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Abstract. Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito
vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local
weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and
meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of
2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined
between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based,
multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks
to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately
supporting public health decisions on the timing and scale of vector control efforts.

INTRODUCTION

Severe outbreaks of vector-borne infectious diseases and
their likely geographic expansion pose a serious threat to vul-
nerable populations. Over 2.5 billion people living in tropical
and subtropical climates are at potential risk of contracting
dengue fever, which has become the most important vector-
borne viral disease in the world.1 Current estimates suggest
that up to 100 million dengue cases occur annually, of which
1 million cases require hospitalization for the most serious
form: severe dengue (formerly known as dengue hemorrhagic
fever). Across Latin America, despite largely successful efforts
in the 1940s to eradicate the primary dengue fever vector—the
female Aedes aegyptimosquito—from most countries,2 dengue
has gradually re-emerged across the continent because of
several factors, including re-emergence of the vector, popula-
tion growth, increased global travel, diversification of viral
strains, and insecticide resistance.3,4 Rapidly growing urban
areas are most vulnerable because of poorly planned urbani-
zations and migrations.
Classic dengue fever is distinguished by headache, fever,

eye pain, sore muscles and joints, nausea and vomiting, and
swollen glands, and it mainly affects children and younger
adults.5 Severe dengue causes internal hemorrhaging and sig-
nificant plasma loss that can lead to dengue shock syndrome,
which has fatality rates nearly 50 times higher than that of
classic dengue fever. Because no licensed vaccine exists, con-
trolling or preventing dengue outbreaks is the only alterna-
tive, which is implemented by reducing its primary vector
through monitoring and habitat control programs. If uncon-
trolled, outbreaks in urban areas can impact nearly 80% of
the population6,7 and incur over $100 million in mitigation
and treatment expenses8; the potential social and economic
costs of dengue are comparable with the costs of malaria.9 As
a result, effective low-cost early warning systems (EWSs)
capable of predicting potential dengue outbreaks in a timely
manner are critical to enhance decision-making.

Background. Numerous studies have documented the life
stages of Ae. aegypti, including its preferred habitats, range,
behavior, and sensitivity to local environmental conditions.
The mosquito is peridomestic, is day-biting, and feeds almost
exclusively on human blood.10,11 Its breeding habitat consists
of stagnant pools from man-made cisterns to sewers and
discarded tires.12,13 The Aedes development, behavior, and
survival are temperature- and humidity-dependent, whereas
the presence of water is necessary for egg laying and larval
development.14–16 Ambient temperatures between roughly
5°C and 40°C are required for mosquito survival, but greater
mosquito densities occur when temperatures remain within
15–32°C.17–22 Adult mosquitoes will only feed when ambient
temperatures exceed 18°C,23 and feeding frequency increases
when temperatures are warm and humidity is low.24 Finally,
although it is generally recognized that greater mosquito den-
sities are expected during and after a rainy season, the effect
of precipitation seems to be site specific—dependent on not
only rainfall accumulation, frequency, and intensity25–27 but
also, variability in the number of man-made breeding habitats
to retain water during periods of less rainfall.28,29

Prior studies have also explored the sensitivity of the dengue
virus and its transmission dynamics to changes in local envi-
ronmental conditions. Consensus suggests that viral develop-
ment (or the extrinsic incubation period inside the vector) and
transmission (a function of mosquito density, feeding fre-
quency, and survival) occur more rapidly and more frequently
at warmer temperatures,16,30 with peak transmission occur-
ring when mean temperatures are confined between 27°C
and 30°C.20 Likewise, virus amplification (survival) at temper-
atures below 18°C (12°C) is rare.18,31 A recent study suggested
that dengue transmission is dependent on daily temperature
and temperature range; when mean temperatures exceed
18°C, larger diurnal temperature ranges decrease transmis-
sion, presumably because of a reduction in vector survival
and viral amplification during the cooler hours of each day.32

A limited number of recent studies have developed site-
specific multivariate regression models using various combina-
tions of time-lagged weather parameters to predict local
dengue incidence and/or mosquito density in Australia,21

Taiwan,33 Singapore,27,34,35 New Caledonia,36 Mexico,37,38

Guadeloupe,39 and Puerto Rico.13 The best-fit model from
each study was deemed skillful, but no common set of optimal
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weather-based predictors or time lags has been identified
among the studies, suggesting that effective EWSs require
careful consideration of local (e.g., city or province scale)
environmental factors.
Objectives. The objectives of this study are to (1) improve

our knowledge of the relationships between environmental
factors and dengue fever transmission on biweekly to seasonal
time scales and (2) develop multivariate intra- and interseasonal
predictive models of dengue incidence that can enhance an
EWS for Cali, Colombia. To this end, we use 12 years (2000–
2011) of epidemiological and meteorological data to identify
significant time-lag relationships between reported dengue
cases and local weather or regional climate predictors. We
recognize that dengue transmission is a function of complex
relationships between hosts, vectors, and their environment,40

but if related weather/climate parameters can be used to pre-
dict periods of elevated dengue risk, then communities could
implement cost-effective mitigation strategies to control the
dengue outbreaks in a timely manner.34,35

