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Abstract

In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing

network of public facilities to meet anticipated changes in the level of demand. We present

a multi-period capacitated median model for school network facility location planning that

minimizes transportation costs, while functional costs are subject to a budget constraint.

The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility

to account for a minimum school age closing requirement, while the maximum capacity of

each school can be adjusted by the addition of modular units. Non-closest assignments are

controlled by the introduction of a parameter penalizing excess travel. The applicability

of the ViFCLP is illustrated on a large U.S. school system (Charlotte-Mecklenburg, North

Carolina) where high school demand is expected to grow faster with distance to the city

center. Higher school capacities and greater penalty on travel impedance parameter reduce

the number of non-closest assignments. The proposed model is beneficial to policy makers

seeking to improve the provision and efficiency of public services over a multi-period plan-

ning horizon.

Keywords: Dynamic school location, non-closest assignment, modular capacity.

1 Introduction

On November 9 2010, North Carolina’s Charlotte-Mecklenburg Schools (CMS) district1,

announced its plans to close nearly a dozen schools within the city’s urban core while opening

new ones in the suburbs2. It was the first time that the CMS public school authority faced

a substantial budget shortfall, causing a massive overhaul of the entire school system and the

reassignment of approximately 25,000 students. Nearly instantly, public outrage broke out on

behalf of the community, resulting in the arrest of citizens at school board meetings. Clearly,

1CMS provides public education in the fourth fastest growing metropolitean area in the United States (US
Census 2010)

2http://www.charlotteobserver.com/2010/11/10/1825785/move-to-put-off-cms-vote-fails.html, last accessed:
October 11 2013.
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school closure is a contentious and emotionally charged issue and one that other rapidly chang-

ing metropolitan regions may also face. The purpose of this paper is to propose and develop

a modeling approach that reflects educational needs of a community and that is financially

sustainable. In order to make school systems more efficient, the current infrastructure must

be used strategically and critical decisions must be made on where and when to expand (or

contract) an existing network of facilities.

We propose a multi-period capacitated location model, where the number of facilities open in

each period reflects anticipated changes in population distribution and is determined through

overall cost minimization. The proposed Vintage Flexible Capacitated Location Problem (ViF-

CLP) keeps travel costs to a minimum, while educational expenses incurred by the school system

are constrained by the budget available. In the model, schools represent vintage capital for the

school system in that they face different depreciation schedules according to their age. Each

facility has a maximum student capacity constraint that can flexibly be raised with the addition

of modular equipment. The former is intended to stay within budget, while the latter feature

prevents overcrowding and associated educational and disciplinary problems in schools. The

model is flexible as it allows for facility closure, facility expansion and downsizing, while the

status of any school location can be controlled through an age restriction, preventing recently

built facilities from closing until fixed costs have been amortized. The flexibility of the model

to handle modular equipment, constraints of facility age, the assignment of students to schools,

and uncertainty of student growth are important contributions of this work.

Section 2 reviews the importance of location models in the context of public facilities and public

schools in particular, and their associated modeling challenges (capacity, closest assignments,

closing requirements). Section 3 presents the Vintage Flexible Capacitated Location Problem

(ViFCLP) and its rationale. We demonstrate the applicability of the ViFCLP to the Charlotte-
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Mecklenburg Schools (CMS) system in section 4. By letting the available budget in the ViFCLP

vary, we obtain the Pareto optimal solutions of a bi-criterion problem whose objectives are the

travel costs incurred by the pupils and the educational expenses supported by the system.

Unfortunately, proceeding in this way often yields duality gaps and sometimes results in hard

computational instances. A way to circumvent the difficulty is to consider a linear combination

of the objectives, which allows to generate the convex envelope of the Pareto optimal solutions

by solving easier problems. Variations in the weighting schemes allow to generate multiple sce-

narios minimizing travel impedance and school expenditures, respectively˙ The impact of model

parameters on the number of schools, modular units and non-closest assignments is presented.

Future enhancements of the model are discussed in section 5.

2 Location models for public facilities

Location models for public facilities such as schools, libraries as well as emergency services

are critical tools for urban and regional planners as well as decision-makers and a vast body

of literature has been dedicated to the subject (ReVelle et al. 1977, Mirchandani and Francis

1990, Daskin 1995, Drezner 1995a). These models generally stipulate that all demand must be

served, and when possible, demand must be assigned to a facility so as to incur the least travel

impedance, or a facility to be located within an acceptable travel budget from each demand

unit, since it is generally recognized that the benefits of a public service decrease with increasing

impedance. In fast growing urban regions, it is necessary to build additional public facilities to

address increasing demand for service, while closing existing facilities may be needed in areas of

population decline (Roodman and Schwartz 1975). Although not restricted to public facilities,

Wang et al. (2003) consider both issues of opening and closing facilities to meet anticipated

demand, subject to a constraint on the budget (operating and setup). Within the framework of

the maximal covering location problem, ReVelle, Murray and Serra (2007) propose a planned
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shrinkage problem which can integrate closing requirements to decrease operating costs. These

models do not integrate constraints on facility capacity.

Urban environments are eminently dynamic, where demand changes rapidly, along with travel

and other conditions that affect the operation of a system of public facilities. Dynamic models

are designed to optimally locate planned facilities for each time period using forecasted demands

and costs (Balou 1968, Wesolowsky 1973, Fong and Srinivasan 1981, Van Roy and Erlenkotter

1982, Drezner 1995b, and Alberada-Sambola et al. 2009). Jacobsen (1990) presents a method-

ology to determine an optimal sequence of facility capacity expansions to meet time-varying

demand at a minimal cost. The multi-period capacitated location (MCL) model attempts to

identify where and when new facilities should be added to the current network and their optimal

size. Decisions on when, where and by how much are not independent of each other, as also

underscored by Manne (1962).

