coordinates (x, y, t) is

estimated one-by-one, based on data points (xi, yi, ti)

surrounding it. Each point that falls within the neighborhood of

the voxel is weighted using a spatial and temporal kernel

function, ks and kt, respectively. We used the Epanechnikov

kernel (Epanechnikov, 1969) where each data point is weighted

according to its proximity in time and space to the voxel s in

question (the closer the data point, the higher the weight). The

spatial and temporal distances between voxel and data point are

given by di and ti respectively. The indicator function I(di < hs;

ti < ht) takes on a value of 1 when di and ti are smaller than the

spatial (hs) and temporal bandwidth (ht) respectively, otherwise

0. The values of hs and ht are usually identified by a preliminary

computation of space-time K-function. For STKDE of the

Dengue fever dataset, we set hs and ht to 750 meters and 3 days,

respectively, which was determined by Delmelle et al. (2014).

We used a spatiotemporal voxel-resolution of 100m * 100m * 1

day within our experimental treatments.

3.2 Spatiotemporal Domain Decomposition

To perform parallel STKDE, we decomposed the Dengue fever

dataset for subsequent distribution of the resulting subdomains

to processor queues for concurrent processing. We created

subdomains of similar computational intensity in order to

achieve equal workloads among CPUs. Computational intensity

of STKDE mainly depends on 1) the number of data points

within the subdomain, 2) the number of voxels, which is given

by subdomain size, as voxels are structured within a regularly

spaced 3D grid. In order to account for Dengue fever data

structure, we used recursive spatiotemporal domain

decomposition. Recursion is a method where the solution to a

problem depends on solutions to smaller instances of the same

problem (Graham, 1994). Most programming languages support

recursion by allowing a function to call itself, given that the

stopping criterion is not met yet (we use Python 3.3.5).

The algorithm starts with defining the bounding box of the

dataset, using the minimum and maximum values of each

dimension. Step 1 initializes the first level of decomposition

(LD1) by dividing each of the three axes into two equal parts

(23=8), generating 8 cuboid subdomains (Figure 1). Step 2

iterates through each subdomain and records the number of data

points Np and the number of voxels Nv found within. If Np is

above a specified threshold Np(max) or if the minimum level of

decomposition LD(min) is not reached yet, step 3 will further

decompose the subdomain in a recursive manner (reaching

LD2), again into 8 subdomains, starting again from step 1. If Np

is below the threshold and if LD(min) is reached, step 4 writes

the space-time coordinates of data points that are within the

current subdomain to a file and the algorithm iterates to the next

subdomain. If Np = 0, it moves on without recording any

coordinates. Movement across subdomains takes place in

Morton order, describing a space-filling z-curve that maps 3D

space to one dimension while preserving locality of the data

(Bader, 2012). The decomposition produces subdomains that

share a set of characteristics: 1) They contain a number of data

points Np below a specified threshold Np(max). 2) Their size is

restricted by the minimum level of decomposition LD(min),

which results in subdomains of smaller or equal size than what

LD(min) allows for. The size of the subdomains, and therefore,

the number of voxels they contain Nv, decreases with increasing

LD in a stepwise manner. The minimum level of decomposition

restriction guarantees a certain degree of homogeneity in

subdomain size as it prevents the formation of extraordinarily

large subdomains that contain only few data points but

countless voxels, which proved to be detrimental to workload

balance. For our experimental treatments, we set Np = 50 and

LD(min) = 4.

Figure 1: Steps of the recursive octtree-based spatiotemporal

domain decomposition algorithm.

3.3 Space-Time Buffer Implementation

In order to avoid edge effects in the STKDE which are likely to

occur near subdomain boundaries due to the spatial (hs) and

temporal bandwidth (ht), we implemented space-time buffers of

distance hs and ht around all subdomains. Therefore, if a data

point falls outside a subdomain but inside the buffer, the point

will still be assigned to that subdomain (and contribute to Np).

For sake of simplicity and for easier visualization, Figure 2

provides a conceptual view of the space-time buffer

implementation in 2D. As the same concepts apply for 3D, we

assume the reader is able to expand her/his mental model of the

2D buffer representation to the spatiotemporal domain (3D).

Since the buffers from neighboring subdomains overlap each

other, as well as they overlap the neighboring subdomains

themselves, data points that fall within these areas are assigned

to both subdomains. Therefore, a data point can be assigned to a

maximum of 8 subdomains, possibly creating considerable data

redundancy, which, however, has not been a problem in our

work so far.

