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ABSTRACT
Dengue fever is an arboviral disease typical of the tropics that can be life-threatening and if not controlled 
properly may result in an epidemic. The absence of an effective vaccine makes strategies to prevent the virus 
transmission the most effective means of control. The planning of such strategies, however, is difficult due 
to the constant movement of individuals and mosquito host (Aedes aegypti). In this paper, the spatial and 
temporal relations that might exist between infected individuals during a dengue-epidemic year are explored. 
This research is motivated in that a deep understanding of potential transmission patterns between individuals 
might lead to a better design and planning of control strategies. A GIS-based Health Exploratory AnaLysis Tool 
(HELP) is used to compute space-time relationships by means of spatial K-function, kernel density, space-time 
K-function and linking pairs of cases within significant time and space intervals. Significant clustering was 
observed at a scale of 50 meters and 750 meters, respectively while temporal significance was determined at 
two days and five to eight days. While an increase of cases occurs in the months following severe droughts 
due to an El Niño phenomenon, the location of clusters remains relatively stable. These are observed near 
areas where potential habitats for the mosquito exist such as storm drains, hard surfaces where water ac-
cumulates (e.g., vases, containers), but also in poorer neighborhoods. The results from the spatial analysis 
provide valuable information for health care managers to take preventive actions at the municipality level.
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INTRODUCTION

Dengue fever is an arboviral disease of consid-
erable importance due to its endemic nature. 
In recent decades it has grown dramatically, 
reaching a global presence in more than one 
hundred countries (Kittayapong et al., 2008), 
while it remains a threat to more than 2.5 billion 

people, particularly in tropical and subtropical 
areas, in rural as well as urban settings. Between 
fifty to one hundred million people are infected 
every year, creating a burden to communities 
and health entities that need to control and 
prevent the virus from becoming an epidemic 
(Méndez et al., 2006; WHO, 2009).
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The disease is transmitted to humans by 
mosquitoes of the genus Aedes (Monath, 1988). 
The mosquito, Aedes aegypti, inhabits and 
reproduces in warm temperature areas gener-
ally between 18° and 25° C (Wu et al., 2009). 
There is a temperature threshold below which 
the mosquito cannot survive and as tempera-
ture increases it is required to feed, which may 
eventually lead to an increasing rate of biting 
events. Higher temperatures, therefore, shorten 
the probability of mosquito survival (Kolivras, 
2006). The Aedes aegypti mosquito tends to be 
more active during daytime, especially in the 
close proximity of houses (Halstead, 1997). 
The mosquito’s habitat is, most often, artificial 
water holding containers where they develop 
and lays eggs. This fact ties them to households, 
given that it is here where these containers 
are kept to store water for drinking and other 
household shores (a practice often observed in 
the developing world countries both in rural and 
urban areas). This means that transmission is 
generally focal, clustering in households and 
nearby neighbors over short periods of time 
(Kuno, 1995; Getis et al., 2003; Morrison et 
al., 1998). Only adult females transmit the 
virus to humans. The incubation period of the 
virus is around ten days, after which the virus 
replicates in the salivary glands of the Aedes 
aegypti mosquito. Symptoms of the disease 
include fever, joint and back pain (which has 
given the disease the name “break bone fever” 
(Suarez et al., 2005), severe headache, and 
nausea (Kolivras, 2006).

Dengue fever studies have focused in 
understanding patterns between mosquito in-
fected areas and infected individuals (Chang 
et al., 2009); identifying causal relationships, 
in particular weather and vegetation (Tipay-
amongkholgul et al., 2009; Kolivras, 2006; 
Arboleda, Jaramillo-O and Peterson, 2009; 
Braga et al., 2010; Johansson, Dominici & 
Glass, 2009; Maciel-de-Freitas et al., 2010; 
Maria & Valencia, 2011; Wu et al. 2009); and 
spatio-temporal patterns of infected individu-
als (Eisen & Lozano-Fuentes, 2009; Getis et 
al., 2003; Mammen et al., 2008; Morrison et 
al., 1998; Rosa-Freitas et al., 2003; Tran et al., 

2004; Kan et al., 2008). The disease is known 
to vary through time and space, due to a num-
ber of factors including the human host, the 
virus, the mosquito vector and the environment 
(Mammen et al., 2008). Determinant factors 
in the transmission include: mosquito density, 
circulating virus serotypes, and susceptibility 
of human populations (Kuno, 1997).