As discussed by Clarke and Surkis (1968), Dost (1968), Maxfield (1972), Viegas (1987), Green-

leaf and Harrison (1987), Church and Schoepfle (1993), and Church and Murray (1993), the

modeling of a school network is challenging for the following reasons: (i) demand will fluctuate

over time, requiring to open new schools and close existing ones; (ii) capacity regulates how

much demand can be served at any given time; (iii) each student is assigned to its closest school

but capacity constraints may impede this property, thus further affecting the compactness of

school districts; (iv) the uneven quality of enrollment forecasts degrades the reliability and effi-

ciency of planning decisions; (v) a certain level of social and ethnic balance must be maintained

which may increase total travel time. These critical issues deeply affect school assignment and

location decisions. This paper is strictly concerned with issues (i)-(iv).

Modifying an existing school network. Expanding an existing network of schools may be

required in regions with high population growth, while school closure may be deemed necessary
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in areas of population decline. Closing a school may result in a child needing to be bussed further

away: student social networks may become more fragile as students from the same neighborhood

are assigned to different schools, and as such, the decision to close schools is often a contentious

issue (see for instance Witten et al. 2001 in New Zealand). Having an objective and defensible

strategy to justify these decisions is therefore crucial. The expansion of an existing school

network requires time to plan, obtain approval and to build new facilities (Taylor et al. 1999).

Antunes and Peeters (2000, 2001) and Antunes et al. (2009) proposed an extension of the

capacitated p-median problem that handles the opening of new educational facilities to address

enrollment variations, and the expansion or reduction of existing facilities. Their model cannot

force schools to remain open until they reach a certain age nor does it account for the uncertainty

associated with future demand forecasts. The former issue is motivated by the high setup costs

of schools, which reduces the efficiency of solutions that would close a school before its building

costs have been amortized. The latter point is meaningful in that the accuracy of spatial

demographic forecasts is higher in the near term.

Capacitated problems and modular units. Uncapacitated facility location models have

the undesirable property to site facilities with highly uneven workloads (Murray and Gerrard

1997). Although they require a greater computational effort, capacitated facility location mod-

els (ReVelle and Laporte 1996) are better suited for locating public facilities as they provide

an alternate form of equity, ensuring that utilization remains well balanced across different

facilities. For school systems, this translates in a smaller student-teacher ratio or a more even

utilization rate (Church and Murray 1993). Capacity expansions may be required when a school

authority wishes to reduce average class sizes or when it is faced with enrollment increases.

Rapid fluctuations in student enrollment must be met in a timely manner and can partly be

addressed by the addition of modular units -or portable classrooms (Allison 1998, Lyons 2001).

Modular units are an inherent part of the school landscape: in 2010, 33% of schools in the
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United States had portable classroom buildings. Portable classrooms are more predominant in

larger schools (over 700 students), as well as in overcrowded schools in suburban areas (Na-

tional Center for Education Statistics 2011). Critical advantages of portable classrooms are in

the speed of delivery, their flexibility to absorb fluctuations in unstable enrollment and their

low-cost (Fleming 1997, Harris 2006). The possibility to relocate them within a school district

to meet shifting growth patterns make them very attractive (Buchanan 2003).

Closest assignments. Assignments of students to the facility that minimizes impedance

(’closest assignment’) is often a desirable outcome of capacitated school location models (Bigotte

and Antunes 2007, Teixeira and Antunes 2008). A high rate of closest assignments generally

results from greater school capacities. Gerrard and Church (1996) review different constraints

specifically tailored to enforce that each demand node is assigned to its least effort facility. Caro

et al. (2004) demonstrate that imposing a maximum walking (or travel) impedance to school

generates more compact districts. In this paper, we explicitly model the functional relationship

between travel cost impedance and physical distance and impose an additional penalty beyond

a certain distance in the form of a weight to reduce the incidence of non-closest assignments.

A student may still be assigned to a school that is beyond an acceptable travel distance, but

this translates into an extra burden to the community.

3 Problem formulation

3.1 Notation

Our model is inspired by the capacitated plant location model discussed in ReVelle and

Laporte (1996). The ViFCLP allows to close schools only if they have reached a certain age,

to prevent schools critical to the community from closing (for instance under public or political

pressure), capacities to be flexible with the addition of modular units and to reduce the number

of non-closest assignments. The formulation of the ViFCLP utilizes the following notation:
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Indices and sets

i, I: index and set of demand nodes

j, J : index and set of candidate school locations

m,M : index and set of periods (m0 = base situation)

JN : set of proposed (new) school locations, JN ⊂ J , at base time period m0

JE set of existing facilities at present, JE ⊂ J , at base time period m0

Travel costs

cijm: travel cost between an individual i and facility j in period m

dijm: travel distance between an individual i and facility j in period m

dmax
im : distance threshold; dmax

im > min
j∈J

dijm

Facility costs

c++
m : leasing cost of a mobile unit at m

cfjm : fixed cost of operating a school j at m

csm : marginal cost per student at m

cNjm : cost to open a new school j at m

cEjm : cost to close an existing school j at m

Capacities and additional parameters

z+jm: maximum capacity of facility j at m

Kjm: maximum number of additional mobile units at j during time m

z++: capacity of a mobile unit

aim: demand at location i in period m

eEjm: age of existing facility j at m

Ē: minimum age for a facility to close

wm: discount factor reflecting importance of period m with
∑

m∈M\{0} wm = 1

A: a very large number

B: total school budget over the planning horizon

Decision variables
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Xijm =


1 if demand i is assigned to j at m

0 otherwise

Yjm =


1 if location j is open at m

0 otherwise

Ujm = number of mobile units used at j in period m

3.2 Formulation of the Vintage Flexible Capacitated Location Problem

Minimize f1 =
∑
i∈I

∑
j∈J

∑
m∈M\{0}

wm cijm aim Xijm (1)

subject to:

f2 =

[(∑
j∈J

∑
m∈M\{0}

cfjm Yjm

)
+

( ∑
j∈JN

∑
m∈M\{0}

cNjm (Yjm − Yj,m−1)
)
+

( ∑
j∈JE

∑
m∈M\{0}

cEjm
(Yj,m−1 − Yjm)

