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Abstract 

 

The protection of critical infrastructure from natural and intentional events is a key component of 

any national security agenda. Protection schemes need to be readily identifiable and adaptable to 

complex changing environments. In this paper, we identify strategic geographic characteristics 

that impact the location of detection resources (e.g. sensors) towards the defense of regional 

critical infrastructure.  Specifically, we seek to estimate the relationship between the results of a 

variation of the traditional shortest path network interdiction problem (SPNIP) and geographical 

characteristics of the transportation infrastructure and the urban environment. Experiments 

conducted on three distinct transportation networks of different shapes and granularities (New 

York City - grid, Houston - radial, Boston - hybrid) underline the importance of geographic 

characteristics such as the proximity to resource location, attacker entry points as well as network 

coverage. Insights gained from this work are relevant to policy and decision makers to facilitate 

the development of analytical and decision-support tools capable of identifying resource 

allocation strategies.  We discuss a heuristic-based framework that prioritizes the selection of 

detection resources, reflecting the importance of geographic characteristics. The findings 

underline the importance of geographical characteristics for the allocation of resources in a 

regional setting. 

 

Keywords: Critical Infrastructure, Geographic Characteristics, GIS, Network Interdiction 

Problem, Spatial Optimization. 
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1. INTRODUCTION 

Critical infrastructure protection has always been a national security concern especially in 

large metropolitan areas (George 2008). In the last decade, however, following coordinated 

interdictions by terrorists (Brown et al. 2006; Church and Scaparra 2007), natural disasters, and 

an increased reliance on technology, networks have been more interconnected than ever before 

(Murray 2013); any disruptive event in a network has the potential of producing a cascading 

failure (Grubesic and Murray 2006). To better protect existing physical infrastructure, we 

recognize the need to evaluate the threat from a given event.  

The allocation of resources is required to support and maximize situational awareness, 

preparedness, and/or response (Yates et al. 2010). Various models of infrastructure protection 

have been proposed in the literature, such as the Network Interdiction Problem (NIP) (Wood 

1993). The NIP involves two opposing actors engaged in a war-like conflict. Actor 1 uses the 

network to optimize an objective, while Actor 2 is trying to stop this from happening by 

interdicting the arcs.  As underlined by Murray (2013), the NIP has deep ramifications in spatial 

sciences; it has a wide range of applications ranging from physical infrastructure (e.g., energy 

transmission, hazmat transport, communication networks) to non-physical (e.g., cyber security). 

Specifically, some networks are geographically more vulnerable than others due to their topology, 

arrangement, structure and morphology. However, aside from Snediker et al. (2008), geographic 

characteristics that can be incorporated in the formulation have not been systematically 

considered as they have for other network problems such as the shortest path and p-Median 

(Church and ReVelle 1976, Church et al. 2004, Reese 2006). Understanding the effects of 

geographic characteristics in network interdiction problems can guide and provide the basis for 

developing alternative solutions that would exploit such spatial characteristics (e.g., adding 

functions and constrains that incorporate such geographic characteristics) and aid in public-policy 

decisions.  

In network infrastructure protection, elements such as the type and extent of the network; 

the arrangement of links in the network; the relation between the origins, destinations, and 

allocation of defense resources; and distances between them can be strategic factors. In this paper, 

we attempt to identify key geographic characteristics of the network that directly impact the 

location of detection resources towards the defense of regional critical infrastructure.  A detailed 

experimental design embedded within a GIS environment is implemented. A variation of the 

traditional shortest path network interdiction problem (SPNIP) is used as the basis for 

experimentation.  SPNIP is chosen due to its conceptual simplicity and the available body of 

knowledge on this problem (Wood 1993, Israeli and Wood 2002, Bayrak and Baily 2008, Yates 

and Casas 2012).   Additionally, its applications to critical infrastructure modeling demonstrate its 

usefulness and acceptance within the infrastructure protection community (Church et al. 2004, 

Salmeron et al. 2004, Matisziw et al. 2007, Yates et al. 2010).  

Insights gained from this work are important for policy and decision makers to facilitate 

the development of analytical and decision-support tools capable of quickly identifying strong 

resource allocation strategies.  These tools are useful in their ability to allow policy and decision 

makers to modify and update geographic parameters and obtain good allocation strategies thereby 

increasing their situational awareness and response to threats/attacks (Snediker et al 2008). 

The remainder of our paper is structured as follows: Section 2 provides an overview of 

existing literature and underlines the contributions of our work.  Section 3 outlines the 

methodology and introduces the experimental design and the geographic area networks.  We 

present our results in Section 4, followed by a discussion in Section 5, where we present a 

framework to incorporate our results in a heuristic. Concluding remarks and directions for future 

research are presented in the last section. 
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2. LITERATURE REVIEW 

The shortest path network interdiction problem (SPNIP) is a discrete optimization model 

that uses an attacker and defender in competition with the former attempting to reach pre-

designated critical infrastructure targets and the later attempting to detect these intrusions.  Prior 

to the introduction of SPNIP, Wood (1993) presented an optimization model simply referred to as 

the network interdiction problem (NIP).  In this model, the attacker is responsible for the 

interdiction, or destruction (either whole or in-part) of a transportation network being used by the 

defender to transport goods from given origins to destinations.  Dual competing objectives have 

the defender maximizing throughput on the network while the attacker seeks to minimize this 

maximum throughput.  As the model gained traction in defense/logistics communities, many 

variations emerged, including the SPNIP.  With its first instantiation in Israeli and Wood (2002), 

the SPNIP maintained its competing objective and attacker-defender format, but the decision 

variables changed.  Whereas network interdiction considers throughput and network flows, 

SPNIP uses length of the arcs in a network as its metric.  Attackers interdict an arc by either 

destroying or lengthening it.  The defender identifies the shortest path through the network 

between a set of entry points and destinations and the attacker maximizes this minimum path. 

