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ABSTRACT
With increasing availability of spatio-temporal data and the democratization of Geographical Information 
Systems (GIS), there has been a demand for novel statistical and visualization techniques which can ex-
plicitly integrate space and time. The paper discusses the nature of spatio-temporal data, the integration of 
time within GIS and the flourishing availability of spatial and temporal-explicit data over the Internet. The 
paper attempts to answer the fundamental question on how these large datasets can be analyzed in space 
and time to reveal critical patterns. The authors further elaborate on how spatial autocorrelation techniques 
are extended to deal with time, for point, linear, and areal features, and the impact of parameter selection, 
such as critical distance and time threshold to build adjacency matrices. The authors also discuss issues of 
space-time modeling for optimization problems.
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INTRODUCTION

With an increasing availability of geospatial 
information over the last fifty years, spatial 
scientists have dedicated their efforts to the 
development of tools and techniques for the 
spatial and temporal analysis of georeferenced 
data (Anselin, 1999; Fischer & Getis, 2010). 
Analytical and geovisualization methods have 
proved critical in a growing number of spatially 

integrated application domains such as ecology, 
population geography, crime analysis, urban 
planning, location modeling, economic, envi-
ronmental and health sciences. Consequently, 
there is now an abundance of robust statistical 
and data mining methods specifically designed 
to deal with geospatial data. These methods have 
facilitated the extraction and detection spatio-
temporal patterns, eventually leading to the 
understanding of complex spatial relationships. 
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Developments in computational science and 
mapping technologies have enabled effective 
and efficient visualization of large geospatial 
data sets such as social media data on the Web. 
To that end, Geographical Information Systems 
(GIS) provide a unique platform to integrate 
these methods and visualization capabilities 
(Longley, Goodchild & Maguire, 1999).

The purpose of this paper is to provide 
an overview of methods that can be used for 
space-time analysis and modeling. We start 
by situating our discussions in a context of the 
uniqueness of spatio-temporal data, its increas-
ing availability through the Internet and social 
media, and the increasing need of methods to 
extract space-time patterns. We then review 
critical methods for spatio-temporal analysis, 
applied to point and areal features (with and 
without attributes) and linear features, with an 
emphasis placed on how to extend the concept 
of spatial autocorrelation in time. We focus our 
discussion on space-time modeling using an 
example of spatial optimization for planning 
and environmental modeling, where GIS and 
location modeling can be coupled together for 
data acquisition, analysis and result visualiza-
tion. We conclude the paper with a revisit of 
the broad issues in space-time methodology.

SPATIO-TEMPORAL DATA

The Uniqueness of Spatio-
Temporal Data Unique and 
the Critical Role of GIS

Spatial data is characterized by a set of lon-
gitude and latitude coordinates (or x and y), 
and usually modeled from an object-based or 
location-based approach (Peuquet, 2002). These 
modeling approaches are not contradictory, but 
rather complimentary. For instance point data is 
used when mapping crime events and disease 
occurrence (McElroy et al., 2003; Chainey & 
Ratcliffe, 2005) and can easily be overlaid with 
raster data, while linear features are used for 
network modeling. An interesting question is 
whether the spatial distribution of these events 

is clustered or not, leading to the identification 
of hot spots. Increasingly however, spatial data 
has also been augmented with attributes and 
temporal coordinates, for instance the time 
stamp associated with an event.

Researchers (Peuquet, 2002; Andrienko 
& Andrienko, 2006) have proposed two ap-
proaches to incorporating time in spatial data. 
In an object-based approach, temporal extent 
is attached to each entity as an attribute, while 
in a continuous approach individual objects are 
considered as attributes and attached to a given 
location in space and time. In the object based 
approach for instance, GIS provide a unique 
platform that facilitates the linking of temporal 
and non-spatial attributes to geospatial locations 
by means of a unique identifier (ID). By means 
of structured query language (SQL), events 
occurring within a certain time interval can be 
extracted, and statistical techniques applied to 
test whether they exhibit space-time patterns.

Due to the unique nature of space-time 
data, it is thus straightforward to combine 
temporal and spatial queries. Consequently 
GIS is undergoing a new phase where two 
critical issues are in (1) the development and 
applications of techniques for the identifica-
tion of clusters of spatial association in space 
and time -or in the attribute space, and (2) the 
development of space-time visualization tech-
niques. These issues can be very challenging 
for large datasets. Our paper fits directly into 
the first concern, which is the development and 
application of space-time methods to identify 
clusters in space and time.