)
+
(∑

j∈J

∑
m∈M\{0}

c++
m Ujm

)
+

(∑
i∈I

∑
j∈J

∑
m∈M\{0}

csm aim

)]
≤ B (2)
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∑
j∈J

Xijm = 1 ∀i ∈ I, ∀m ∈ M \ {0} (3)

Xijm ≤ Yjm ∀i ∈ I,∀m ∈ M \ {0}, ∀j ∈ J (4)∑
i∈I

aim Xijm ≤ (z+jm Yjm) + (Ujm z++) ∀j ∈ J,∀m ∈ M \ {0} (5)

Ujm ≤ A Yjm ∀j ∈ J,∀m ∈ M \ {0} (6)

Ujm ≤ Kjm ∀j ∈ J,∀m ∈ M \ {0} (7)

Ē − eEjm ≤ A Yjm ∀j ∈ JE , ∀m ∈ M \ {0} (8)

Yj,m−1 ≤ Yjm ∀j ∈ JN , ∀m ∈ M \ {0} (9)

Yjm ≤ Yj,m−1 ∀j ∈ JE , ∀m ∈ M \ {0} (10)

Xijm, Yjm ∈ 0, 1 ∀i ∈ I, ∀j ∈ J,∀m ∈ M \ {0} (11)

Ujm ∈ Z+ ∀j ∈ J,∀m ∈ M \ {0} (12)

Yj,m=0 =


1 if j ∈ JE

0 if j ∈ JN

(13)

Objective function (1) minimizes student travel costs to schools, which is the total weighted cost

incurred by students traveling to school, summed over all periods, except the base situation

m0, hence M \ {0}. Constraint (2) stipulates that school expenditures must be contained

within the overall school budget B, which is an exogenous parameter varying between 0 and ∞.

School expenditures include fixed costs (operating schools, opening new schools, closing existing

schools, acquiring mobile units) and variable costs (per-student marginal operating cost). JN

denotes the potential school locations at the base time period m0, with operation starting at

the second time period m1, since it will require some time to get approval, plan and build at

the school site. The set JE contains schools that are currently operational. In constraint (2),

the term
∑

j∈J
∑

m∈M\{0} c
++
m Ujm represents the leasing costs of mobile units. This equation

can be modified if a school plans to acquire these units outright instead. In the ViCFLP model,

travel costs cijm are a linear function of the travel distance dijm up to a critical threshold dmax
im :
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cijm : travel impedance from i to j at m; cijm =


αdijm if dijm ≤ dmax

im

αdijm + (dijm − dmax
im )β if dijm > dmax

im

Beyond this threshold, an extra impedance penalty is imposed through a weight β, while α

governs the relationship between travel distance and travel cost. With this specification, a

student i can still be assigned to a school j even if the travel distance from i to j is greater

than dmax
im , but the imposition of an additional impedance makes it more likely to result in

assignments to the closest school. Figure 1 illustrates this relationship for an individual i

who can be assigned to either of two facilities, one being located nearby and the other at a

considerable distance.

INSERT FIGURE 1 ABOUT HERE

Constraint (3) guarantees that each demand node is assigned during each period. Constraint

(4) stipulates that a demand node can be allocated to a school only if the school is in operation

at that time. Constraint (5) enforces that the demand allocated to a school cannot exceed the

permanent capacity of the school expanded by the capacity of installed mobile units. Unlike in

Bigotte and Antunes (2007), no minimum capacity requirement is necessary since constraining

the overall school budget B will prevent the underutilization of schools. Constraint (6) guar-

antees that mobile units are added at a site j only if a school exists at this site in period m.

In our model, mobile units are leased at the beginning of each period for a fixed amount, if

needed. Constraint (7) stipulates that the number of mobile units added to a site j at period

m is bound by how many units can be added at this site, Kjm. Constraint (8) only allows

schools that have reached a certain age Ē to close, while constraint (9) requires that, once a

non-existing (candidate) school is opened, it must remain so in subsequent periods, preventing

it from closing. The minimum closing age Ē is generally taken to be larger than the plan-

ning horizon for the school system. Constraint (10) stipulates that, once an existing school is

closed, it cannot be reopened at a later time. Constraints (11) and (12) are integer and single
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assignment constraints. Since Xijm is binary, split demand assignment cannot occur, that is

all the aggregated demand originating from a location is assigned to the same school. Finally,

constraint (13) indicates which schools are currently operating (at the base situation, m=0).

The ViFCLP is written in the Python with Geographical Information System (GIS) function-

ality, interacting with the CPLEX solver, through a Linear Programming form. Results are

visualized back into the GIS. The ViFLCP is solved on an IntelCore processor (2.6Ghz) with

4GB of RAM.

4 Real-world case study: Charlotte-Mecklenburg Schools

We illustrate the behavior of the ViCFLP model on a large case study, specifically the CMS

system, which serves the city of Charlotte (North Carolina, U.S.A.) and its surrounding county.

In the last 30 years, Charlotte has experienced a steady and significant rate of population growth

above both North Carolina and the United States at large, which is largely explained by the

development of the financial service industry. The city has developed more horizontally in green

field locations than vertically by redevelopment or densification of established neighborhoods.