Since Israeli and Wood (2002) introduced SPNIP, formulations have emerged in Multi-

Commodity Network Interdiction Flow (Lim and Smith 2007), asymmetric information in 

network interdiction (Bayrak and Baily 2008), stochastic versions of the deterministic SPNIP 

(Zhang et al. 2005), and alternative objective models such as Zhuang and Bier (2007) which 

balances protection and risk.  Brown et al. (2006) extended the two-level attacker-defender model 

to a three-level attacker-defender-attacker and defender-attacker-defender formulation (referring 

to the order of information conveyed between the two-players).  Israeli and Wood (2002), Brown 

et al. (2006), and others have discussed robust solution approaches and approximations for the 

SPNIP. They motivate standard decomposition approaches based on Benders Decomposition 

(Bard 1998), an algorithm which is proven to yield a certificate of optimality to such bi-level 

problems.  Yates and Lakshmanan (2011) demonstrate how a knapsack-based formulation can 

strongly approximate SPNIP solutions. 

Geographers have also developed their own formulation while attempting to solve 

network-based optimization problems (Church et al. 2004, Matisziw et al. 2007, Murray et al. 

2007).  They underline the importance of location-based and spatial properties and the power that 

these properties have in formulating constraints to reduce a problems feasible region or to fix its 

variables for a more concise and simplistic formulation.  The notion of an r-interdiction problem 

was introduced by Church et al.  (2004) and expanded upon Church’s previous constraint 

reformulation for the well known p-Median problem (Church and ReVelle 1976, Church et al. 

2004).  Interdiction was also modeled in Murray et al. (2007) using the interdiction of an internet 

service protocol network as its basis.  All of these adaptations are in addition to the large amount 

of literature focusing on the contributory power of geographic information systems (GIS) to the 

data input, extraction, overlay, proximity and visualization challenges inherent in such network-

based formulations (Ohman and Eriksson 2002, Cova and Conger 2003, Meyer et al. 2009). Yates 

and Lakshmanan (2011) and Yates and Casas (2012) have proposed an adaption of the SPNIP 

that incorporates concepts of spatial analysis, GIS and location sciences along with optimization 

developing a discrete shortest path network interdiction problem (DSPNI).  

Regardless of the variety of formulations and the abundance of literature on the NIP, 

several issues still need to be addressed. In this paper we focus on two of those: First, the 

different variations of the NIP do not incorporate within their formulation geographic 

characteristics per-se in spite of these having been proven significant in similar problems such as 

the shortest path and the p-median problem (Church and ReVelle 1976, Densham and Rushton 

1992, Church et al. 2004, Reese 2006). Secondly, scale has been shown to be of considerable 
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importance in a diverse set of spatial optimization problems in urban settings (Miller and Wentz 

2003, Delmelle et al. 2012, Tong and Murray 2012, Lin and Ban 2013) and needs to be 

considered. Addressing these issues with this type of spatial optimization problems that include 

geographic characteristics is particularly challenging because: (1) geographic elements often 

involve more complex formulations, constrains, and variables, and (2) data needs (e.g., high 

resolution) can make problems larger and more difficult to solve (Tong and Murray 2012). 

Hence, as part of the process, we suggest a framework that can capitalize on the importance of 

key geographic variables in the allocation of defense resources. 

Within this framework it is expected that the solution to the variation of the SPNIP be 

affected by key geographic elements, and that this information be usable when developing a 

heuristic, potentially reducing the computation time of the algorithm. This capability will increase 

the decision-makers situational awareness and will allow the emergency manager(s) to rapidly 

and thoroughly assess the region under a variety of scenarios.  Since such defense environments 

are also highly dynamic, it is necessary to enable emergency managers to easily edit/adapt the 

region to a variety of assumptions/observations, enabling re-analysis of the region and a better 

understanding of how geographic changes in the network or critical infrastructure impact resource 

allocation.  

 

3. METHODOLOGY 

To determine geographic characteristics that can be significant indicators of defender 

resource allocation strategies, the discrete shortest path network interdiction problem (DSPNI) 

(Yates et al. 2010), a variation of the SPNIP, is chosen. In DSPNI, the attacker uses a 

transportation network to move from pre-defined regional entry points to pre-defined critical 

infrastructure target locations.  Along each arc of the network, the attacker has some non-zero 

probability of detection associated with its travel, seeking to identify the network path(s) which 

minimizes its detection probability (path detection being modeled as the product of individual arc 

detection probabilities for all arcs on the path).  The defender, able to locate only a limited 

number of resources, seeks to identify a geographic location within the region to allocate 

resources that improve its detection capability.  The DSPNI provides the appropriate outcomes to 

explore the geographic characteristics that directly impact the location of resources towards the 

defense of critical infrastructure. The formulation of the problem as proposed by Yates et al. 

(2010) follows. 

 

 

[Notation] 

A = set of all possible resource locations a ca = cost to locate a resource at location a 

Λ = set of network arcs i kni = if node n is the of arc i 

N = set of network nodes n      = 0 otherwise 

B = total available defense budget ηs = power of resource type s 

R
as

 = set of all arcs i falling within the  τ = upper bound on resource overlap 

         range of a type s resource at location a ri(as) = 1 if arc i R
as

, 0 otherwise 

qn = {1,0,-1} if n is {entry point, intermediate point, critical infrastructure point}   

uist = detection probability for arc i when covered by t type s resources 

 

 

 

[Decision Variables] 
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Detection probability for a given arc i in DSPNI is a function of resource power and the 

number of resources influencing the arc (uist = ui01∏τ ηs).  The objective function of the attacker is 

to minimize network detection while the defender seeks to maximize this minimum detection 

value (i.e. the defender wishes to minimize the “worst-case” attack scenario).  The constraints of 

DSPNI ensure that a complete path is chosen by the attacker, guarantee arc coverage and limit 

defender resource allocation to a fixed budget.  Because DPSNI allows resources to be placed 

within the geographic region (area covered by the network), an additional decision variable x is 

included with a constraint that connects resource placement with network coverage (this 

additional constraint ensures that an arc is not influenced by more resources than it is covered 

by).  The objective function guarantees that an arc will always maximize its influence, so this 

constraint acts as an upper bound. The DSPNI objective is rewriten as its logarithmic transform to 

remove the non-linearity.  This results in the new objective 
tsi

istiist xwuz
,,

* )log( min max .  