The Increasing Availability 
of Spatio-Temporal Data 
on the Internet

Spatial temporal analysis of Web-based data 
has been explored extensively in recent years 
mainly with focus on topics such as space time 
query over the Internet using spatial temporal 
conditions (Tezuka & Tanaka, 2005), attribute 
extraction combined with spatio-temporal que-
ries (Perry et al., 2007), knowledge organiza-
tion of space time data (Janowicz, 2010) and 
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the handling of vagueness in spatial temporal 
data (Schockaert et al., 2010). These efforts 
have drawn important research attentions on 
exploring the spatiotemporal aspects of online 
information, especially user-generated contents.

Spatio-Temporal Data 
on the Internet

There are generally two types of online data 
that can be used in space-time analysis. A first 
type is vector data representing the geometries 
of graphical features; these data are often con-
tributed by users to sites such as OpenStreeMap. 
This type of online geographic data uses data 
formats that can be directly integrated in GIS. 
These data are known as Volunteered Geo-
graphic Information (VGI) and has drawn main-
stream research attentions regarding utilizing 
online spatial data (Elwood, 2008; Goodchild, 
2008). Li et al. (2010) showed an example of 
utilizing VGI is to analyze trajectory GPS data 
where users upload their GPS routes as online 

maps to help understand the pattern of moving 
individuals. A second type of online geographic 
data often uses a text format with explicitly 
embedded spatio-temporal information; these 
data include status updates on social network 
sites (e.g., Twitter and Facebook) and various 
web pages. An example of using this type of 
data is illustrated in Figure 1.

SPATIO-TEMPORAL ANALYSIS

Hagerstrand (1970) brought time and geogra-
phy together when he proposed a space-time 
prism to represent the mobility of an individual 
in the geographic space. This technique has 
proved particularly suitable to understand the 
space opportunities for each individual. Since 
Hagerstrand, several methods have been pro-
posed to integrate time in spatial analysis, for 
instance for the monitoring of disease or crime 
patterns. Different models have been suggested 
to handle the temporal dimension in a GIS, 

Figure 1. The spatial distribution of tweets about Barack Obama during the week from August 
17 to 24, 2011. The area of the United States is discretized into a grid of 2,500 cells and real-
time tweets about Obama were counted for each cell, with a total of about 62,000 tweets. The 
location of each tweet was represented using the location of the user who initiated that tweet.
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see for instance Peuquet and Duan (1993) and 
more recently Kwan (2004) and Miller (2005). 
Although it is relatively straightforward to vi-
sualize changes in GIS, the discipline has been 
slow at embracing time as a unique dimension, 
and only a handful of these recent methods 
have been integrated in GIS (Goodchild, 2000; 
Jacquez et al., 2005; Andrienko & Andrienko, 
2006), resulting mostly in ad hoc applications.

Recent research in spatio-temporal analysis 
has focused in two arenas: (a) theoretical spatio-
temporal data modeling and (b) spatiotemporal 
visualization. Theoretical spatiotemporal data 
modeling is a growing field in GIS, especially 
developing framework for the management of 
complex geographic data. Pultar et al. (2009) 
developed a platform, Extended Dynamic GIS, 
for spatiotemporal data representation, storage, 
and query. Pultar et al. (2010) implemented 
the space-time point (STP) data structure fa-
cilitating the querying of spatio-temporal 
data location, time, and attribute. Huang & 
Peng (2008) proposed an object-oriented data 
model that coherently represents space, time, 
and dynamics of transit networks. Recent 
works include Khalesian and Delavar (2008) 
to model micro-simulation of highway traf-
fic, and Di Martino and Sessa (2011) for the 
spatio-temporal evolution of fire hotspots. Using 
multidimensional map algebra, Mennis (2010) 
developed a technique for analyzing spatio-
temporal data and for processing algorithms. 
Kang and Scott (2008) developed an integrated 
spatio-temporal GIS toolkit for the exploration 
of intra-household interactions.