Increase in school enrollment has particularly been noticeable during the last two decades. The

state of North Carolina as a whole had a projected enrollment growth of 37% from 1999 to

2009; the CMS system is its fastest growing district (U.S. Department of Education 1999).

4.1 Data

Baseline situation. Population increase in the Charlotte area has had a direct impact on

the opening/closing of new and existing schools and the ability of CMS to increase school

capacity in the short run, for instance through the addition of modular units. In 2008 (m0),

the CMS system operated 16 public high schools (see Fig. 2(a)) with five additional candidate
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high schools proposed in the periphery 3. Table 1 reports school capacities, year of

construction and number of on-site modular units for the year 2008. From our consultations

with school district officials, the schools of Myers Park (j = 3), South Mecklenburg (j = 4),

East Mecklenburg (j = 5) and Providence (j = 6) (highlighted in Fig. 2(a)) cannot close as

these are considered landmarks in Mecklenburg county.

To model high-school demand for the 2008 baseline period, school-age population is generated

from population census data and population projections derived from a micro-simulation

model of land use and economic dynamics implemented in Mecklenburg County (Ye et al.

2009, Thill et al. 2011). The downtown area of Charlotte (center of the county) is mostly a

business district with limited family housing, which explains a low student population.

Fig. 2(b) illustrates the actual student allocations derived from school attendance zones in

2008. Blue-colored spider mapping (light gray in hard copy) connects demand nodes to their

assigned schools. The width of the line represents the magnitude of the assignment.

Graduated symbology is used to reflect the percentage utilization of permanent capacity∑
i∈I aim Xijm/

(
z+jm + U+

jm

)
Yjm: ]0;1] = green dot (light gray in hard copy) with size

increasing with capacity usage, ]1,∞] = red (dark gray in hard copy) when enrollment of these

schools is above capacity and modular equipment is needed; a white graduated triangle

represents the number of mobile units added at each site.

INSERT FIGURE 2 ABOUT HERE

INSERT TABLE 1 ABOUT HERE

Projected school age population. We use projected population of children aged fourteen

to seventeen aggregated at the Traffic Analysis Zone (TAZ)-level and assume a county-wide

increase of 15% every five years. Increase of school age population is modeled geographically

following a monocentric growth scenario based on road network travel distance from the

3Since 2008, Bailey Road (j = 20) and Rocky River (j = 21) High Schools have been added to the network,
while Garinger (j = 15) was threatened of closure and Waddell High School (j = 14) closed.
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center of the city of Charlotte. Time periods are indexed by m = 0, . . . , 3; each period is

separated by five years, and hence facility age increases by five year increments. The

projected number of children at the TAZ-level is deflated geographically to account for private

and home schooling and children attending special educational programs (total population

demand at m0=33,152; m1= 38,125; m2=43,285; m3=50,504).

Estimating travel, facility and modular capacities. Travel costs, school expenditures

and other parameters are estimated through consultation with school planning staff of the

Charlotte-Mecklenburg Schools system. Our figures represent conservative estimates for the

year 2011. The travel cost per student is for the roundtrip travel of each student to their

assigned school, cumulated over the five years of each time period for an average school year

of 180 days (rate of $1 per km). Distances from each TAZ (demand node) to each school site

are computed using the road network from the Charlotte Department of Transportation.

Information on current physical and modular capacity at each school was received for the year

2008, and it was suggested that a school would not exceed 60 modular units at any given site.

Also, local school professionals indicated that a school younger than ten years of age would

not be closed, although the impact of this parameter is illustrated later in the paper. School

costs and capacities are parameterized as follows in the model:

• Fixed annual cost to operate a school (cfjm): $710,000.

• Cost to build a new school (cNjm): $50,000,000.

• Cost of closing an existing school (cEjm): $1: symbolic cost of one dollar4.

• Leasing cost per modular unit, per year (c++), including utilities: $12,500.

• Marginal annual cost of a student (csm): $7,500.

4cEjm can also be negative, that is there is a benefit to closing a school. This would be the case if the building
or the land can be put back into the market.
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• Capacity of a modular unit (z++): 25 students.

Time-dependent weights wm. Due to the inherent uncertainty of population projections,

it seems intuitive that distant periods should be modeled as less influential than near periods

in facility location planning. This is all the more so since short-term school decisions are

generally more critical than medium- to long-term decisions as the latter can be adjusted later

(Antunes and Peeters 2000). Alternatively, a school district may follow a long-term

investment strategy, and anticipate the rising cost of new school construction (especially land

purchase) in areas of future growth by making early location decisions. In this paper, we

assume limited long-term planning and use a discount rate approach to model weights wm

associated to each time period: w1 = 0.69103, w2 = 0.23193, w3 = 0.07704.

4.2 ViFCLP modeling results

We illustrate the change in the ViFCLP objective function over three periods, specifically

m1 = 2013, m2 = 2018, m3 = 2023, according to variation in the budget value B -

constraint(2) - using parameters dmax=5km and β = 0.01, which means that minor travel

penalty is incurred beyond the critical distance threshold dmax. The allocation at time period

m0 = 2008 is not reported in the figures since our model does not optimize at time period m0

and student assignments at m0 are directly derived from actual school attendance zones.