We solve the problem using a special case of Bender’s decomposition, a standard method to solve 

such bi-level models (Bard 1998, Brown et al. 2006). 

 

3.1. Geographic Area Networks 

To gain insight on the importance of the network structure, scale and geographical 

characteristics, networks of different morphologies and densities are presented. Specifically, three 

distinct and highly dissimilar large metropolitan areas: New York City, NY, Boston, MA and 

Houston, TX are used in the experiment.  The networks of the three cities – which are displayed 

in Figure 1 – were chosen for the topological differences among them. This variation allows us to 

determine whether the geographic characteristics are independent of the network attributes and if 

so incorporate this knowledge into a pseudo heuristic.  

Critical infrastructure for each city is distributed following the original location of 

airports, hospitals, schools, fire stations, and other significant landmarks. Higher concentrations 



 6 

of critical infrastructure occur in downtown areas where large populations originally settled.  

Entry points are located at the extreme, or outer, points of a given network.  The assumption is 

that attackers will be entering the designated region from a neighboring region using the 

designated transportation network. Potential defender resource locations are obtained by covering 

each network’s extent with a uniformly spaced grid.  The intersections of this grid become the set 

of potential defender resource locations (i.e., the set A in DSPNI).  By changing the density of 

this grid, the precision with which a defender can locate a resource can be impacted directly (high 

grid density gives a larger number of potential locations and therefore a higher resolution within 

the region).  Three grid sizes are examined as part of the experimental design and three other key 

DSPNI parameters are changed (i.e., resource sensitivity ηs, threat level D, and budget B). Table 1 

shows the different parameters used.  Considering the three regions being tested, the combination 

of parameters leads to a total number of 720 (3 grid densities *4 resources sensitivity *5 threat 

level *4 budget * 3 networks) individual DSPNI problem solutions which comprise the case study 

data for the experiment. 

 

 

 
Figure 1: Illustrations of the three test-case networks and their associated characteristics 
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Network Grid Density (ft) Rows Columns |A| Sensor Range (ft) 

New York Low 7218 6 11 66 5280 

 Medium 4209 20 12 240 3168 

 High 3000 27 15 405 2100 

Boston Low 7218 10 9 90 5280 

 Medium 4209 17 15 255 3000 

 High 3000 22 22 484 2198 

Houston Low 14784 9 10 90 13200 

 Medium 10560 13 14 182 7329 

 High 7218 18 19 342 5280 

Experimental Factors and levels for DSPNI 

A = Grid Density = {Low, Medium, High} 

ηs = Resource Sensitivity = {0.2, 0.4, 0.6, 0.8} 

D = {1, 2, 3, 4, 5} threat level 

B = {$800, $1200, $1600, $2000} 

 
Table 1: Parameters used to solve the DSPNI 

 

3.2. Network and Geographical Characteristics 

We illustrate our approach on a set of numerical examples, identifying which geographic 

properties from a selected set could potentially be used as coefficients, functions and constraints 

in the DSPNI formulations to reliably and consistently indicate where defense resources should 

be located.  In other words, we identify geographic properties that can be used in a heuristic to 

determine strong defense allocation strategies in a limited time frame in lieu of solving the 

DSPNI problem to optimality.  The set of geographic properties are based on distance and 

containment geographic interactions as well as topological characteristics of the network. They 

are selected for their simplicity both in calculation and in concept and they represent key spatial 

relationships between the potential defender resource locations (i.e., the set A) and the 

transportation network’s entry points, targets and roadways.  A GIS is used to calculate the 

different geographic properties in the set.  

Topological characteristics of the network include traditional network measures such as: degree, 

D-matrix (node accessibility based on the shortest path), and T-matrix (number of ways to go 

from one node to all other nodes).  

 

Distance and containment characteristics include: 

 

1. Minimum Distance to Entry Point (MIN-EP) - measurement from a defender resource 

location point to its closest regional entry point 

2. Median Distance to Entry Point (MD-EP) - measurement from a defender resource location 

point to its median regional entry point 

3. Minimum Distance to Critical Infrastructure (MD-CI) - measurement from a defender 

resource location point to its closest critical infrastructure target 

4. Median Distance to Critical Infrastructure (MD-CI) - measurement from a defender 

resource location point to its median critical infrastructure target 

5. Number of Roadways (NRW) - the number of roadways in the transportation network 

capable of being covered by a defense resource placed at a given location 

6. Length of Roadways (LRW) - the total length of all roadways in the transportation 

network capable of being covered by a defense resource placed at a given location 
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7. Coverage of Roadways (CRW) - the product of NRW and LWR 

8. Count (CNT) - the number of critical infrastructure targets in the region capable of being 

covered by a defense resource placed at a given location 

 

Topological characteristics of the network were excluded from subsequent analysis as 

these were not significant from preliminary regressions. Hence, our regression model contained 

eight distance metrics and containment characteristics. Determining the extent to which these 

eight geographic properties can be used in determining defender resource strategies or analyzing 

the effects of regional change (e.g., the removal of roadways in the network or the addition of 

critical infrastructure targets) requires that correlation between the optimal DSPNI solutions and 

these eight geographic properties be established.  In this paper, in addition to correlation matrices, 

a Negative Binomial Regression is implemented since the dependent variable in the regression 

(the number of times/frequency that a potential resource location is used by the defender in 

DSPNI optimal solutions) is a count variable.  The Negative Binomial distribution (Hilbe 2007) 

serves as an alternative to the Poisson distribution for discrete data with the presence of an 

unbounded positive range whose variance exceeds the sample mean. This property dictates the 

use of a Poisson-based regression, of which the Negative Binomial is a close variation (Cameron 

and Trivedi 1998, Hilbe 2007).  Additionally, the non-normality of residuals and the fact that 

most potential defender resource locations will not be used in any single DSPNI solution (this 

leads to an extreme amount of locations that return a “zero” value in the DPSNI optimal solution, 

effectively creating an extreme skew in the test data). Correlations and regressions were 

conducted in the statistical package R. Results (e.g. residuals) were visualized back in a GIS. 