Exploring patterns in large individual-
level spatiotemporal datasets is made possible 
by the space-time prism framework (Demsar 
& Virrantus 2010, Andrienko et al. 2011). An 
example includes Chen et al. (2011) for a space-
time path based multi-level clustering method. 
Shaw and Yu (2008) analyzed the complex 
spatio-temporal relationships among activities 
and interactions taking place in both physical 
and virtual spaces. Shaw et al. (2008) presented 
a generalized space-time path (GSTP) approach 
to facilitating visualization and exploration of 
spatiotemporal changes among individuals in a 

large dataset. Their approach provided a useful 
exploratory analysis and geovisualization envi-
ronment to help researchers effectively search 
for hidden patterns and trends in such datasets.

In the area of visualization, GIS software 
have made some progress in the management 
and display of temporally varying data through 
frame animations and 3D data representations 
(Andrienko et al., 2011), but significant research 
has yet to come in the area of temporal model-
ing at large, for instance space-time clustering 
and space-time autocorrelation. One point of 
focus which has received and continues to 
receive considerable attention is the develop-
ment of techniques to rapidly detect space-time 
patterns and unusual values, outliers or trend, 
for instance through Exploratory Spatial Data 
Analysis (ESDA). These methods facilitate the 
exploration of spatial data in various ways, 
helping to discover spatial patterns, identify 
clusters and suggest hypotheses of causal rela-
tionships (Tukey, 1977; Anselin, 1996; Anselin, 
1999). Along with these methods come a suite 
of techniques to visualize spatial data such as 
scatter plots, kernel density, graduated symbol 
and choropleth mapping (Chang, 2011). Con-
firmatory analysis usually forms a second step 
after ESDA, which is used to statistically test 
whether the pattern of the phenomenon under 
study is not a product of a random process. 
Exploratory and confirmatory methods can be 
repeated (and extended) in time.

Space-Time Analysis for Point 
Events with No Attribute Data

A spatial pattern refers to the tendency of a 
spatial variable (or phenomenon) to form some 
type of clusters that can be identified through 
visual or statistical analysis. Point events such 
as disease, traffic accidents, and crime usually 
exhibit such a spatial pattern, and also tend to 
repeat over time at same. In the case of spatial 
epidemiology, for example, knowledge on the 
strength of spatial clusters and their locations 
can assist health care decision makers on where 
to locate additional workforces to prevent fur-
ther disease from occurring, while maintaining 
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location-specific prevention measures. There 
exists a palette of exploratory and confirma-
tory methods to identify and test whether these 
patterns occur by chance (see Delmelle, 2009 
for a review). As an example, Figure 2a and 
2b illustrates the spatial distribution of dengue 
cases for January in the city of Cali, Colombia 
from January 2010 to August 2010, with sig-
nificant clusters in different parts of the city 
(see also paper by Delmelle et al., this issue). 
To map these clusters, the Kernel density map 
(Figure 2b, Equation 3) uses a bandwidth of 
750m, which is computed from a K-function 
(Equations 1, 2 in Table 1 and Figure 3), a count 
statistic, where we essentially test whether the 
observed point pattern is significantly different 
than what would be expected under random 
circumstances (see Bailey & Gatrell, 1995 for 
mathematical explanation; Casas et al., 2010 
for an application to medical information; and 
Delmelle & Delmelle, 2012 for an application 
to commuters).

Several techniques have been devised for 
the detection of patterns in temporal datasets 
(e.g. multiple time series analysis); however 
these techniques are not always adequate for the 

analysis of space-time datasets. A methodologi-
cal challenge resides in the proper definition of 
a metric for space-time “contiguity”, that is to 
define which combinations of locations and time 
periods are “neighbors” to a given observation 
in space-time. To model the temporal component 
one approach consists of partitioning the data 
into different time intervals, and applies the same 
technique. For instance, it is possible to repeat 
the K-function and Kernel density estimation 
for different months, revealing if the strength 
and location of clusters change over time (see 
Casas et al., 2010 and Delmelle et al., this is-
sue). Table 2 summarizes various techniques 
for the analysis of space-time data, and these 
are explained below.