The piecewise smooth curve depicted in Fig 3 - represented by gray triangles - summarizes the

relationship between travel costs f1, which is the ViFCLP objective function, and school

expenditures f2. Each piece is a smooth curve associated with a certain number of schools in

operation, which increases from the left to the right of the graph. In contrast, incremental

changes in travel costs within the domain of each piece reflect adjustments to the number of

mobile units, for a given number of schools. It is noteworthy that a similar increase in school

expenditures may impact travel costs differently according to the number of schools. Each
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piece is concave upward, indicating a negative average rate of change, but that rate is different

depending on the total number of facilities in operation. The breakpoints separating the

pieces represent major modifications in the optimal configurations: a small increase in the

allowed budget results in the creation of new schools, which in turn yields a different pattern

of accessibility to the selected sites and a steeper decrease in f1, while the number of modular

units is substantially reduced. We came to realize this is an important and interesting feature

of the ViFCLP. For instance, in situations (A) and (B), 54 schools are operational (18 at

m1-m3), but the number of modular units is different: 654 in (A) and 949 in (B). In cases (C)

and (D), 60 schools are operational (20 at m1-m3); 511 modular units are necessary in (C)

and 858 in (D). The difference of 347 modular units between (C) and (D) reduces travel costs

only by 0.73%, while a difference of 295 units between (A) and (B) decreases f1 by 1.85%. In

other words, when the school system operates a larger number of schools through the

planning horizon, the addition of modular units has a less significant impact on reducing

student-to-school travel than if the system operates fewer schools.

Table 2 provides a summary of different problem instances for the ViFCLP under different

budget regimes, as well as the ones that coincide to points (A), (B), (C) and (D). The

columns ”open schools” and ”modular units” are the total number of schools and modular

units in operation, respectively. The column ”% non-closest” reflects the percentage of

students not sent to their closest school, averaged for the three time periods m1 to m3, and so

is the average student-to-school travel distance. The last column in Table 2 summarizes the

computational effort for the solver to reach an optimal solution, expressed in seconds. We

observe that a diminishing budget reduces the number of schools in operation, incurring

higher travel costs and a higher percentage of non-closest assignments, the average traveled

distance per student increases from 5.21km to 5.43km (3.8%) when the number of schools in

operation is reduced from 63 to 54 schools. Computing run times sharply increase when the
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budget for school expenditures becomes smaller, since capacity constraints are tighter, making

the allocation procedure much more complex computationally.

INSERT TABLE 2 ABOUT HERE

INSERT FIGURE 3 ABOUT HERE

4.3 A bi-objective ViFCLP

By letting the available budget in the ViFCLP vary, we obtain the Pareto optimal solutions of

a bi-criterion problem whose objectives are f1, the travel costs incurred by the pupils and f2,

the educational expenses supported by the system. This gives the trade-off between the

investment and the performance and is valuable information to the decision-maker.

Unfortunately, when solving the ViFCLP, we are often confronted with a problem of duality

gap implied by constraint(2) in the ViFCLP, which results in the non convex shape of the

Pareto curve depicted in Fig. 3 and may imply burdensome running times when filling the gap

for instance by branch-and-bound techniques. To address this issue, we incorporate this

constraint in the objective function and consider a bi-objective function F = γ1f1 + γ2f2 with

γ1 + γ2 = 1 , where γ1 and γ2 reflect the importance given to travel costs and school

expenditures, respectively. On the one hand, this problem is generally easier to solve than the

original ViFCLP and on the other hand by varying γ1 and γ2 we generate the lower envelope

of the Pareto curve. In some sense, this approach is similar to performing a Lagrangian

relaxation of constraint (2).

Formulation The bi-objective ViFCLP is written as follows:

Minimize F = γ1f1 + γ2f2 (14)
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where

f1 =

[∑
i∈I

∑
m∈M\{0}

(∑
j∈J

wm cijm aim Xijm

)]
(15)

f2 =

[(∑
j∈J

∑
m∈M\{0}

cfjm Yjm

)
+

∑
i∈I

∑
j∈J

∑
m∈M\{0}

csm aim

)
+

( ∑
j∈JN

∑
m∈M\{0}

cNjm (Yjm − Yj,m−1)
)
+

( ∑
j∈JE

∑
m∈M\{0}

cEjm (Yj,m−1 − Yjm)
)
+

(∑
j∈J

∑
m∈M\{0}

c++
m Ujm

)]
(16)

subject to constraints (3)-(12). When parameters γ1 > 0 and γ2 = 0, the objective function

(14) boils down to a weighted capacitated median problem and all schools are opened in each

period m, since we only minimize travel costs. The relative magnitude of γ1 and γ2 is a matter

of public choice, and these values should be set to capture the preponderance of these matters

in the community, as perceived by the local school planning agency. In the next paragraphs,

we illustrate the changes in school location and student allocation for the bi-objective ViFCLP

optimized over the three-period planning horizon (m1 = 2013, m2 = 2018, m3 = 2023).

4.4 Bi-objective ViFCLP modeling results.

The behavior of the bi-objective ViFCLP model is illustrated for different values of parameters

dmax, β and γ1, underlining the impact of those parameters to student-to-school travel.

Table 3 lists a summary of different problem instances, according to variation in the values of

γ1, dmax=1, 2 and 5km, and β = 0.01, 0.5, 1 and 1.5. In Fig. 4(a), the values of f1 and f2 are

plotted for different values of γ1 using black circles. When zoomed in Fig. 4(b), it is

interesting to note that connecting these dots approximates the curve from the single-objective

ViFCLP presented in Fig. 3. General observations indicate that a larger value of γ1 forces the

addition of new schools over the planning horizon, reduces student-to-school travel and causes

an increased number of closest assignments. Moreover, the addition of modular units helps to
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alleviate excess demand for high school and intuitively smaller student-to-school travel

distances are incurred with greater β-values and smaller dmax thresholds. Solving time of the

bi-objective ViFCLP is less than one minute, compared to much higher numbers for the

single-objective ViFCLP). Greater run times are incurred when γ1 becomes smaller, since the

bi-objective ViFCLP resembles a fixed-charge capacitated location problem. An important

contribution of the bi-objective ViFCLP is that similar f2-values can be obtained in a much

smaller time frame using a bi-objective approach than a single-objective, budget-constraint

model.