In the Americas, in spite of efforts to 
eradicate dengue fever during the 1950s and 
1960s (OPS, 1960), a reinvasion occurred fol-
lowing a reduction in surveillance and control 
strategies (WHO, 1997). Between 2001 and 
2007 more than thirty countries reported a 
total of 4,332,731 dengue cases (Cali, 2010) 
including the four different dengue serotypes 
(DENV-1, DENV-2, DENV-3, and DENV-4). In 
Colombia, in particular, the population living in 
areas at-risk of contracting the disease amounts 
to 26,000,000 people. These are areas with an 
elevation below 1,800 meters above sea level; a 
total of 900,000 square kilometers out of a total 
extension of 1,138,000 of the national territory 
(Colombianos, 2011). Dengue fever in Colom-
bia was eradicated between 1952 and 1966, with 
a re-infestation occurring in the early 1970s 
(Romero-Vivas, Leake and Falconar, 1998). 
Since then the disease has become endemic in 
many areas presenting periodic outbreaks in 
1991, 1994, 1998, 2001, 2006, and the most 
recent in 2010. This shows an epidemiological 
cycle every 2 to 3 years through the 1990s. Most 
of the outbreaks reported have been of serotype 
1 (DENV-1) and 2 (DENV-2) (Mendez et al., 
2010) but in the last decade 3 (DENV-3) and 4 
(DENV-4) have also been present (Cali, 2010).

Cali, the focus of this study, is located 1,000 
meters above sea level and is considered as an 
endemic dengue zone. During 2009 and the 
first quarter of 2010 more than 7,000 cases of 
dengue fever were reported with 2,500 being 
severe (Cali, 2010). By January of 2010 a total 
of 990 cases had been registered, with 106 cases 
being of hemorrhagic dengue fever. By week 
10 of 2010 the cases had increased to 3,540 
from which 296 were severe and 5 fatal (Cali, 
2010). At this point the signs of an epidemic 
were evident and apparently intensified by 
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the presence of El Niño Oscillation (IDEAM 
Instituto de Hidrología, 2010). This led the 
health municipality officials to take action and 
try to understand the environmental factors 
as well as case reporting and diagnosing, in 
order to create and design control plans and 
interventions against the transmission of the 
disease in the area.

In the absence of a licensed vaccine, 
emphasis has been given to control strategies, 
of which the most successful are based on 
entomological, viral, serologic, and clinical 
surveillance. Serological and viral surveillance 
are typically resource intensive and difficult to 
implement in developing countries. Therefore, 
with the ultimate goal of an early detection of 
potential epidemic events, countries with limited 
resources have focused their control efforts on 
reducing the mosquito habitat and conduct an 
active surveillance of the disease (Getis et al., 
2003; Mendez et al., 2006). Health officials 
of the City of Cali adhered to these guidelines 
and outlined a plan consisting of the following 
strategies: vector control at at-risk sites in the 
city, community participation, education, and 
epidemiological surveillance.

To design and plan such strategies it is 
necessary to understand the spatio-temporal 
patterns of the transmission of the disease. Dis-
covering those patterns can also help in under-
standing underlying social and environmental 
factors responsible for disease transmission. In 
particular, focusing on finer scales in space and 
time is needed to refine dengue surveillance and 
control strategies (Mammen et al., 2008; Kan et 
al., 2008). When data on mosquito occurrence 
is not available using the location of dengue 
cases can provide a basis for estimating where 
mosquitoes can be found leading to the iden-
tification of transmission patterns (Arboleda 
et al., 2009; Mammen et al., 2008). Dengue 
case data can also be of significant value when 
compared to the prohibitive cost of collecting 
adult female mosquitoes and the difficulty in 
identifying the mosquito breeding sites (large 
artificial water containers located in households 
(Eisen & Lozano-Fuentes, 2009).

The spatio-temporal methods used in this 
paper are developed to facilitate the understand-
ing of the mechanisms behind dengue fever, 
that is they are retrospective. These methods 
can assist in identifying potential space-time 
patterns. The aim of the paper is therefore 
not geosurveillance (Rogerson & Sun, 2011; 
Yamada et al., 2009), yet from a public policy 
perspective the results for the space-time analy-
sis can inform health decision makers on plan-
ning and design of control strategies to diminish 
disease incidences, for instance through locally 
focused prevention at critical times (Delmelle 
et al., 2011).

The rest of the paper is organized as follows. 
The second section describes the study area. The 
data set and data preparation are explained in 
a later section. The following section outlines 
the methodology, while the last two sections 
present a discussion of the results and a set of 
conclusions.

STUDY AREA

The city of Cali (Figure 1a) is located in the 
valley of the Cauca river, with its urban area 
located to the west of the river and contained 
by the Farallones mountains. Cali has a tropical 
climate with two rainy seasons. The first, usually 
from April to July, the second from September 
to December. The average temperature is 26°C 
(79°F), with an average low of 19°C (66°F), and 
an average high of 34°C (93°F) (Cali, 2008). 
Annual Precipitation reaches 900 mm in the 
driest zones and 1,800mm in the rainiest, with 
a city average of 1000 mm which covers most 
of the Metropolitan area (Cali, 2008). Peripheral 
areas to the east and west of the city suffer from 
unplanned urbanization (Restrepo, 2006). To the 
east multiple neighborhoods are the result of 
squatter settlements along the river banks (see 
Figure 2, right). To the west the settlements are 
in the hillsides of the Farallones mountains.