One extension of the spatial K-function 
is the temporal K-function (Equations 6 and 
7), which provides a measure of temporal 
dependence over varying time-scales. It is one-
dimensional since only time is considered. A 
time interval t is used instead of a distance radius 
h (Delmelle et al., 2011). Space-time interaction 
among data points can be tested by the Space-
Time K-function (Equations 8, 9, 10), which 
estimates whether nearby events also exhibit 

Figure 2. Spatial distribution of dengue cases in the city of Cali, January 2010. The map in b) 
is the kernel density estimation with a bandwidth (search radius) of 750m.
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proximity in time. For contagious disease, it 
would be expected that patients living close to 
one another would exhibit similar symptoms at 
small time intervals, while cases far away from 
one another would probably be less likely to 
be correlated to one another (Bailey & Gatrell, 
1995). When no space-time interaction exists, 
Equation 8 becomes the product of Equations 
1 and 6. Substracting the product of separate 
spatial and temporal K-function tests for spatial 
independence (Gatrell et al., 1996). Figure 4 
illustrates the space-time interaction among 
dengue cases for the month of January 2010. 
A clear cyclical pattern is observed (6 and 11 
days), while the greatest interaction is observed 
at distance lags of 1000 and 1600meters.

The Knox test (Knox, 1964) is used to test 
the statistical strength of the space-time interac-

tion at a particular distance and time. The sta-
tistic counts the number of adjacent events 
(defined by the time t

crit  
 and distance window

 
 

d
crit

) around each observation, and evaluate 
by how much this count is different from what 
would be expected under complete spatial 
randomness. The number of events is also called 
space-time pairs ST (Equation 11). A Chi-square 
statistic Ç2 �is then used to measure by how 
much the observed count of pairs differs from 
its expected number (Delmelle et al., 2011). 
That expected number can be estimated through 
Monte-Carlo simulations (Levine, 2005). The 
observed count of pairs close in space (1600 
meters) and time (6 days) is significantly above 
the lowest and highest simulated (expected) 
values, indicating a statistical preference for 
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Figure 3. Variation in K-function value for the dengue cases (Figure 2) with increasing separat-
ing distance; L-function at the bottom

Table 2. Space-time point pattern method 

Method Mathematical Expression Parameters Eqn References
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space-time interaction at those scales. Other 
significant methods for the detection of space-
time clusters of point events, especially in the 
context of disease mapping, have been re-
cently proposed and integrated within GIS 
applications, for instance the spatial scan sta-
tistic which is integrated in SaTScan (Kulldorf, 
1997; Kulldorf, 2005), the development of 
Amoeba (Aldstadt & Getis, 2006), and Space-
Time Intelligence Software (STIS) for the 
analysis of disease (Jacquez et al., 2005).

Space-Time Analysis for 
Point Events and Areal Data 
with Attribute Information

The previous paragraphs discussed general 
methods to evaluate the magnitude of space-
time clustering for point data with no attribute 
information. This paragraph describes two 
well-known methods for the detection of spatial 
autocorrelation for point and areal data with 
attributes. Spatial autocorrelation measures 
whether nearby data observations are dependent 

on each other, that is observations closer to each 
other should exhibit similar attribute values. 
The Moran’s I test (Moran, 1948, 1950) is a 
global measure which evaluates the degree of 
spatial autocorrelation among data points (see 
Table 1 for a definition, Equation 4). The term 
w
ij

 represents the weight between two observa-
tions, which is usually a function of their 
separating distance, while an alternative consists 
of determining whether polygons are adjacent 
to each other (w

ij
= 1 ), that is contiguity. 

Moran’s I value range from -1 to +1, with 
values of -1 and + 1 denoting total dispersion 
and perfect spatial correlation, respectively, 
while a value of 0 indicates a random pattern. 
Other statistical tests have been devised such 
as Geary C, similar in nature.

A weakness of both Moran’s I and Geary’s 
C tests is that they are global statistical measures 
and do not inform on where spatial autocorrela-
tion occurs. Local Moran’s I (Anselin, 1995) 
and the Gi* statistic (Getis & Ord, 1990) allow 

Figure 4. Space-time K-function for dengue cases in January 2010. Darker colors reflect stronger 
interactions with maximal values at six and eleven days of interval, and 1000 to 1600meters 
separation distance.
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to detect local clusters of similar values. The 
Getis-Ord statistic evaluates the difference in 
data value of one unit i from its surrounding 
values j. To illustrate the concept of spatial au-
tocorrelation, we use the percentage of dengue 
cases per population at the neighborhood level 
for the city of Cali in January 2010 (Figure 5). 
We observe a modest Moran’s I value of .01 
(suggesting a nearly random pattern), but the 
Getis-Ord local statistic (Equation 5) indicates 
statistically significant pockets of similar values 
in the center and southern part of town, that is 
the observed local sum of the attribute values 
is greater than what would be expected.