INSERT FIGURE 4 ABOUT HERE

INSERT TABLE 3 ABOUT HERE

Impact of travel weight γ1, impedance parameter β and distance threshold dmax.

An inherent property of capacitated facility location problems is that assignments may not

always be to the closest facility. In the ViFCLP, we resort to inflating travel costs by

incorporating a distance-based penalty to limit the number of such instances. This distance

penalty is controlled by two parameters, namely the distance threshold dmax that determines

the assignment distance beyond which an extra travel penalty will occur, and β, regulating

the magnitude of this penalty. With this approach, when students are assigned to schools

beyond a certain distance threshold dmax, marginal travel costs increase non-linearly with

distance. In Fig. 4(c), we illustrate the sensitivity of the non-closest assignments property

with variation in γ1 and β using a maximum travel distance dmax=5km. The value of β is

increased from 0.01 (limited travel penalty) to 0.5 (travel penalty weighted heavily beyond

dmax), but dmax remains fixed at 5km. We observe that non-closest assignments are at a

minimum when γ1 = 1 but that a small decrease in γ1 causes an increase in non-closest

assignments. Also, the number of non-closest assignments is systematically lower when using

parameter β = 0.5 rather than β = 0.01. These parameters γ1 and β have a critical influence
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on the number of schools and modular units in the network and therefore the prevalence of

non-closest assignments. In Fig. 4(d), we study the impact of dmax on the number of

non-closest assignments, keeping β fixed at 1.0. A dmax-value of 1km keeps non-closest

assignments systematically lower than using a dmax-value of 5km. In summary, a high β-value

and a low dmax-threshold guarantee short travel distances and keep non-closest assignments to

low levels, however a increase in β is more likely to cause the opening of new schools than an

increase of dmax.

Spatial behavior of the bi-objective ViFCLP. Four different scenarios (I, II, III, IV )

illustrate the spatial behavior of the bi-objective ViFCLP, where γ1 and β values are varied.

With the exception of scenario I, we choose Ē = 30 years to illustrate the property of the

minimum age closing requirement. We keep dmax = 5km per consultation with local school

officials. High school locations and student-to-school assignments are presented in Fig. 5.

Scenario I: γ1 = 0.5, dmax = 5km, β = 0.01, Ē = 10 years.

The first scenario (γ1 = 0.5) forces the ViFCLP model to give more importance to the

minimization of school expenditures, and gives the school system the flexibility to close

schools which are relatively young (ten years). As a result, eight schools are running well

above physical capacity. Through the planning horizon, Waddell High School (j = 14) is

closed, and students must travel a longer distance to their newly assigned schools of Myers

Park (j = 3) and Olympic (j = 9). As a cascading effect, some of the students originally

assigned to Olympic High School (j = 9) are bussed to Ardrey Kell (j = 11) in the Southern

edge of the county, incurring longer travel distances. Small numbers of students are sent to

their second or third closest schools, which is also typical of capacitated facility location

problems. In time period m2, only three schools operate under physical capacity, and at time

m3 only the capacity at Butler High School (j = 7) is in check, not requiring modular units.
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To respond to increasing demand, the CMS school network must lease an expanding number

of modular units.

Scenario II: γ1 = 0.5, dmax = 5km, β = 0.01, Ē = 30 years.

The parameters used in scenario II are similar to the ones in scenario I, but we impose a

tighter restriction on school age closure. As a result, the CMS system operates 16 schools

through the planning horizon (total=48), without closing Waddell High School. Rising

demand from m1 to m3 increases pressure on school capacity and forces the addition of

modular capacity. At time m1 several modular units are added at the schools located near the

city center. As the time horizon progresses, demand for high school rises in the periphery,

leading to an increase in modular units at schools located outside of the city center. At time

m3, Butler High School is the only facility operating without modular units. The most

striking differences between the scenarios I and II come down to requirement of the

age-specific closing constraint Ē = 30 - scenario II - forcing Waddell High School (j = 14) to

remain open throughout the optimization. Ultimately, enforcing a smaller value of Ē gives the

flexibility to close older schools and those deemed less utilized in the existing network.

Alternatively, a tighter age constraint will keep older schools open for a longer time, thus

potentially making the construction of new schools unnecessary.

Scenario III: γ1 = 0.999, dmax = 5km, β = 0.01, Ē = 30 years.

Scenario III emphasizes the importance given to student-to-school travel and disregards

school expenditures in effect. The system operated 17 schools at each time period, which

leads to a smaller number of modular units per site than in the two previous scenarios. The

increasing demand in the periphery coupled with greater importance given to travel costs (γ1

= 0.999) forces the opening of Stumpton High School (j = 19), located in the Northern part

of the county5. Scenario III contrasts from scenario II as follows: (i) the opening of

5Since a percentage of the local demand can easily be met with this new addition, the roles of Hopewell High
School (j = 1) and North Meck High School (j = 2) fade: several of the students who were previously assigned
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Stumpton High School reduces student travel and non-closest assignments, (ii) with a

network of schools expanded to 17 units in this scenario, a larger number of students are sent

to their closest school and CMS is expected to rely less on modular units than in scenario II,

(iii) the number of schools operating above full capacity is smaller than in scenario II.

Scenario IV : γ1 = 0.999, dmax = 5km, β = 1, Ē = 30 years.