The city is divided into 22 administrative 
regions called Comunas (Communes). Comu-
nas are created by grouping neighborhoods 
with homogeneous demographic and socio-
economic characteristics (see Figure 2, left). 
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Neighborhoods are classified based on their 
socioeconomic strata into six different classes; 
strata six representing the highest income group, 

and one the lowest (see Casas et al., 2010 for 
a thorough investigation).

Based on data from the health municipality, 
between 1989 and 2007 the worse dengue fever 

Figure 1. Geocoded cases of dengue fever from January 1 2010 to August 22 2010

Figure 2. Neighborhood stratification by comuna and population information
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outbreak occurred in 1995 with 6,433 reported 
cases (Cali, 2010). After 1998 endemic years 
occurred less often, and in the last decade there 
have been only two endemic years that account 
for 44% of the total cases reported in the last ten 
years. In 2002 there were 4,358 cases reported 
(Méndez et al., 2006). This epidemic year was 
possibly the result of an eight-month period 
interruption in the vector control program and 
a climatic anomaly with the El Niño Oscil-
lation. The next epidemic year occurred in 
2005 with 2,338 cases and the appearance of 
DENV-3 (Cali, 2010). In the decade between 
1989 and 1998 there were 32,646 dengue fever 
cases reported in the City of Cali while in the 
decade between 1998 and 2007 there were 
14,946. This is a reduction of 54.2%, which is 
contrary to what was happening in Colombia 
and the Americas (Cali, 2010).

Until August 22 of 2010, a total of 9,310 
dengue cases had been reported in the epide-
miological surveillance system of the health 
municipality of the City of Cali (Cali, 2010). 
The health municipality reported these to be 
the highest in the last 25 years and identified 
comunas 17, 18, 19, and 22 to be the ones at 
highest risk of contracting dengue fever, and 
comunas 13, 14, and 15 to be at the lowest, 
setting them to face an epidemic year.

DATA SET

The data set used for this project corresponds to 
the dengue fever cases reported in the “Sistema 
de Vigilancia en Salud Pública” (SIVIGILA, 
English: Public health surveillance system) 
for the City of Cali (provided by the health 
municipality of the City of Cali). SIVIGILA is, 
according to the Colombian Ministry of Social 
Protection: “a set of users, norms, procedures, 
resources (financial and technical) and human 
talent, organized for the compilation, analysis, 
interpretation, updating, dissemination and sys-
tematic and on time evaluation of information 
regarding health events to take proper action” 
(translation from Spanish by authors) (Social, 
2006). SIVIGILA has a set of actors at the 

national, departmental (a territorial subdivision 
equivalent to states in the United States), and 
municipal levels that report on the different as-
pects of public health surveillance in the country. 
The areas in which public health surveillance 
is conducted are: contagious diseases, dietary 
security, chronic ailments, microbial resistance 
and drugs, mortality, interventions of interest to 
public health, chemical substances, and sanitary 
conditions and other environmental risk factors 
(Social, 2006).

Cases on dengue fever are reported as 
part of the contagious diseases surveillance 
section of the system. Information on dengue 
fever includes: patient information (name, sex, 
age, race, address, phone number, neighbor-
hood, patient’s occupation), date of diagnosis, 
epidemiological week, day symptoms started, 
if patient was hospitalized (if so, includes the 
date this happened), final condition (dead or 
alive), movement of the patient in the last 15 
days if any, and symptoms. It also includes the 
reporting institution and patient’s insurance 
information. In this paper only the first set of 
information will be used as well as the date of 
diagnosis. The information provided by this 
system allows health officials to monitor the 
disease. In particular, the City of Cali health 
officials prepared a set of protocols to use this 
information to their advantage with the purpose 
on identifying areas at high risk of contracting 
the disease and areas where high mortality 
was occurring as a result of contracting the 
disease. Their analysis is based at the comuna 
and neighborhood level. Their protocol consists 
of (Cali, 2010):

•	 A regularly scheduled weekly analysis 
comparing the current week to the same 
week in previous years,

•	 A daily morning and early afternoon revi-
sion conducted by an epidemiologist of the 
reported cases verifying the classification 
procedures and the measures taken based 
on the type of dengue case

•	 A follow up of reported cases conducted 
via a phone interview in order to identify 
any potential complications.
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SIVIGILA mostly manages information 
regarding patients through traditional databases, 
while aggregated information is mapped using 
current GIS software, often aggregated at the 
neighborhood level. The system in place does 
not carry out space-time modeling analysis. In 
the case of this research the analysis of surveil-
lance data is taken a step further to account for 
spatio-temporal patterns. It is also conducted 
at a finer more disaggregate scale, which can 
aid in identifying patterns and potential causes 
that might be clouded at a larger scale.