Spatiotemporal Autocorrelation

One important challenge is to evaluate whether 
spatial autocorrelation varies temporally, in 
other words does the magnitude and the loca-
tion of spatial clusters change over time? There 
has been a lot of recent work on spatiotemporal 
models, and a variety of approaches to better 
handle the temporal dimension have been pro-
posed. Accordingly, geographic methods for 
spatiotemporal processes are also experiencing 
a period of rapid development. In particular, the 

methodological development for the analysis 
of spatiotemporal dataset has been motivated 
by the need to account for autocorrelation in 
spatial (Cliff & Ord, 1981) and temporal (Box 
& Jenkins, 1970) data. Properly identifying 
and quantifying the extent to which observa-
tions are autocorrelated with each other in time 
and space is essential in modeling spatial and 
temporal relationships

Moran’s I and Scan statistics are good 
examples of local indicators of spatial asso-
ciation (LISA) statistics which describe areas 
of both positive and negative spatial autocor-
relation. Moran’s I can be extended in time to 
detect space-time autocorrelation (Goovaerts 
& Jacquez, 2005; Greiling et al., 2005), and 
spatial Scan statistics developed by Kulldorff 
and Nagarwalla (1995) can automatically iden-
tify clusters in space and time. However, they 
cannot detect moving clusters, and also suffer 
from computational complexity with large 
numbers of observations and with a difficulty of  
computing probability values if large numbers 
of variables are attempted to be analyzed (Leung 
et al., 2003). Other methods to identify spatio-
temporal autocorrelation include space-time 
association methods such as serial autocorrela-

Figure 5. Percentage of dengue cases in January 2010 per population count in a). The map to the 
right displays the associated local G statistic using polygon contiguity as a measure of proximity.
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tion and space-time autocorrelation. Research 
on space-time autocorrelation has focused on 
the static dimension of autocorrelation structure 
rather than its dynamic aspect (Kawabata, 2009), 
suggesting that the spatiotemporal autocorrela-
tion can adequately be described by globally 
fixed parameters, assuming stationarity. How-
ever in practice, such assumptions of station-
arity and fixed spatiotemporal neighborhood 
are violated for dynamic data, for instance 
information on traffic jams.

Recent studies which have attempted to 
capture the dynamics of space-time autocor-
relation can broadly be separated into two 
categories: those that aim to capture the ef-
fective range of spatial neighborhood (Ding et 
al., 2011; Elhorst, 2003) and those that aim to 
capture the dynamic weight of correlation (Min 
et al., 2010). Table 3 summarizes some of the 
space-time autocorrelation techniques. In the 
study by Cheng et al. (2011a), the space-time 
autocorrelation function (Equation 13) is used 
for the global measures and the cross-correlation 
function (Equation 14) is used for local mea-
sures in order to gain an understanding of the 
complexity of spatiotemporal autocorrelations. 
In these Equations (13 and 14), the indices i 
and j represent spatial order which reflect the 
spatial configuration of the data. In a matrix 
format, row and column show the contiguity 
relationships for each other. For example, first 
spatial orders are coded as entries of one for 
areas that are adjacent to each other and zero 
otherwise. Their findings show that the spatio-
temporal autocorrelation structure is dynamic 
in time and heterogeneous in space which is a 
direct reflection of dynamics and heterogene-
ity of network complexity. Their research has 
also underlined the critical need to define an 
appropriate space-time neighborhood (weight 
matrices) based on the strength of local auto-
correlation. These can be incorporated into a 
model through the use of a dynamic spatial 
weight matrix. The space-time autocorrelation 
function defined in Equation (13) measures 
the N2 cross-covariances between all possible 
pairs of locations lagged in both time and space 

(Pfeifer and Deutsch 1980). Equation (14) is the 
space-time cross-covariance given the weighted 
ith order spatial neighbors of any spatial loca-
tion at time t and the weighted jth order spatial 
neighbors of the same spatial location s time 
lags in the future.