This scenario uses similar parameters as scenario III with the exception that β = 1,

increasing the penalty incurred by non-closest assignments. The solution departs sharply from

scenario III: all candidate schools are open throughout the planning horizon, reducing the

average student travel to 5.22km and only 6.28% of non-closest assignments. Increasing

demand in the periphery coupled with greater importance given to travel costs and penalty of

non-closest assignments forces the opening of Hucks Road High School (j = 17), Stumpton

High School (j = 19) and Bailey High School (j = 20), all located in the Northern part of the

county. The addition of these three schools creates a tighter distribution of student to schools

travels when compared to scenario III. Similarly, Palisades (j = 18) in the southwestern edge

and Rocky River High School (j = 21) on the eastern side open (in 2011 Rocky River High

School was added to the network), thereby reducing travel costs for these students located at

the periphery of the county. Since the network is expanded to 21 schools at times m1, m2 and

m3, the total number of modular units (781) is significantly lower than in all other scenarios

presented.

INSERT FIGURE 5 ABOUT HERE

to those schools are now bussed to Stumpton High School.
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5 Conclusions

In this paper, we have proposed a new location modeling framework to expand (or contract)

an existing network of schools over a finite planning horizon. The model has the flexibility to

handle dynamic situations including significant changes in demand through the temporary

adjustment of capacity with modular units as well as facility closing requirements, which

allows schools to close only when they reach a certain age and guarantees that schools, once

built, will remain open throughout the planning horizon. The ViFCLP should prove useful for

capital investment planning of school systems due to its dynamic nature and its ability to

account for a number of real-world decision-making considerations.

Our problem is formulated as a single multi-period model, minimizing student travel costs.

The model is unique in its flexibility to (i) modify the maximum effective capacity of each

school using the addition of modular units, (ii) incorporate minimum facility age closure, (iii)

model travel costs and (iv) reflect the uncertainty of demand projections over the planning

horizon. We demonstrated the applicability of the ViFCLP to the Charlotte-Mecklenburg

Schools (CMS) system. We came to realize important and interesting features of the ViFCLP,

when exploring the relationship between travel costs (f1) and school expenditures (f2).

Specifically, we note that a similar increase in school expenditures may impact travel costs

differently according to the number of schools in operation. We presented a bi-objective

alternative to approximate the Pareto curve of the ViFCLP model in Eqs. (1)-(12). Results

from the real-world case study indicate that shorter student-to-school travel distances can be

obtained by increasing γ1, which controls the importance of the travel cost sub-objective.

Excessively small dmax-values can force the school system to add new schools to its network,

instead of augmenting school capacities.
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The ViFCLP model proposed in this paper can assess the impact of different scenarios of

future growth of the student population on the optimal location of schools. A status quo in

the center and a larger number of schools in the periphery is a likely outcome of an increase in

population in the outskirts of Charlotte. The latter may amplify population sprawl when

families decide to relocate to the outskirts of town to be closer to school. If the school-age

population moves closer to the city center and to employment centers (reverse sprawl

movement), due to increasing gas price, centrally located schools will experience rapid

enrollment growth and a pressing need for capacity expansion, while schools located in the

periphery will tend to have a lower-than-one utilization rate.

We see the following aspects for future research on the ViFCLP. First, the development of

heuristic techniques is needed to find faster solutions for very large problems (Bigotte and

Antunes 2007). Second, in some circumstances, a student may travel a longer distance to

attend a school that offers specific programs. As such, a more realistic behavioral model of

school choice may be more appropriate in some cases (Muller 2008, Araya et al. 2012). Third,

our multiperiod school location formulation can be generalized by replacing the exogenous

school age constraint by a scheme driven by investment depreciation rates and return on

investment considerations. In effect, the location model would become an investment model

where school age is endogenized and school renovation or expansion are part of the portfolio

of decision options. Finally, the ViFCLP model can be enhanced by accounting for (social)

costs associated with the reassignment of students to a different school over successive periods

within the planning horizon.
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id(j) Name z+jm Uj,0 eEjm Yj,m=0,...,3

1 Hopewell 2237 33 2001 -
2 NorthMeck 2441 37 1951 -
3 MyersPark 2823 21 1951 1
4 SouthMeck 1832 20 1959 1
5 EastMeck 2058 30 1950 1
6 Providence 2247 9 1989 1
7 Butler 2136 20 1997 -
8 Independence 2378 39 1967 -
9 Olympic 1877 21 1966 -

10 Vance 1856 34 1997 -
11 ArdreyKell 2314 - 2001 -
12 MallardCreek 2107 - 2007 -
13 WestMeck 2041 11 1951 -
14 Waddell 1164 - 2001 -
15 Garinger 1833 27 1959 -
16 WestCharlotte 2029 16 1938 -

17 HUCKSROAD 2250 - - -
18 PALISADES 2250 - - -
19 STUMPTON 2250 - - -
20 BAILEY 2250 - - -
21 ROCKYRIVER 2250 - - -

Table 1: School names, capacities, number of modular units
∑

j∈JN Uj,m=0 = 318, date of construction
and non-closing requirement. School names in italics indicate facilities that must remain open through
the planning horizon, while school names in capital letters are candidate school locations.

Budget($) β dmax f1($) f2($) Open Modular Travel % non- Time
[in106] (km) [in106] [in108] Schools Units avg.(km) closest (sec)

(A)6645 0.01 5 1.0901 6.6449 54 654 5.43 13.47 550.85 (int., 0.01% gap)
6650 0.01 5 1.0835 6.6499 54 691 5.40 12.26 194.34

(B)6680 0.01 5 1.0700 6.6795 54 949 5.34 7.16 32.67
6700 0.01 5 1.0588 6.6999 57 696 5.30 9.56 25.47

(C)6733 0.01 5 1.0557 6.7329 60 511 5.31 11.63 129.76
6750 0.01 5 1.0497 6.7499 60 672 5.25 8.56 28.32

(D)6773 0.01 5 1.0480 6.7716 60 858 5.24 6.39 76.61
6800 0.01 5 1.0420 6.7990 63 673 5.23 7.65 15.66
6900 0.01 5 1.0410 6.8140 63 800 5.21 5.85 14.76
7000 0.01 5 1.0410 6.8140 63 800 5.21 5.85 13.84