The data corresponds to the first eight 
months of 2010. The database structure of the 
SIVIGILA system was modified during the 
early months of 2010, therefore two differ-
ent datasets were provided which had to be 
merged and common fields identified. With 
the complete data set, the next step consists 
of geocoding individual cases based on their 
addresses. The nomenclature for the address 
system in Cali is very different than in the United 
States, therefore geocoding to the home address 
proves to be a challenge. In addition, a large 
percentage of the addresses were entered in a 
variety of formats that had to be corrected one 
at a time. Due to inconsistencies in the quality 
of the data, a decision was made to geocode 
to the intersection level using a Geographic 
Information System (ArcGIS). Geocoding at 
that level guarantees privacy (Kwan, Casas & 
Schmitz, 2004), however caution should be 
adopted when interpreting results from spatial 
distribution methods, as clustering will de facto 
occur at very small scales. As such, we expect 
two spatial levels of clustering: one at very 
small, focal scale and one at a largest scale. 
The latter is mapped.

A total of 9310 dengue cases were reported 
in the City of Cali from January 1 to August 22 
2010, as stated previously. Ninety-five percent 
of the cases were successfully geocoded at three 
levels of accuracy. The first group contained 
sixty-six percent of the cases (n=6164), which 
were geocoded at the closest street intersection 
level, the second group consisted of twenty-six 
percent of the cases (n=2448), geocoded at 
the neighborhood level due to incomplete and 

incorrect home addresses, while the last group 
had 207 cases (2%) which were at the rural area 
level (Spanish: corregimiento) surrounding the 
city (Figure 1a). For the remaining five percent, 
the data was missing information making it 
impossible to geocode. Figure 1b illustrates the 
spatial distribution of the 8612 cases (level 1 
and 2 geocode) with a clear linear pattern for 
those cases within the city of Cali, along the Cali 
river. Those patients geocoded at the neighbor-
hood levels usually did not provide an accurate 
home address and were randomly located within 
their neighborhood, while the patients from the 
outskirts of Cali were randomly allocated within 
their respective corregimiento. The latter was 
not included in the spatial analysis however, due 
to the low number of cases allocated randomly 
in such large areas.

Temporal Variation in 
Dengue Fever

Patients went to the closest hospital for a con-
sultation the same day they exhibited dengue 
symptoms (fever, joint and back pain). Figure 3 
to the left illustrates the cumulative distribution 
function (CDF) of the dengue cases against the 
Julian dates corresponding to each individual 
visit to the hospital when dengue fever was 
diagnosed (January: 0-31, February: 32-59, 
March: 60-90, April:91-120, May: 121-151, 
June: 152-181, July: 182-212, August: 213-
234). For a particular Julian date, the CDF 
represents the probability that an event will 
occur at a value less than or equal to that date. 
Figure 3 to the right reflects the probability 
density function (PDF), or the likelihood that 
an event occurs at a particular time. Few in-
dividuals were diagnosed with dengue in the 
early weeks of January, but a rapid increase was 
noticed in the month of February and a decline 
of cases in the summer months starting in May. 
The prevalence of the disease in February can 
be associated to the lack of rain, temperatures 
of 23 Celsius or higher, and most importantly 
the El Niño phenomenon that made the incuba-
tion period of the virus shorter resulting in a 
propagation of the virus1. As is well known, the 
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Aedes aegyti requires hard surfaces with water 
deposits (such as tires storing water, vases, storm 
drains, other water containers) to lay its eggs, 
therefore a day with minimal rainfall followed 
by hot dry days creates an environment for the 
mosquito to thrive (Cali, 2010).

The outbreak in mid-February can be ex-
plained in part by the favorable weather condi-
tions for the reproduction and transmission of the 
virus. Towards the end of January, rain allowed 
eggs that had been laid by the mosquitoes earlier 
in the month to progress through their life cycle 
(larvae and pupae). After this rain period a dry 
period occurred, which gave enough time for 
the pupae to fully develop, become mosquitoes 
and start feeding2. Hot temperatures are known 
to increase the feeding and incubation period 
of the mosquito (Kolivras, 2006; Chang et al., 
2009). This weather pattern that covered a two 
week span (last week of January and first week 
of February, repeated itself in the second week 
of February, making this month the most vulner-
able (IDEAM Instituto de Hidrología, 2010). 
The number of cases begins to decline when the 
rainy season approaches in mid March, a month 

characterized by the lack of rain. Another reason 
for the decline in the number of cases after the 
February outbreak, is the quick response by 
the health municipality. After identifying the 
increase in number of cases in the month of 
February, the health officials set in motion a 
plan to control the mosquito habitat and follow 
every case that was reported.