The space-time autoregressive integrated 
moving average (STARIMA) models space-
time processes that exhibit stationarity in space 
and time by extracting global deterministic 
(nonlinear) space-time trends and local stochas-
tic space-time variations in data (Cheng et al., 
2011b). An example of a simple autoregressive 
model (AR) is given in Equation (15) with the 
series value at the current time point y(t) equals 
the sum of the previous series value, y(t-1) mul-
tiplied by a weight coefficient Φ

1
.  A definition 

of a simple moving average (MA) is given in 
Equation (16). Contrary to STARIMA, Gener-
alized STARIMA (GSTARIMA) models can 
capture spatially heterogeneous autocorrelation 
structures by allowing the AR and MA param-
eters to vary by location (Min et al., 2010). The 
GSTARIMA model outperforms traditional 
STARIMA in terms of forecasting accuracy. 
Although the method allows for spatially dy-
namic parameter estimates, the spatial structure 
of the model is still fixed to an extent as the 
size of the spatial neighborhood considered is 
the same for each location. Its temporal struc-
ture is also fixed.

On the visual end, STARS (Rey & Janikas, 
2006) enabled the depiction of multiple dimen-
sions on a single view which contrasts two 
forms of covariance in a graph representation in 
addition to providing dimension specific views, 
such as a time path. The linkages reflected in 
a spatial weight matrix based on contiguity 
are used to show the strength of the temporal 
covariance between each pair of contiguous 
polygons. This type of interaction is useful for 
uncovering covariance relations that may not 
be obvious with traditional ESDA techniques. 
Hardisty and Klippel (2010) have created a 
method for exploring spatiotemporal structure 
using an extension to the local Moran’s I (An-
selin, 1995). They created LISTA-Viz, which 
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exposes the statistical method in a manner that 
offers tight integration with many other tools in 
the GeoViz Toolkit application1. With integra-
tion, the spatiotemporal structures uncovered 
by LISTA-Viz are analyzed visually and com-
putationally by many other views and methods 
offered in the GeoViz Toolkit.

Depending on the context, spatiotemporal 
analyses can be applied in hierarchical model-
ing methods within different frameworks such 
as repeated-measurement, longitudinal data 
models, multilevel models, and generalized 
linear mixed models. Software packages such as 
WinBUGS2, SaTScan3, MLwiN4 among others 
have made it possible to estimate spatiotemporal 
dependencies.

Space-Time Analysis 
for Linear Features

As mentioned previously, traditional spatio-
temporal studies are based on point or polygon 
features. Point-based analysis may be mislead-
ing in our understanding of the nature of events 
such as traffic accidents when these occur be-
cause those events are associated with network 
characteristic: nodes (intersection or junctures), 
road segments, road types, speed, traffic signs 
and traffic volumes among others. Okabe et al. 

(2006) have proposed a general framework for 
spatial analysis of network features. Neverthe-
less, one must keep in mind that network events 
also have a temporal component. Although the 
structure of spatiotemporal data is more complex 
than that of spatial data alone, spatiotemporal 
network data also consist of a time-ordered se-
quence of events where the observation process 
under study contains the temporal dimension 
as well as the spatial dimension.

We used traffic accidents to illustrate the 
significance of a segment-based approach 
where each segment is a measurement unit. 
A traffic accident is recognized as a point 
feature and is expected to form spatial clus-
ters over time. Conventionally, point-based 
accident data are aggregated to investigate 
the changes in spatial pattern of accidents. In 
most cases, many longitudinal analyses use 
area-based spatial structures such as Traf-
fic Analysis Zones (TAZs), census blocks, 
counties, and states. However, one must be 
careful when aggregating traffic accidents 
to statistical units (Delmelle & Thill, 2008). 
For instance, allocating a traffic accident to 
a certain spatial unit is often directly drawn 
upon the boundaries between spatial areas. 
Thus, a structure of segment-based networks 
would be appropriate for identifying acci-

Table 3. Space-time autocorrelation 

Method Mathematical Expression Parameters Eqn References

Space-time 
autocorrelation

ρ
γ

γ γij

ij

ii jj

s
s

( )
( )