   

4. RESULTS 

Recall that the DSPNI solution is a resource allocation strategy for the defender dictating 

which resource locations are used in an optimal defense configuration.  In solving DSPNI to 

optimality using Benders Decomposition, initial arc detection values, referred to as ui01, were 

randomly selected using a uniform distribution with bounds {0.3, 0.7}.   Entry point and critical 

infrastructure location sets were chosen randomly a-priori, are mutually exclusive and their union 

represents a subset of all network intersection points. Figures 2-4 summarize the model solutions 

for the three networks (NY, Boston and Houston), each at three levels of spatial granularity.  

 

4.1. Correlation Results 

Correlation runs were conducted for each eight of the explanatory variables and are 

summarized in Table 2, using as dependent variable the number of times (i.e., frequency) a 

location was selected in multiple DSPNI runs. The following observations can me made: (1) a 

sensor is more likely to be selected during the optimization phase when it is located in the close 

vicinity of entry points, or to critical infrastructure (negative sign indicating that as distance 

increases, this frequency decreases) and (2) the greater the length of the network a sensor can 

cover, the more likely the sensor will be chosen as a solution. Different levels of granularities 

(low, medium and high) confirm the significance of the correlation.  

 

4.2. Regression Results 

The Negative Binomial regression was run for each of the 3 individual networks at three 

different density levels, resulting in 9 regression models.  The derived output was used to assess 

the strength of the relationship between the geographic parameters and the location of defender 
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resources. Due to strong multicollinearity between variables (MIN-EP, MED-EP and MIN-CI and 

MED-CI, respectively), we removed both MED-EP and MED-CI from the regression models. 

Since the coverage of the roadways (CRW) is the product of the number of roadways (NRW) and 

the length of the roadways (LRW), we only kept CRW in the regression models. Regression 

results are presented in Table 3. 
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Figure 2: Frequency of use of resource location for New York City, NY with grid density increasing from left to right. 1 

 2 
Figure 3: Frequency of use of resource location for Boston, MA with grid density increasing from left to right. 3 

 4 
 5 
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Figure 4: Frequency of use of resource location for Houston, TX with grid density increasing from left to right. 6 

 7 
 8 
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Table 2: Correlation estimates between explanatory variables and frequency of sensor selection 9 

BOSTON Low p Medium p High p

NRW 0.6628 <0.01 0.3887 <0.01 0.2927 <0.01

CRW 0.6512 <0.01 0.4008 <0.01 0.2739 <0.01

CNT 0.6580 <0.01 0.2331 <0.01 0.1044 0.0249

LRW 0.5859 <0.01 0.4489 <0.01 0.3261 <0.01

MIN-EP -0.1894 0.0737 -0.1210 0.0536 -0.0963 0.0385

MED-EP -0.2218 0.0356 -0.1640 <0.01 -0.1123 0.0158

MIN-CI -0.3553 <0.01 -0.2164 <0.01 -0.1392 <0.01

MED-CI -0.3800 <0.01 -0.2246 <0.01 -0.1514 <0.01

NEW YORK

NRW 0.6587 <0.01 0.4837 <0.01 0.4314 <0.01

CRW 0.6074 <0.01 0.3948 <0.01 0.4013 <0.01

CNT 0.5334 <0.01 0.2757 <0.01 0.2933 <0.01

LRW 0.6031 <0.01 0.3920 <0.01 0.3336 <0.01

MIN-EP -0.3317 <0.01 -0.2451 <0.01 -0.1393 <0.01

MED-EP -0.2137 0.0848 -0.1692 <0.01 -0.1149 0.0207

MIN-CI -0.4158 <0.01 -0.2605 <0.01 -0.1688 <0.01

MED-CI -0.1485 0.2340 -0.1425 0.0273 -0.0960 0.0535

HOUSTON

NRW 0.4722 <0.01 0.3747 <0.01 0.4722 <0.01

CRW 0.4504 <0.01 0.3548 <0.01 0.4504 <0.01

CNT 0.4577 <0.01 0.5244 <0.01 0.4577 <0.01

LRW 0.3925 <0.01 0.3265 <0.01 0.3925 <0.01

MIN-EP 0.4489 <0.01 0.2994 <0.01 0.4489 <0.01

MED-EP -0.4466 <0.01 -0.2316 <0.01 -0.4466 <0.01

MIN-CI -0.5262 <0.01 -0.3385 <0.01 -0.5262 <0.01

MED-CI -0.5383 <0.01 -0.3550 <0.01 -0.5383 <0.01
  10 
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All regressions converged, and the AIC was lower with finer grid densities. Several 12 

variables were significant across all models: for instance the coverage had generally a positive 13 

impact in predicting the number of sensors at a particular location, while sensors were also likely 14 

to be located closer to entry points (with increasing distance, the sensors were less likely to be 15 

selected). From a policy standpoint, entry points and critical infrastructure represent known 16 

positions of interest and are used heavily in determining defense allocation schemes (note MD-EP 17 

and MD-CI had a negative coefficient in addition to their significance).  Intuitively, if all arcs 18 

connecting to critical infrastructure are covered, the defender can ensure that any attacker passes 19 

through at least one defense resource.  In other words, defense strategies attempt to capture the 20 

attacker either early in their movement or late in their movement, when the location is more likely 21 

to be known.  Such observations support intuition, where many facility and regional security 22 

models stress the importance of detection early in a security breach and the importance of delay 23 

as proximity to a target increases (Przemieniecki 2000, Garcia 2008). Another useful observation 24 

from Table 3 is that CRW (coverage) was a significant regional property in connection with the 25 