Figure 4 summarizes the cumulative dis-
tribution function for all dengue fever cases by 
age. Although several factors increase the risk 
of contracting dengue fever, such as age and 
previous exposure to the disease (Ospina, Diaz, 
& Osorio, 2010), natural breaks occurred in the 
distribution of cases as a function of age (see 
also Morrisson et al., 1998 and Mammen et al., 
2008). The children age group (18 years old or 
less) represents half of all reported cases. This 
population group is more susceptible to contract-
ing the virus given their lack of exposure and 
immunological defenses to the serotype DENV 
– 2, which had not circulated in the area in more 
than a decade (Cali, 2010, See also Mendez et 
al. for a discussion about the presence of the 
different serotypes in Colombia). There are far 

Figure 3. Cumulative distribution function (left) for dengue cases and associated probability 
density function (right)
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fewer cases reported for the elderly population 
(only ten percent of the cases are for individuals 
of 55 years or more).

SPATIAL AND SPACE-
TIME MODELING

To estimate whether dengue cases exhibit 
dispersion, randomness or clustering, the K-
function is utilized, which explicitly consid-
ers inter-separation distance between dengue 
events, while the amount of clustering is com-
puted at various scales (also called radii) (Bailey 
& Gatrell, 1995). The K-function determines 
the scale at which the magnitude of clustering 
is maximum. To compute the statistic, a circle 
of a specified radius (h) is placed over each 
point in the set (i). Events within this radius (j) 
are counted and the circle is moved to the next 
event, repeating the process sequentially. For 
all (n) existing cases, the radius is increased 
and the process continues in a similar fashion 
until a specified maximum radius is reached 
(Delmelle, 2009). Specifically, the K-function 
is defined as:

ˆ( ) ( ),K h
A

n
I d
h ij

i j

= ∑∑
≠

2
� (1)

where dij is the distance between two dengue 
cases i and j within the study region, A is the 
size of the study area, and I d

h ij
( ) an indicator 

function defined in Equation 2 as:

I d
if d h

o w
h ij

ij( )
,

. .
=

≤






1

0
� (2)

The value of ˆ( )K h can be graphed against 
different radii values (h) to estimate at what 
distances the point pattern exhibits randomness, 
clustering, or dispersion. To confirm whether 
the observed pattern is statistically significant, 
a high number of Monte Carlo simulations 
(randomly distributed points throughout the 
study area) must be performed to which the 
same statistic is computed. For each random 
simulation, the K statistic is calculated at each 
distance interval, and the upper and lower en-

Figure 4. Cumulative Distribution Function for dengue cases by age
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velopes of the Monte-Carlo simulations are 
reported. Assuming a random process, the 
expected number of cases within a distance (h) 
of a randomly chosen patient would be λπh2 , 
where λ  is the Poisson parameter, reflecting 
the intensity of the point process. Given that 
the value of K h( )  may be greater than πh2

when events are clustered, the estimated value 
of K h( )  is compared from its theoretical value
K h h( )= π 2 , by estimating an L-function, 
informing on the scale at which the magnitude 
of clustering is maximum (Delmelle, 2009):

(̂ )
ˆ( )

( )L h
K h

h= −
π

� (3)

Clustering results give valuable informa-
tion on the scale at which clustering is pre-
dominant, but do not provide explicit geo-
graphic information as to where clustering is 
occurring. A kernel density function can be 
thought of a “heat map”, and visualizes the 
location of clusters, by overlaying a grid on a 
map and reporting the density of events in the 
neighborhood (also called bandwidth τ control-
ling the amount of smoothing). The size of τ
is determined by using the value of ( )h corre-
sponding to the greatest value of the L-function 
(Delmelle et al., 2011). Mathematically, the 
kernel density at a grid point is denoted ˆ ( )λτ g
and estimated in Equation (4), where di is the 
distance from an event i to the gridpoint g 
(Bailey and Gatrell, 1995): 

ˆ ( )λ
πτ ττ
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d
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
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


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2
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Spatio-Temporal Analysis

The K-function and associated Kernel heat map 
density function inform on the scale and mag-
nitude of the concentration of dengue cases, yet 
they do not provide insight on process dynamics. 