3.4 Load Balancing

For each subdomain SDi that resulted from the decomposition,

we quantified computational intensity CI as a function of the

product of 1) the number of data points Np(SDi) and 2) the

number of voxels Nv(SDi) that are contained in the

corresponding subdomain (Equation 2).

 (2)

To ensure balanced workloads, we distributed the sequence of

subdomains (SD1, SD2, …, SDi), resulting from 3D to 1D

mapping by space filling curve, to the processors by equalizing

the cumulative CI. Figure 3 provides a conceptual illustration of

the approach, where processors receive variable numbers of

subdomains but similar workloads. The importance of

accurately quantifying CI for our endeavour cannot be stressed

enough, as failure of doing so results in failure of balancing

workloads. In order to evaluate the accuracy of our

quantification of CI, we compared it to execution time T(SDi)

for each subdomain. T(SDi) is the actual manifestation of the

workload which CI represents, therefore we used linear

regression and report R2 to indicate quantification accuracy.

Figure 2: Buffer implementation in 2D with example data

points. Each subdomain (solid black lines) is surrounded by a

buffer (dashed grey lines), that therefore, overlap with each

other and neighboring subdomains. Example: Point 1 belongs to

SD1 and to the buffer of SD3. Point 2 belongs to SD2, and to the

buffers of SD1, SD3, SD4.

Figure 3: Conceptual illustration of load balancing. The

cumulative computational intensity CI is evenly distributed

among processors by assigning a varying number of

subdomains.

3.5 High-Performance Parallel Computing

After decomposing the dataset and establishing balanced

workloads, we performed STKDE in parallel on the VIPER

high-performance computing cluster at the University of North

Carolina at Charlotte, which has 97 nodes and 984 CPUs that

are dual Intel Xeon 2.93 GHz 4-8 core processors with 24-128

GBs of RAM. We varied the number of CPUs in several

treatments by varying the number of nodes, choosing one CPU

per node. VIPER is a Linux-based cluster that runs TORQUE

job scheduling software. We employ the metric of speedup S to

evaluate the performance of our parallel STKDE

implementation. Speedup is widely used in many parallel

applications (Wilkinson and Allen, 1999) and is defined as the

ratio between the execution time of the sequential algorithm Ts

by that of the parallel algorithm Tp (see Equation 3), which is

determined by the slowest processor:

 (3)

The closer the speedup is to the number of processors, the better

the performance of the parallel algorithm (except in the case of

superlinear speedup, when the parallel algorithm uses

computing resources more efficiently than the sequential one).

4. RESULTS

4.1 Execution Times and Speedup

The decomposition resulted in i = 7,177 subdomains, which

itself required 62.96 seconds to compute. We applied 5 different

treatments, assigning the subdomains to 1, 2, 4, 6, 8 processors

for parallel STKDE. With increasing CPUs, execution time T

decreased from 1377.54 seconds (sequential time) to 182.90

seconds (parallel time using 8 CPUs) while speedup S increased

from 1.93 (2 CPUs) to 7.53 (8 CPUs), both in a non-linear

manner (Figure 4). The resulting 3D grid of density values

contains 6,302,800 voxels.

Figure 4: Execution time (T) in seconds and Speedup (S) for 1,

2, 4, 6 and 8 CPUs.

4.2 Quantification of Computational Intensity

The relationship between our quantification of computational

intensity CI(SDi) and execution time T(SDi) per subdomain,

which is the actual manifestation of the workload it represents,

is linear, with an R2 of 0.99. Figure 5 reveals the presence of

outliers where CI was either under- or overestimated.

Subdomain execution times remain below 1.6 seconds.

Figure 5: Quantification of computational intensity CI versus

execution time T(SDi) in seconds (for each subdomain).

4.3 Load Balancing

The accuracy in quantifying CI results in a high level of

workload balance, which improves when increasing the number

of processors. Figure 6 illustrates execution time T per

processor for our 4 parallel experimental treatments. Using 2

processors, the gap between fastest and slowest processor is

53.67 seconds. This gap decreases to 19.19 seconds when using

8 processors.

Figure 6: Load balancing, execution time (T) per processor in

seconds.