DSPNI optimal defender solutions. This translates to the defender “covering all his/her bases” 26 

where the “bases” in this case are potential attacker paths.  The more arcs covered and the longer 27 

these arcs are the greater likelihood of covering attractive attacker paths.   28 
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One important observation from the regression analysis is the close similarity in 29 

geographic properties’ significance across all three networks, even though there is diversity in 30 

their size, connectivity and geometry.  This is a major observation to policy makers and 31 

emergency managers as it supports the potential of these properties to be used uniformly in 32 

regional defense analysis and without concern to how specific network, entry point and critical 33 

infrastructure changes affect decision-making.  34 

 35 

Table 3: Coefficient and significance results from the Negative Binomial regression for all 36 

three test case networks. 37 

BOSTON Low p   Medium p   High p 

Intercept 3.37 <.01   2.30 <.1   1.72 <.01 

CRW 0.0000 <.1   0.0000 <.01   0.0000 <.01 

CNT -0.1167 >.1   -1.3570 <.01   -1.3090 <.01 

MIN-EP -0.0007 >.1   -0.0010 <.01   -0.0008 <.01 

MIN-CI -0.0005 <.01   -0.0005 <.05   -0.0005 <.01 

NEW YORK                 

Intercept 3.01 <.01   2.86 <.05   -1.05 >.1 

CRW 0.0000 <.1   0.0000 <.01   0.0000 <.01 

CNT 0.0091 >.1   -1.4260 <.01   2.8970 <.01 

MIN-EP -0.0002 <.01   -0.0004 <.01   -0.0003 <.01 

MIN-CI -0.0002 <.05   -0.0003 <.05   -0.0001 >.1 

HOUSTON                 

Intercept 7.3900 <.01   3.6650 >.1   3.3450 >.1 

CRW 0.0000 >.1   0.0000 <.01   0.0000 <.01 

CNT -0.0449 >.1   0.5866 <.05   -0.1531 >.1 

MIN-EP -0.0001 >.1   -0.0001 <.05   -0.0001 <.05 

MIN-CI -0.0003 <.01   -0.0001 <.01   -0.0001 <.01 

         
AIC Low Medium High 

     
Boston 170.09 195.58 586.5 

     
NYC 158.71 219.9 223.21 

     
Houston 132.46 175.35 221.4 

     
 38 

4.3. Visualizing Regression Results 39 

While the results indicate that correlation does exist between certain geographic properties and 40 

defense allocation strategy, the discrete nature of the resource location set A is not conducive to 41 

developing true situational awareness at the regional level.  In policy terms, observations can only 42 

be made on the pre-defined location points and not on the continuous region as a whole.  In 43 

geospatial terms, observations cannot be made on the continuous region based on a discrete set of 44 

vector points directly.  To address the scaling issue, we use Kriging (see Goovaerts 1997), an 45 

interpolation technique that allows to predict the spatial variation within the region as a whole.   46 

Figures 5, 6 and 7 illustrate the six distance and containment properties with applied ordinary 47 

Kriging at the high grid density level.  48 

 49 

 50 
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 51 
Figure 5: Frequency of use of resource location and regional Kriging for New York City, NY.  The 52 
figure illustrates frequency in red and the corresponding property value indicated on a color 53 
gradient scale. 54 
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55 
  56 
Figure 6: Frequency of use of resource location and regional Kriging for Boston, MA.  The figure 57 
illustrates frequency in red and the corresponding property value indicated on a color gradient scale. 58 

From the figures, the correlation expressed by the negative binomial regression model is 59 

identified.  Specifically, figures show the positive correlation between defense resource location 60 

and NRW, CRW and CNT by noting how regions of high aggregated frequency (i.e., large red 61 

circles) are in close proximity to regions of where the geographic properties exhibit high values 62 

(i.e., the white regions).  Similarly, an inverse relationship between aggregate frequency and MD-63 

EP and MD-CI is noticed by observing usage clusters in darker areas where the geographic 64 

properties exhibit low values.  It is also clear from the figures which properties experience higher 65 

correlation with defense resource allocation as evident by the presence of outliers, or locations 66 

within the uncorrelated “gray area”. 67 

By obtaining and visualizing interpolated results, policy decision makers or emergency 68 

managers are able to distinguish areas of high and low values of the geographic properties and 69 

can easily begin to reason over this regional information in coming to a defense allocation 70 

decision.  Equally as important is the impact that these visuals lend to the decision-makers policy 71 

decisions, which is imperative in obtaining “buy-in” and securing either funding or additional 72 

support for proposed regional strategy. 73 

 74 
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 75 
Figure 7:  Frequency of use of resource location and regional Kriging for Houston, TX.  The figure 76 
illustrates frequency in red and the corresponding property value indicated on a color gradient scale. 77 

 78 

5. DISCUSSION 79 

Knowledge obtained from the regression can be incorporated in a heuristic, for instance 80 

to determine which sensors are part of a first, good solution. Algorithms embedded in 81 

optimization solvers may take a long time for large scale and complex problems, and in that 82 

respect heuristics provide an alternative (Delmelle et al. 2012, Tong and Murray 2012). 83 