Since the day of hospital visit is reported in the 
database, dengue cases have a time stamp as-
sociated with them, making it possible to further 
investigate whether a space-time link exists 
between two events. For dengue for instance, 
there is a strong correlation between the time 
of disease infection and the distance separating 
events because the mosquito can travel limited 
distances (Chang et al., 2009; Koenraadt et 
al., 2008). It is important to quickly detect and 
identify origins of patients exhibiting a similar 
disease to provide health care assistance and 
more importantly eradicate the source of the 
infection, in this case the Aedes Agypti mos-
quito. A logical approach to test for space-time 
clustering is by using a bivariate “space-time” 
K-function, which now integrates the temporal 
dimension into the K-function. As discussed in 
Delmelle et al. (2011), the Knox and Mantel 
tests are usually used to confirm space-time 
clustering at a given distance and time. The 
space-time K-function however evaluates the 
strength of this clustering for a range of space 
and time intervals, which is computationally 
more intensive. Space-time interaction is com-
puted at different time windows (t) and distance 
intervals (h) (Bailey & Gatrell, 1995; Boots & 
Getis, 1988). A count statistic tests the hypoth-
esis that space and time are independent from 
one another, once the scale at which clustering is 
the highest has been identified. In other words, 
the space-time K-function evaluates whether 
there is an interaction among the location of 
individuals presenting dengue symptoms, and 
the day they visited the hospital for diagnosis. 
Due to the nature of the disease, it would be 
expected that individuals diagnosed with dengue 
fever who live close to one another are likely 
to visit the hospital in a similar period of time, 
while patients living far away from each another 
would probably be less likely to visit the hos-
pital simultaneously (Bailey & Gatrell, 1995; 
Casas et al., 2010). The space-time K-function 
is computed as:

ˆ( , ) ( , )
,

K h t
L R

n
I t d

i j
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=
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with the indicator function I t d
h t ij ij,
( , )  defined 

as:
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


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1

0
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The value in Equation 5 will increase with 
increasing intervals of time (t) and distance (h). 
When there is no space-time interaction, Equa-
tion (5) reduces to the product of the spatial 
K-function and its temporal counterpart, 
namely ˆ( ) * ˆ( )K h K t , while a test for space-time 
dependence can be conducted by subtracting 
the product of separate spatial and temporal 
K-function ˆ( ) * ˆ( )K h K t from the combined 
space-time K-function (Gatrell et al., 1996):

ˆ( , ) ˆ( , ) ˆ( ) * ˆ( )D h t K h t K h K t= − � (7)

ANALYSIS AND DISCUSSION 
OF RESULTS

Spatial and space-time analysis was computed 
using the Health Exploratory and anaLysis tool 
for Practitioners (H.E.L.P.) module, specifically 
developed by Delmelle et al. (2011) for the 
purpose of analyzing point events. H.E.L.P. 
is an ArcObjects-based application (ArcGIS, 
ESRI), built to tightly interact with Matlab, 
a powerful matrix software. While ArcGIS 
performs the GIS functionality (that is kernel 
density and mapping interdependent space-time 
cases), Matlab is used to determine the scales 
at which space and spatio-temporal clustering 
are the greatest. The communication between 
the two occurs via COM objects.

Spatial Analysis

Figure 3 clearly indicates a monthly trend in 
dengue occurrences, and hence cases were par-
titioned into one-month interval. To estimate the 
spatial clustering at each month, a K-function 

and associated L-function were derived in 
H.E.L.P. (Delmelle et al. 2011), first for a range 
of 50 meters to 10,000 meters with intervals 
every 100 meters with strongest clustering 
systematically observed at 750 meters except 
in August. Given the small-scale nature of the 
disease however (Morrison et al., 1998), the 
analysis was repeated at scales from 0 meters 
to 500 meters, with a smaller separation of 25 
meters. Estimating clustering at small separa-
tion distances is motivated by the fact that adult 
female mosquitoes (the ones transmitting the 
disease) generally travel a short distance from 
where they first feed and lay their eggs (Chang 
et al., 2009; Koenraadt et al., 2008). Hence, 
individuals that live closer together are more 
likely to interact than individuals that live far 
apart becoming more susceptive to infection. A 
total of 100 simulations were run; at any given 
scale, if the estimated L-function is above these 
two envelopes, clustering occurs at that scale, 
but if between the envelopes the pattern is 
considered random. The L-function reinforces 
that strong clustering occurs at two distinct 
scales: one at a relatively medium distance of 
750meters (not shown here, yet roughly coincid-
ing with the neighborhood scale), and one at a 
short separating distance of 25 meters, which 
can partly be explained by (1) the geocoding 
process which forces addresses to match at the 
closest block intersection level, (2) the infec-
tious nature of the disease and (3) the limited 
range of the vector. This is also confirmed by 
the high probability function of small separation 
distances (at a separation distance of zero, the 
L-function equals zero).

HELP produces kernel density maps using 
the optimal kernel bandwidth τ . HELP assists 
the user in identifying the distance at which the 
L-function departs the most from simulation 
envelopes; at that distance the magnitude of 
clustering is usually the strongest. Kernel maps 
for each month were combined together in 
Figure 4 AND Figure 5 and a similar pattern is 
observed throughout the months, yet the mag-
nitude decreases after the month of April. For 
each month, a few clusters are observed and 
assigned a number. The five clusters are  
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located in areas with two characteristics in 
common: (1) there is a concentration of vulner-
able populations (non-African descent, See 
Figure 6) and (2) the areas present favorable 
conditions for the mosquito to breed. Breeding 
sites can emerge where there is any kind of 
standing water combined with hard surfaces 
where the female mosquito can attach to lay 
her eggs. Standing water can result from water 
storage containers where people do not have 
the proper sewer system or from waste water 
channels where trash and soil banks result in 
stagnant waters (storm sewers are part of the 
later). The first cluster occurs in the northern 
part of Cali directly to the South of the Cali 
River, a river flowing through the city, draining 
into the Cauca River. Cluster number 2 is also 
directly located to the south of Cali River, but 
also in close proximity of Parque de la Cana, 
an attraction park with several swimming pools 
and small ponds. These first two clusters have 
in common that people in these areas tend to 
live in crowded rooms with poor water supply 
making them a more vulnerable population 
(Cali, 2008). Cluster number 3 is in a strategic 
location west of Planta de Purificación, a 
water treatment plant, which is next to an air 