5. DISCUSSION AND CONCLUSIONS

The reduction of execution time when increasing the number of

processors suggests that our approach of spatiotemporal domain

decomposition for parallel STKDE was effective. The use of

recursive octree decomposition mitigated the problem of

workload imbalance between processors and therefore,

successfully handled heterogeneity in spatiotemporal data. The

quantification of computational intensity is accurate enough to

allow for balanced workloads. Our implementation of space-

time buffers prevented edge effects in the resulting 3D grid of

space-time kernel density values of Dengue fever cases during

the 2010 epidemic in Cali, Colombia.

Improvements of our approach will focus on eliminating

outliers in computational intensity (Figure 5), which we suspect

are caused by the spatiotemporal structure of data points within

the subdomain. However, the potential of the outliers to create

workload imbalance is limited, as they make up a small fraction

of the entire dataset (0.1%) and none of their execution times

exceeded 1 second. To date, decomposition time has not been

an issue yet, but it might become as we tackle bigger datasets.

In addition, as the level of recursion supported by the

programming environment may be limited, we anticipate an

impediment of our approach when attempting fine-grain

decomposition of big datasets.

Our future research will be directed towards testing robustness

of the decomposition algorithm by performing sensitivity

analysis through parameter variation and subsequent analysis of

the effect on execution time and workload balance. Parameters

of interest are the maximum number of data points per

subdomain, the spatiotemporal resolution of the resulting kernel

density grid, the size of the space-time buffers, and the size of

the input dataset. We recognize that, due to its limited size, the

Dengue fever dataset cannot be described as “massive”, but it is

rich in hidden patterns and we see it as a useful first step for the

development of our parallel approach before moving on to

bigger datasets. However, since performing STKDE is

computationally challenging, as is illustrated by the large

number of voxels in the resulting density grid, we consider it a

“massive” computation.

Our decomposition strategy can be applied to other space-time

analysis methods as well. This work contributes to the

advancement of parallel strategies for analysis of big

spatiotemporal data. We hope that the concepts and methods

presented here will benefit related fields, such as spatial

epidemiology, and enable decision-making that is informed by

the capacity of big data analytics.

ACKNOWLEDGEMENTS

We would like to thank Dr. Irene Casas from Louisiana Tech

University for providing the Dengue fever dataset.

REFERENCES

Armstrong, M. P., 2000. Geography and computational science.

Annals of the Association of American Geographers, 90(1), pp.

146-156.

Bader, M., 2012. Space-filling curves: an introduction with

applications in scientific computing (Vol. 9). Springer-Verlag,

Berlin, pp. 109 - 127.

Delmelle, E., Dony, C., Casas, I., Jia, M., & Tang, W., 2014.

Visualizing the impact of space-time uncertainties on dengue

fever patterns. International Journal of Geographical

Information Science, 28(5), pp. 1107-1127.

Demšar, U., & Virrantaus, K., 2010. Space–time density of

trajectories: exploring spatio-temporal patterns in movement

data. International Journal of Geographical Information

Science, 24(10), pp. 1527-1542.

Ding, Y., & Densham, P. J., 1996. Spatial strategies for parallel

spatial modelling. International Journal of Geographical

Information Systems, 10(6), pp. 669-698.

Epanechnikov, V. A., 1969. Non-parametric estimation of a

multivariate probability density. Theory of Probability & Its

Applications, 14(1), pp. 153-158.

Graham, R. L., 1994. Concrete mathematics: a foundation for

computer science; dedicated to Leonhard Euler (1707-1783).

Pearson Education, India.

Kwan, M. P., & Neutens, T., 2014. Space-time research in

GIScience. International Journal of Geographical Information

Science, 28(5), pp. 851-854.

Nakaya, T., & Yano, K., 2010. Visualising Crime Clusters in a

Space‐time Cube: An Exploratory Data‐analysis Approach

Using Space‐time Kernel Density Estimation and Scan

Statistics. Transactions in GIS, 14(3), pp. 223-239.

Turton, I., 2003. Parallel processing in geography. In: Eds. Stan

Openshaw, Robert J. Abrahart, GeoComputation, pp. 48-65,

Taylor & Francis, London.

Wilkinson, B., & Allen, M., 1999. Parallel programming.

Prentice hall, New Jersey.

Wang, S., & Armstrong, M. P., 2003. A quadtree approach to

domain decomposition for spatial interpolation in grid

computing environments. Parallel Computing, 29(10), pp.

1481-1504.