Integration of these geographic variables into a heuristic structure (i.e. simulated annealing, 84 

genetic algorithm, tabu search) is the next logical step.  Successful development and application 85 

of such spatially-based heuristics is necessary as real-world problems in policy and defense 86 

continue to become more complex.  Once the impact of exogenous variables (network, location of 87 

critical infrastructure, attacker origins) on the optimization problem has been quantified, it is 88 

possible to develop heuristics which capitalize on this information, for instance by using an 89 

improved solution to the DSPNI algorithm rather than a random starting solution.  90 

We motivate the need for a heuristic approach by first introducing some computational 91 

results for the DSPNI problem sets previously discussed.  Table 4 provides processing times for 92 

the individual components of the DSPNI Benders Decomposition process as well as the total 93 

computation time in CPU seconds. 94 

 95 
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 96 
 97 

Table 4: CPU solution times (second) for the various DSPNI Benders Decomposition components.  ‘Computation Time’ refers to total computation time.  ‘Shortest Path 98 
Time’ refers to the time to solve the shortest path problem.  ‘Create Attacker/Defender’ refers to the time required to create the attacker/defender optimization 99 
problem.  ‘Solve Attacker/Defender’ refers to the time to solve the attacker/defender optimization problem. 100 
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From table 4, we can observe significant disparity in solution times depending on the 101 

network and the density of the potential resource allocation locations (e.g., low, medium, high).  102 

While these problems are built upon real-world networks, they do not represent the size/scope of 103 

the real-world region itself (i.e., it would take significantly more than the 387 roadways used to 104 

adequately model the complexity of Houston, TX).  Given the direct positive correlation between 105 

network size and computation time, using Benders Decomposition (or similar approaches as 106 

employed by the previously discussed SPNIP and NIP papers) is not a reasonable solution to 107 

solving large-scale DSPNI problems.  In lieu of solving to optimality, we suggest to capitalize on 108 

the information around the spatial parameters – identified through regression – to build a greedy 109 

heuristic that quickly locates sensor resources within a given region.  We use the same DSPNI 110 

network test cases and equation (1) where CTb represents the total contribution of a sensor located 111 

at b in the set A and where  wNRW represents the weight assigned to NRW (similarly for the other 112 

spatial parameters). 113 

CTb = wNRW*NRWb + wCRW*CRWb + wCNT*CNTb + wLRW*LRWb – wMIN-EP*MIN-EPb – 114 

wMIN-CI*MIN-CIb  (1) 115 

Given a set of known weights w and the known spatial parameter values for each location 116 

b, selecting resource locations takes on the objective (2), where vb is 1 if a sensor is located at b 117 

and zero otherwise.  This equates to the selection of ∑bvb=n resources where ‘n’ represents the 118 

number of sensors to be located in the region.  This solution is equivalent to the selection of the 119 

‘n’ locations with highest CTb value. 120 

Max ∑b CTbvb       (2) 121 

This heuristic as proposed is conceptually simple and depends only upon the spatial 122 

parameters of the problem to locate resources.  For the Boston, Houston and NYC networks, we 123 

implement this greedy heuristic and evaluate its performance in Tables 5 and 6. 124 

Table 5 and Table 6 represent the aggregation of 4,090 different weight combinations 125 

where weights were allowed to take on the values {0.1, 0.35, 0.6, 0.85} for the six spatial 126 

parameters used in (1).  Each implementation of the Greedy heuristic, which consisted of 4,090 127 

different sensor location solutions (one for each weight combination), was completed in less than 128 

10 CPU seconds for each network and density setting.  There was no statistical difference in the 129 

CPU run time across either network or density settings. 130 



 19 

Table 5: Comparison of normalized and standard spatial parameter values in Greedy heuristic performance.  131 
Numbers represent the total percentage of heuristic solutions whose locations are composed of at least 75% of 132 
optimal resource locations.   133 

Resources 

Located
Low Med High Low Med High Low Med High

1 100 100 17.09 99.85 78.27 98.71 100 100 48.85

2 100 62.8 0.37 77.34 10.94 99.61 100 95.58 16.7

3 99.58 16.11 0 98.9 0.27 61.2 99.8 0.66 0

4 43.21 1.2 0 92.63 0 0 99.15 0.02 0

5 99.9 15.21 0 94.92 38.87 3.44 99.97 3.15 81.08

6 60.3 0 0 91.26 5.59 0.12 99.73 0.51 45.68

7 12.79 0 0 80.59 0 0 94.21 0 10.64

8 1.56 0 0 69.11 0 0 81.86 0 0.2

9 21.48 0 0 79.98 0 0 99.39 0.17 0.9

10 0.61 0 0 67.38 0 0 89.89 0.04 0.02

1 100 100 0 100 100 100 100 100 100

2 100 100 0 100 0 10.55 100 100 100

3 100 100 0 100 0 7.03 100 0 0

4 18.75 0 0 100 0 0 100 0 0

5 100 10.94 0 100 0 0 100 0 100

6 100 0 0 100 0 0 100 0 42.97

7 100 0 0 4.3 0 0 100 0 0

8 100 0 0 0 0 0 0 0 0

9 100 0 0 100 0 0 12.5 0 0

10 0 0 0 99.61 0 0 0 0 0

Boston Houston NYC

N
o

rm
a
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z
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d

S
ta
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d

a
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Table 6: Greedy heuristic location quality as measured by the amount of aggregate optimal resource locations 136 
captured.  Shown are MIN, MAX and AVG values calculated by running 4,090 heuristic weight combinations. 137 