Table 2: ViFCLP instances with varying budget parameters. Schools and modular units are the total number
of schools and modular units in use through the planning horizon. We use parameter Ē=10 years. Instances
(A), (B), (C) and (D) are also illustrated in Fig. 3.
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γ1 β dmax f1($) f2($) Open Modular Travel % non- Time Notes
(km) [in106] [in108] Schools Units avg.(km) closest (sec)

0.999 0.01 5 1.1026 6.6285 51 926 5.49 8.75 12.58
0.999 0.01 5 1.1026 6.6285 51 926 5.48 8.85 16.04 (III,*)
0.99 0.01 5 1.2110 6.5932 46 1049 5.95 10.97 64.60

0.975 0.01 5 1.2277 6.5952 45 1095 5.97 10.90 34.56
0.9 0.01 5 1.2274 6.5952 45 1095 5.97 10.90 60.74

0.75 0.01 5 1.2276 6.5952 45 1095 5.97 10.90 41.30
0.5 0.01 5 1.2278 6.5952 45 1095 5.97 10.90 39.93 (I)
0.5 0.01 5 1.2016 6.5891 48 956 5.85 9.92 50.91 (II,*)

0.999 0.01 2 1.1223 6.6284 51 925 5.49 8.86 13.85
0.99 0.01 2 1.2291 6.5932 46 1049 5.95 10.86 54.34

0.975 0.01 2 1.2452 6.5952 45 1095 5.98 10.93 37.40
0.9 0.01 2 1.2451 6.5952 45 1095 5.98 10.94 52.67

0.75 0.01 2 1.2449 6.5952 45 1095 5.97 11.00 51.24
0.5 0.01 2 1.2451 6.5952 45 1095 5.98 11.19 56.65

0.999 0.5 2 2.4825 6.7095 57 778 5.30 8.01 13.95
0.99 0.5 2 3.0088 6.5973 48 1024 5.84 8.12 33.42

0.975 0.5 2 3.0691 6.5939 47 1025 5.92 9.84 67.11
0.9 0.5 2 3.2274 6.5952 45 1095 5.99 10.42 49.75

0.75 0.5 2 3.2276 6.5952 45 1095 5.99 10.52 47.91
0.5 0.5 2 3.2277 6.5952 45 1095 5.99 10.47 58.77

0.999 1 1 542.6739 6.8152 63 804 5.22 5.81 11.32
0.99 1 1 542.6894 6.8141 63 795 5.22 5.93 10.84

0.975 1 1 542.6818 6.8134 63 789 5.22 6.09 10.34
0.9 1 1 552.0302 6.7123 57 799 5.29 8.07 15.99

0.75 1 1 561.8898 6.6669 54 833 5.35 9.11 18.31
0.5 1 1 635.1541 6.5978 48 1028 5.83 8.35 60.33

0.999 1 2 419.4911 6.8152 63 804 5.22 5.81 11.40
0.99 1 2 419.4897 6.8141 63 795 5.22 5.92 15.45

0.975 1 2 419.4999 6.8131 63 786 5.22 6.03 12.19
0.9 1 2 428.6430 6.7122 57 799 5.29 8.05 20.16

0.75 1 2 438.3672 6.6671 54 835 5.35 9.07 19.19
0.5 1 2 511.0590 6.5978 48 1028 5.83 8.17 72.82

0.999 1 5 129.9321 6.8127 63 782 5.23 6.26 11.04
0.999 1 5 129.9374 6.8125 63 781 5.22 6.28 7.78 (IV,*)
0.99 1 5 129.9375 6.8119 63 775 5.23 6.27 14.75

0.975 1 5 129.9513 6.8110 63 767 5.23 6.45 8.55
0.9 1 5 136.2120 6.7106 57 783 5.29 8.40 23.31

0.75 1 5 145.1026 6.6641 54 809 5.37 9.63 23.31
0.5 1 5 210.7947 6.5972 48 1023 5.84 8.41 29.76

0.999 1.5 5 13653.5280 6.8136 63 790 5.24 6.40 12.2
0.99 1.5 5 13654.1517 6.8134 63 788 5.24 6.42 12.65

0.975 1.5 5 13653.8940 6.8132 63 787 5.24 6.45 11.41
0.9 1.5 5 13653.8888 6.8133 63 787 5.24 6.42 12.07

0.75 1.5 5 13653.1717 6.8134 63 787 5.24 6.39 17.49
0.5 1.5 5 13654.0963 6.8121 63 777 5.24 6.56 11.15

Table 3: Bi-objective ViFCLP instances with varying γ1, dmax, β parameters. Schools and modular units are
the total required number of schools and modular units necessary throughout the planning horizon. We use
Ē=10 years as default. (I), (II), (III), (IV ) = scenario I, II, III, IV . (∗) = Ē of 30 years
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Fig. 1: Travel impedance as a function of distance from demand node to facility. If a node is assigned to a
facility beyond a travel distance dmax

im , the marginal impedance increases non-linearly.
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Fig. 2: Location of existing and candidate high schools in the CMS system in 2008 in (a) and student assignment
based on 2008 school attendance zone boundaries in (b). Red dots in (a) - in dark gray on the hard copy - denote
schools above permanent capacity (and thus with modular equipment), while a triangle is used to represent the
number of mobile units added at each site). School names are listed in Table 1.
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Fig. 3: Variation in travel costs and school expenditures for the ViFCLP model [Eqs. (1)-(12)],
optimized under different budget regimes. Variation in the number of schools in (a) and in the
number of modular units in (b).
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Fig. 5: School locations and student-to-school assignments for four different scenarios (I, II, III, IV ). Scenario
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