[ ( ) ( )] /
=

0 0 1 2

N  = number of spatial 
locations
W(i), W(j) = spatial weight 
matrices 
i, j = spatial orders
N*1 = vector of observa-
tions z at time t,
z(t + s) = the N *1 vector of 
observations z at time t + s
` = matrix transposition

13

Pfeifer and 
Deutsch 
(1980)γ

ij

i j

s E
W z t W z t s

N
( )

[ ( )]`[ ( )]( ) ( )

=
+










 14

Space-Time 
Autoregressive 
and Space-
Time Moving 
Average

y y e a
t t t( ) ( ) ( )
= ⋅ ⋅+ +−Φ

1 1
Φ

1
 = weight coefficient

e
t( )

 = error component
a = series mean (constant)

15
Box et al. 
(1994)
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t t t( ) ( ) ( )
= ⋅ ⋅+ +−Φ

1 1 16
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dent-prone segments over multiple periods 
(Aguero-Valverde & Jovanis, 2008). More 
importantly, the segment on the network 
plays an important role as common spatial 
unit or norm for panel analysis. If a traffic 
accident is repeatedly referenced as a point 
with the exact spatial reference over multiple 
periods, spatial distribution of points such as 
Kernel density would be ideal for examining 
the accident patterns intuitively (Flahaut et 
al., 2003; Geurts et al., 2005; Steenberghen 
et al., 2010). The clusters of traffic accidents 
compared to the other types of spatial clusters 
in crime or disease, however, are gener-
ally formed on the transportation network. 
Specifically, most vehicle accidents occur 
linearly on road segments by reflecting the 
structures of road networks, which greatly 
enhance the understanding of the network 
property of accidents.

Spatial events are not likely to be in-
dependent on each other: a high accident 
frequency on a segment may impact the 
frequency of other, adjacent segments. This 
can be handled by incorporating line seg-
ments or networks into the analysis. Figure 
6 shows network autocorrelation analysis of 
traffic accidents in Cincinnati, OH during 
2004–2008, generated from the generalized 
linear mixed model using random and fixed 
effects with time included as a random com-
ponent. The segment links in HH show the 
high-high network autocorrelation, reflecting 
statistically significant high concentration of 
traffic accidents. On the other hand, links in 
LH show low-high network autocorrelation 
where road segmentations are surrounded by 
high concentration of accidents. Those links 
are merged with roads segments of Interstate 
highways where relatively large number of 
accidents are observed. Segments in HL show 
the high-low network autocorrelation where 
concentration of accidents is found to be high-
low compared to neighboring road segments, 
suggesting accidents in those segments are 
statistically higher than neighbors.

SPATIO-TEMPORAL 
OPTIMIZATION

Though the main focus of this review is placed 
on the development of statistical methods that 
can be applied to analyze spatial and temporal 
patterns of geospatial data, it is worth discuss-
ing normative models that can be used to help 
decision making in both spatial and temporal 
dimensions. In spatial epidemiology, for ex-
ample, it is critical to predict when and where 
a disease will occur to allocate additional 
workforce through point-source modeling (Bai-
ley & Gatrell, 1995). In many planning and 
environmental management applications, it is 
important to identify a set of activities related 
to each location through time (Church & Mur-
ray, 2008). For example, a goal in forest harvest 
planning is to determine whether one location is 
scheduled to harvest at a specific time (Öhman 
& Eriksson, 2008). Similarly, in environmental 
conservation, researchers often need to identify 
the placement and timing of habitat protection 
in order to maximize the population of protected 
species across areas and over time (Hof et al., 
1999). In rapidly expanding areas, it may be 
necessary to build additional public facilities 
such as schools, post offices, libraries as well 
as emergency services to meet anticipated 
demand (Antunes & Peeters, 2001; Ribeiro & 
Antunes 2002).

To handle space-time challenges such as 
the ones mentioned above, a diversity of models 
has been developed in the literature and there 
may not be a “one-size-fit-all” recipe for all ap-
plications. However, it is possible to generalize 
many of the existing models by focusing on 
the essence. In general, we assume a discrete 
land use model where the space is partitioned 
into a limited number of land parcels and each 
parcel will be assigned a land use. In a forest 
harvest setting, the land use types can be har-
vest and no-harvest. The overall goal of these 
assignments is to maximize the total utility of 
the land over time.