1 2 3 4 5 6 7 8 9 10

Low Min 0.125 0.268 0.268 0.304 0.393 0.402 0.429 0.429 0.438 0.464

Max 0.143 0.268 0.402 0.429 0.536 0.536 0.67 0.67 0.679 0.714

Avg 0.143 0.268 0.391 0.405 0.427 0.438 0.449 0.465 0.486 0.505

Med Min 0.027 0.027 0.027 0.027 0.152 0.17 0.17 0.277 0.277 0.277

Max 0.027 0.152 0.277 0.295 0.42 0.491 0.491 0.491 0.491 0.509

Avg 0.027 0.103 0.132 0.171 0.235 0.278 0.292 0.295 0.301 0.314

High Min 0 0.009 0.009 0.045 0.045 0.152 0.152 0.152 0.152 0.152

Max 0.107 0.116 0.143 0.152 0.152 0.152 0.295 0.295 0.295 0.295

Avg 0.002 0.026 0.092 0.147 0.151 0.152 0.152 0.152 0.153 0.157

Low Min 0 0 0 0 0 0 0 0 0 0

Max 0.134 0.17 0.241 0.366 0.393 0.429 0.518 0.58 0.714 0.813

Avg 0.031 0.107 0.191 0.243 0.274 0.328 0.377 0.434 0.485 0.526

Med Min 0 0 0 0 0 0.009 0.009 0.018 0.027 0.027

Max 0.08 0.134 0.241 0.33 0.339 0.446 0.446 0.571 0.589 0.589

Avg 0.021 0.044 0.117 0.193 0.252 0.312 0.362 0.394 0.406 0.415

High Min 0 0 0 0 0.009 0.009 0.009 0.009 0.009 0.018

Max 0.143 0.25 0.259 0.295 0.384 0.429 0.446 0.527 0.554 0.554

Avg 0.042 0.131 0.213 0.237 0.242 0.246 0.362 0.267 0.29 0.311

Low Min 0.027 0.136 0.173 0.209 0.209 0.264 0.327 0.345 0.345 0.445

Max 0.145 0.255 0.3 0.391 0.491 0.491 0.555 0.609 0.645 0.736

Avg 0.069 0.173 0.281 0.318 0.33 0.38 0.439 0.493 0.624 0.581

Med Min 0.049 0.049 0.049 0.068 0.068 0.107 0.107 0.126 0.165 0.184

Max 0.058 0.107 0.126 0.165 0.214 0.233 0.272 0.282 0.369 0.398

Avg 0.055 0.104 0.106 0.112 0.141 0.159 0.181 0.207 0.227 0.252

High Min 0 0.018 0.071 0.116 0.125 0.17 0.179 0.268 0.268 0.269

Max 0.125 0.161 0.268 0.321 0.339 0.384 0.446 0.455 0.464 0.482

Avg 0.009 0.05 0.16 0.218 0.256 0.282 0.318 0.349 0.377 0.397

Number of Resources Located
B
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st
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n

H
o
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st

o
n
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Y
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 139 

From both Tables 5 and 6, we are able to make some important observations on the 140 

heuristic’s performance.  First, it is necessary to normalize the spatial parameter values to obtain 141 

higher quality results.  Second, the Greedy approach works best on low density settings, 142 

suggesting that a more customized Greedy function may be required to replace (1).  Third, we see 143 

from Table 6 that  even this simplistic Greedy approach based on six spatial parameters is capable 144 

of capturing 40 – 60% of the aggregate optimal sensor location density periodically (see Max 145 

entries) when only allowing 4-6 sensors and reaches the same average performance level with 9-146 

10 sensors (see Avg entries).  While this performance is not significant enough to justify the use 147 

of this particular Greedy heuristic, it does support the potential for useful and accurate heuristics 148 

to be developed using only a small subset of spatial parameters. 149 

 150 

 151 

 152 
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6. CONCLUSION 

This paper identified the importance of a select set of geographic variables to the spatial 

pattern of the solutions of a network interdiction problem.  An experimental design collected 

solution data for three sub networks of the New York City, Boston and Houston primary 

roadways under various problem parameters which included the density of candidate resource 

locations, resource coverage sensitivity, and budget.  While the observed networks were 

relatively small and could be solved in a short period of time, large problems representative of 

real-world size and complexity require heuristics to obtain quality solutions in a reasonable 

amount of time.  The work in this paper supports the derivation of such solution techniques 

through the exploitation of influential geographic variables.   

Regression analysis indicates the importance of exogenous variables on the selection of 

resources in the optimization. Results indicate that the strategic location of a resource, which is 

how many arcs (and the length of arcs) can be covered from each resource location within its 

range, is of utmost importance in identifying resource allocation solutions. The distance to 

regional entry points plays a significant role in the selection process as well. As the distance to 

entry points increases, the likelihood of the resource location at that point decreases.  

The results also show that critical infrastructure location is statistically the least important 

regional spatial property indicator while the spatial variable that influences results the most is 

coverage (CRW – which is the hybrid property that accounts for both the number of arcs covered 

and the length of arcs covered).  Simply stated, this result says that network topology (does not 

mean the topology is significant across the different networks) have a higher impact on resource 

location than critical infrastructure itself.   From the defender’s standpoint, results go against an 

intuitive focus on locating resources near critical infrastructure.  Mainly, this is because of 

reduced efficiency in resource capability.  Using critical infrastructure locations as a major input 

in determining resource locations would significantly change solution stability as the policy 

maker or emergency manager would constantly be playing a “cat and mouse” game dependent on 

infrastructure location.  In contrast, a single resource located near an entry point or which covers 

many arcs has the capability to impact every path that uses that entry point regardless of the 

critical infrastructure target chosen by the attacker.  If the defender focuses on covering critical 

infrastructure independently, there is a “one-to-one” effect while a defender focusing on the 

coverage of origins experiences a “one-to-many” impact (many destinations are potentially 

covered or protected by the allocation of a single resource).  This situation might not hold in 

small urban or rural areas where the critical infrastructure is minimal or spread out through the 

region. 

A simple Greedy heurist was proposed to show how the results could be incorporated to 

help decision makers reach decisions faster with the same level of confidence. The combination 

of finer-grained data with computational advances continually creates new opportunities for 

developing solution techniques that seek to shorten solution time and increase solution accuracy. 