force base where there is a concentration of 
population. Clusters number 4 and 5 occur 
around a military area (Ejercito Tercera Di-
visión) that has a small water channel running 
through and are close to the foothills where a 
high percentage of the population resides in 
poor quality and overcrowded housing.

Although the intensity of the pattern 
fluctuates over time (stronger in February and 
March, and much weaker in July and August), 
the spatial pattern is stable. There is no evi-
dence of a relationship between dengue cases 
and the income levels of the neighborhoods, 
which supports findings by Rosa-Freitas et 
al. (2003) of dengue being found even in 
high-income neighborhoods. This can be the 
result of prevention and control strategies set 
in place by the health municipality when the 
February outbreak occurred. The municipality 
put in place a plan to fumigate storm drains in 
neighborhoods of low strata every fifteen days. 
Therefore, clustering is better explained, in the 
case of the City of Cali, by high population 
concentrations (see Figure 2), in particular in 
areas where the population is not characterized 
for being of African descent (i.e., mestizo, rom, 
indigenous, see Figure 6). People from African 

Figure 5. Kernel density maps for each month, using a bandwidth of 750meters, keeping the 
legend similar for each time period
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Figure 6. Non-African descent population totals (as reported to the Census including missing data)
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descent have shown to be less likely to contract 
the virus than people from other races (Cali, 
2010). The results presented here support the 
original observation made by the municipality 
in Cali (2010), where they identified comuna 
18 as being on the list of comunas at highest 
risk of contracting the virus.

Spatio-Temporal Analysis

Dengue appears to spread rather quickly around 
specific sources, which correspond to infected 
female mosquitoes. Female mosquitoes that 
have had their first blood meal are to start 
oviposition approximately after three days, 
when they typically leave the house (or living 
quarters) to go outdoors to lay their eggs (Mor-
risson et al., 1998). Therefore, a temporal pattern 
is expected to emerge at a three day interval. 
A probability density function for all dengue 
cases confirms these results, exhibiting highest 
values at a separation of two days, sustained for 
six to seven days. Beyond this time separation, 
the relationship decreases rapidly.

A space-time K-function was computed 
on monthly partitioned datasets; we illustrate 
its interaction in Figure 7. Dengue counts are 
lower during the month of July, but clustering 
analysis is significant. The results provide valu-
able knowledge on the strength of space-time 

interaction, which is crucial to facilitate the 
understanding and modeling of contagious dis-
eases. A temporal wave-like pattern is observed, 
but quasi-linear distancewise, which confirms 
literature findings indicating that the incubation 
time and oviposition phenomena is stronger 
at six days of interseparation time (Aldstadt, 
2007; Kolivras, 2006). When population lives 
close to stagnant water, it is not surprising to 
see this pattern. In other words, a greater in-
terdependence exists between patients who are 
diagnosed at two to three days intervals, and 
again at six days.

H.E.L.P. is used to map space-time clusters 
for those cases in July separated by two days 
and 550 meters, using a mapping pair function 
(Delmelle et al., 2011). A linear kernel density 
visually reinforces the strength of this space-
time interdependency. Figure 7 to the right 
reveals that the majority of the pairs are located 
in the vicinity of the City Center, but the middle 
figure denotes strong interdependency among 
patients at the military base. These two loca-
tions are characterized by high concentrations 
of population of non-African descent. Mapping 
space-time pairs provide valuable tool for deci-
sion makers; especially in understanding the 
dynamics of a disease and identifying potential 
sources. In this case, for example, both areas 

Figure 7. Space-time interaction for patients exhibiting symptoms of dengue in July 2010. 
Cases separated by 2 days and 550meters are linked. The zoom-in areas are for clusters 1 and 
5, respectively (see Figure 5)
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(East and West) share similar environmental 
conditions, with water deposits in homes that 
allow the incubation of the virus.

CONCLUSION

In this paper the dynamics of dengue fever in 
Cali, Colombia have been investigated for the 
first eight months of 2010. A database with ad-
dresses and data of visits was made available 
by the Public health surveillance system for the 
City of Cali. There was a clear pattern indicating 
an increase of cases in the weeks following an 
intense period of rain and drought, but also a 
clear age group difference. Dengue cases were 
geocoded at the street intersection level or 
neighborhood level, mapped in Geographical 
Information System. A module tightly coupling 
ArcGIS and Matlab was used to estimate and 
map clustering in space and time, while linking 
those cases showing strong interdependency.