To formulate our general model, we use 
the following notation:
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i = index of a land parcel,
j = index of land use,
t = index of time,
uijt = utility or benefit of location i at time t for 

land use j,
cijt = cost associated with location i at time t for 

land use j, and
bt = the budget allocated to time period t.

The decision variables can be denoted 
below:

x

i

j t
ijt
=
1

0

if location is acquired

for land use at time� � �

� ootherwise�










 

A general formulation of a utility model 
can be written as follows:

Maximize 
t i j

ijt ijt
u x∑∑∑  (17)

Subject to 
i j

ijt ijt t
c x b t∑∑ ≤ ∀���������������  

(18)

j
ijt
x i t∑ = ∀1�������������������������� ,  (19)

x i j t
ijt
= { } ∀0 1, , ,  (20)

In this formulation, objective (17) maximizes 
the total benefit over time, constraint set (18) en-
sures that at each time period, the total cost must 
not exceed the budget, constraint set (19) ensures 
that each parcel can only be assigned to one land 
use at a time, and constraints (20) indicate binary 
decision variables. This model can be rewritten as a 
cost model by minimizing the cost (the left term of 
Equation 18) subject to a predefined minimum total  
utility (Equation 17) either for each time period 

Figure 6. Network autocorrelation in Cincinnati, OH
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or all time. A number of spatial or nonspatial 
constraints can also be applied. For example, the 
spatial contiguity models developed by Williams 
(2002) or Shirabe (2005) can be adopted into the 
above modeling framework.

Spatiotemporal optimization models are often 
computationally intensive and require a significant 
amount of computing to reach an optimal solution 
(Antunes & Peeters, 2001). For this reason, spatio-
temporal optimization applications often rely on a 
course resolution to represent the space in order to 
maintain a tractable problem size. Heuristic search 
methods such as evolutionary algorithms (Xiao, 
2008) or simulated annealing (Aerts & Heuvelink, 
2002) can be used to yield high quality solutions 
in a relatively small amount of time.

CONCLUDING REMARKS

The increasing availability of spatially- and 
temporally-explicit data there has led to a press-
ing need to develop and integrate methods that 
can be used to reveal useful patterns. GIS is now 
a matured field that has the ability to integrate 
geospatial data of different spatial scales and 
temporal granularity into a unified framework 
for a wide range of analysis. Within this broad 
context, this paper has stressed the importance 
of GIS, geospatial data, and reviewed traditional 
methods for the spatial analysis of point, line, 
and areal data, and its theoretical extensions to 
handle time as a unique dimension. Specifically, 
the paper provides several methodological frame-
works in which data and model can be used to 
gain geographic knowledge. We have focused on 
two types of methods: spatio-temporal statistical 
methods that can be used to describe and infer the 
pattern from the data and normative methods that 
can be used to search for optimal spatio-temporal 
patterns given a set of objectives.

The development of methods for space 
and time analysis and modeling is an evolving 
process. Similar to other disciplines such as 
hydrological and ecological modeling (Beven, 
1985; DeAngelis & Gross, 1992), space and 
time modeling has undergone different phases, 
especially from the traditional “global” version 
where one parameter is used to capture the entire 

area for all time periods to a current “localized” 
version where spatially and temporally varying 
parameters can be obtained. We argue that such a 
trend will continue, especially given the increas-
ing computing power that enables a reductionist 
perspective of representing space and time. Such 
a trend also presents a challenge to existing 
methods for space-time analysis. We identify 
a few salient challenges that may lead to future 
developments. First, to fully understand spatial 
and temporal patterns in a large data set (space-
time data mining), an exploratory visualization 
tool will be necessary. Existing tools, however, 
are typically derived from the concept of Hag-
erstrand’s space-time prism (Hagerstrand, 1970) 
and are mainly designed to explore the space-
time paths of a limited number of individuals. 
Second, many existing methods are typically 
not designed to handle potential uncertainty, in 
space and time, in data. Developing methods that 
incorporate error will significantly advance our 
understanding of spatial and temporal patterns. 
This perspective also applies to spatiotemporal 
optimization methods so robust solutions can be 
generated for decision making.
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