These results can aid in the allocation of resources and policy planning, not only for extreme 

events management (including natural and man-made events) but also for future planning in 

locating critical infrastructure. To develop such solution methods, it is necessary that exploration 

of exploitable characteristics take place and that these characteristics be shown as strong, reliable 

influencing parameters for a large majority of network cases.   

 

 

 



 22 

7. REFERENCES 

Bard, J. 1998. Practical bilevel optimization; Algorithms and applications. Boston: Kluwer 

Academic Publishers. 

Bayrak, H. & M. Baily (2008) Shortest path network interdiction with asymmetric information. 

Networks, 52, 133-140. 

Brown, G., M. Carlyle, J. Salmeron & K. Wood (2006) Defending critical infrastructure. 

Interfaces, 36, 530-544. 

Cameron, A. & P. Trivedi. 1998. Regression analysis of count data. Cambridge University Press. 

Church, R. & C. ReVelle (1976) Theoretical and computational links between the p-median 

locaiton set-covering and the maximal covering location problem. Geographical Analysis, 8, 406-

415. 

Church, R., M. Scaparra & R. Middleton (2004) Identifying critical infrastructure: the median and 

covering facility interdiction problems. Annals of the Association of American Geographers, 94, 

491-502. 

Church, R. L., & Scaparra, M. P. (2007). Protecting Critical Assets: The r‐ Interdiction Median 

Problem with Fortification. Geographical Analysis, 39(2), 129-146. 

Cova, T. & S. Conger. 2003. Transportation hazards. In Transportation engineer's handbook, ed. 

M. Kutz. 

Delmelle, E., L. Shuping & A. T. Murray (2012) Identifying bus stop redundancy: a gis-based 

spatial optimization approach. Computers, Environment and Urban Systems, 36, 445-455. 

Densham, P. & G. Rushton (1992) A more efficient heuristic for solving large p-median 

problems. Papers in Regional Science: The Journal of the RSAI, 71, 307-329. 

Garcia, M. L. 2008. Design and evaluation of physical protection systems. Butterworth-

Heinemann. 

George, R. (2008). Critical infrastructure protection. International Journal of Critical 

Infrastructure Protection, 1, 4-5. 

Goovaerts, P. 1997. Geostatistics for natural resources evaluation. Oxford University Press. 

Grubesic, Tony H., and Alan T. Murray. "Vital nodes, interconnected infrastructures, and the 

geographies of network survivability." Annals of the Association of American Geographers 96.1 

(2006): 64-83. 

Hilbe, J. 2007. Negative binomial regression. Cambridge, UK: Cambridge University Press. 

Israeli, E. & K. Wood (2002) Shortest path network interdiction. Networks, 40, 97-111. 

Lim, C. & J. C. Smith (2007) Algorithms for discrete and continuous multicommodity flow 

network interdiction problems. IIE Transactions, 39, 15-26. 



 23 

Lin, J. & Y. Ban (2013) Complex network topology of transportation systems. Transport 

Reviews, 33, 658-685. 

Matisziw, T., A. Murray & T. Grubesic (2007) Boudning network interdiction vulnerability 

through cut-set identification. Advanced Spatial Science, 243-255. 

Meyer, B. C., J.-M. Lescot & R. Laplana (2009) Comparison of two spatial optimziation 

techniques: a framework to solve multiobjective land use distribution problems. Environmental 

Management, 43, 264-281. 

Miller, H. J. & E. A. Wentz (2003) Representation and spatial analysis in geographic information 

systems. Annals of the Association of American Geographers, 93, 574-594. 

Murray, Alan T. "An overview of network vulnerability modeling approaches.GeoJournal 78.2 

(2013): 209-221. 

Murray, A., T. Matisziw & T. Grubesic (2007) Critical network infrastructure analysis: 

interdiciton and system flow. Journal of Geographical Systems, 9, 103-117. 

Ohman, K. & L. O. Eriksson (2002) Allowing for spatial consideration in long-term forest 

plannign by linking linear programming with simulated annealing. Forest Ecology and 

Management, 161, 221-230. 

Przemieniecki, J. S. 2000. Mathematical methods in defense analysis. Reston, Virginia: AIAA 

Education Series. 

Reese, J. (2006) Solution methods for the p-median proglem: an annotated bibliography. 

Networks, 48, 125-142. 

Salmeron, J., R. K. Wood & R. Baldick. 2004. Analysis of electric grid security under terrorist 

threat. ed. D. o. O. Research. Naval Postgraduate School Monterey, CA. 

Snediker, Diane E., Alan T. Murray, and Timothy C. Matisziw. Decision support for network 

disruption mitigation. Decision Support Systems 44.4 (2008): 954-969. 

Tong, D. & A. Murray (2012) Spatial optimization in geography. Annals of the Association of 

American Geographers, 102, 1290-1309. 

Wood, K. (1993) Deterministic network interdiction. Mathematical and Omputer Modelling, 17, 

1-18. 

Yates, J., R. Batta & M. Karwan (2010) Optimal placement of sensors and interception resource 

assessment for the protection of regional infrastructure from covert attack. Journal of Transport 

Security, 1-27. 

Yates, J. & I. Casas (2012) Role of spatial data in the protection of critical infrastructure and 

homeland defense. Applied Spatial Analysis and Policy, 5, 1-23. 

Yates, J. & K. Lakshmanan (2011) A constrained binary knapsack approximation for shortest 

path interdiction Computers & Industrial Engineering, 1-12. 



 24 

Zhang, T., S. Madhani & E. van den Berg. 2005. Sensor on patrol (SOP): using mobile sensors to 

detect potential airborn nuclear, biological and chemical attacks. In IEEE Military 

Communications Conference MILCOM, 2924-2929. 

Zhuang, J. & V. Bier (2007) Balancing terrorism and natural disasters - defensive strategy with 

endogneous attacker effect. Operations Research, 55, 976-991. 

 