Five clusters were identified. The first 
around the Cali river, the second near the water 
park, the third next to the airforce base, and 
the last two in and around the military base. 
Regardless of the month under analysis, these 
clusters remain stable indicating the prevalence 
of a population highly susceptible to the virus. 
It also indicates that these areas form a more 
favorable habitat for the mosquito to breed, 
especially if the storm drains are in closer prox-
imity to the homes and this is particularly the 
case in Cali. The space-time clustering analysis 
confirms the cyclic pattern of the disease that 
was the strongest at two and six days intervals.

Even though this research did not have as 
an objective to identify the potential factors 
that produce the observed clusters, a set of 
hypotheses can be considered. As mentioned 
earlier, the five clusters have concentration of 
vulnerable populations that live in areas favor-
able for the mosquito to breed. This suggests 
areas with a high population density, where 
sewer infrastructure and utilities are minimal 
are at a higher risk of contracting the virus. 
These groups tend to live under poor sanitary 
conditions and to make up for the lack of basic 

services are forced to surround themselves with 
stagnant water, a perfect habitat for the mos-
quito. In these areas in particular, and in others 
around the city (like the military base) there 
are waste water channels. These are concrete 
structures, not too far away from the houses, 
where water deposits form. Especially when 
a rainy day is followed by a dry period, these 
channels can become breeding grounds for the 
Aedes Agypti. A different hypothesis to examine 
is to consider that the infected individual came 
from a different area, allowing the infection to 
spread. This could potentially have happened 
in areas where the population is more mobile, 
like the military and army base cluster areas.

Active dengue surveillance through an 
application of a set of protocols for monitor-
ing and analysis of information, allows for the 
detection of signs that can alert health officials 
to what areas can be at high risk of contracting 
the disease as well as where high mortality rates 
are taking place. With this information they 
can plan and act accordingly. Given a limited 
budget, this research indicates that the strength 
of coupling a Geographic Information System 
with space-time methodology can help identify 
the emergence of a potential epidemic.

The methodology presented in this paper 
can also be used as a base for planning control 
and prevention strategies targeted to particular 
areas of the city that have exhibited certain 
patterns. For example, the health municipal-
ity of the City of Cali could design strategies 
that focused in particular ethnic groups (i.e., 
people from non-African descent) that appear 
to be at a higher risk. They could work with 
the utility company to identify areas with poor 
infrastructure, where the virus is concentrating 
and try to propose a solution that can help the 
community. They could also target education 
plans on how to keep living spaces clean to avoid 
mosquito breeding sites. In terms of controlling 
the mosquito habitat, this methodology and 
analysis can help in deciding the distribution 
of resources. There are three types of spraying 
sites: outside public spaces (to kill larvae), 
inside of houses, and places where there are 
human concentrations like schools (the last two 
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to kill the adult mosquito). By being able to 
identify where clusters are more resources can 
be allocated to those areas to increase control. 
And most importantly, having a methodology 
in place which provides results and information 
for the planning of control strategies will push 
the local government to maintain continuity in 
funding such initiatives. In the past, lack of funds 
became an impediment for the implementation 
of effective control strategies which resulted 
in an increase in the transmission of the virus 
(Cali, 2010).

Dengue incidences on different age groups 
was also investigated, specifically those children 
less than two years old, children from 2 to 18 
years of age, adults from 19 to 64 years and the 
elderly population group (Figure 8), indicating 
a sharp increase in mid-January with a peak 
of cases during the middle of February, with 

a constant decline starting around mid-March. 
A notable exception, however, is for the first 
age group (children <2 years old) where the 
peak is much narrower and a second increase is 
observed at the end of May. Finally, the elderly 
group exhibits various fluctuations. From Figure 
8, it is evident that it will be critical in future 
research to incorporate population densities, age 
and race to identify. A better understanding of 
the relationship between incidence and popu-
lation characteristics can redefine prevention 
measures. Current research focuses on applying 
the methodology suggested in this paper to these 
different cohorts.

From a methodological perspective, 
directions for future research need to incor-
porate habitat information, for instance point 
source diffusion modeling with a certain rate 
of occurrence (Elliott et al., 2001), similar to 

Figure 8. Probability Density Function of dengue fever cases by age groups
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geostatistical models recently proposed in Goo-
vaerts (2005). Finally, given the scale at which 
we geocoded dengue cases, caution must be 
adopted in interpreting results from the spatial 
distribution analysis. It is recommended to 
improve clustering and kernel density estimates 
when the underlying population densities are 
varying spatially as suggested in Bailey and 
Gatrell (1995).
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