MATERIALS AND METHODS

Study area. Tropical and subtropical urban environments
that have experienced rapid unorganized growth are particu-
larly vulnerable to dengue fever outbreaks. One such dynamic
urban environment is the city of Cali, Colombia (Figure 1),
which is the third largest metropolitan area in the country
with an estimated 2010 population of 2.3 million spread across
564 km2 (with a population density over 4,000/km2). The city

(at 3.42° N, 76.52° W and 997 m above sea level) is located
within the Cauca River Valley between two mountain ranges
with peaks in excess of 4,000 m, but it has a tropical climate
with two distinct warm-dry seasons (December to February
and June to September; mean maximum temperature = 31.9°C;
mean monthly rainfall = 54.6 mm) and two cooler-wet seasons
(March to May and October to November; mean maximum
temperature = 28.0°C; mean monthly rainfall = 107.4 mm). Of
critical concern are peripheral neighborhoods, which have
experienced a massive influx of migrants. These neighbor-
hoods are characterized by a high-density, low-income popu-
lation that suffers from unplanned urbanization, including
squatter settlements along the river banks.41 Such regions
contain limited sewer infrastructure with several open-air
waste water channels, and many households rely on rainfall
cisterns for drinking water. Thus, ample sources of stagnant
water (i.e., ideal mosquito-breeding habitats) are present
around the city.
Epidemiological data. The database used in this study cor-

responds to the dengue fever cases reported in the Sistema de
Vigilancia en Salud Pública (SIVIGILA; English—Public
Health Surveillance System) for the city of Cali from 2001 to
2011. Information for each dengue case includes patient infor-
mation (e.g., sex, age, race, and neighborhood), diagnosis
date, first symptoms date, hospitalization date (if any), final
condition, and reporting institution. All cases are confirmed
in the laboratory using standard methods (by a complete
hemogram and immunoglobulin M [IgM] test). Here, to
explore the temporal relationships between dengue cases and
variations in local weather and/or climate, we use the diagnosis
date. Intracity spatial patterns of the reported cases are
discussed in detail elsewhere.42,43

In total, 34,970 dengue fever cases were reported in Cali
between January of 2001 and December of 2011, accounting
for 6% of the total cases reported in Colombia during the
same period. Re-emergence of dengue fever was first
reported in the Cauca River Valley in the 1970s, and the first
cases of severe dengue fever occurred in 1989.44 Since that
time, large-scale outbreaks swept across the valley in 1991,
1994–1995, 1998, 2001–2002, 2005, and 2009–2010; the latter
three (included in our database) (Figure 2) resulted in over
4,000, 2,500, and 15,000 reported cases, respectively, within
Cali alone.
With SIVIGILA in place since the 1960s, it provides a

robust and consistent measure of dengue cases across the
study area. However, a couple of factors must be addressed
before performing a long-term temporal analysis and predic-
tion. First, because of a variety of societal factors that could
introduce bias or artificial peaks in the daily dengue counts
(e.g., holidays, school/work schedules, and operating hours at
clinics), we computed biweekly and monthly dengue counts
from the daily database. Second, because of rapid population
growth in Cali (35.4% between 1993 and 2011; from 1,641,698
to 2,230,000), dengue counts were standardized by population
assuming steady linear growth during the study period. Third,
we used 2001–2010 counts for development of the predictive
models (hereafter referred to as the developmental data) and
set aside 2011 counts for independent verification of the pre-
dictions (hereafter referred to as the verification data). Shown
in Figure 2 are the total reported dengue cases (DTOT) and
the biweekly population-adjusted dengue incidence rate (DPOP)
reported in Cali from 2001 to 2010.

Figure 1. Topographical variation across Colombia, SouthAmerica.
The city of Cali is located within the tropical climate of the Cauca River
Valley between two mountain ranges with peaks in excess of 4,000 m.
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Meteorological data. Daily weather observations recorded
at the Cali international airport between January of 2000 and
December of 2011 were obtained from the quality-controlled
Global Historical Climate Network (GHCN) archive45,46

maintained at the National Climate Data Center (NCDC;
http://www.ncdc.noaa.gov/). Any missing GHCN data (e.g.,
numerous rainfall observations during 2008 and 2009) were
supplemented with raw observations obtained from the
Colombian Institute of Hydrology, Meteorology and Environ-
mental Studies; despite dissimilar quality control procedures,
regular duplicate records among the two datasets provide con-
fidence in our simple replacement of missing GHCN data with
raw observations.
To be consistent with the dengue case data, several biweekly

and monthly weather parameters were computed from the
daily observations for statistical analysis: mean temperature
(TAVG), maximum temperature (TMAX), number of days with

TMAX greater than 32°C (G32DAYS), minimum temperature
(TMIN), number of days with TMIN less than 18°C (L18DAYS),
mean daily temperature range (DTAVG), maximum daily tem-
perature range (DTMAX), mean relative humidity (RHAVG),
relative humidity range (DRH), total accumulated rainfall
(RRTOT), and the number of days with measurable rainfall
(RRDAYS) during each time period (Table 1). Parameter selec-
tion was motivated by the aforementioned studies addressing
Ae. aegypti sensitivity to their environmental conditions. How-
ever, two previously unevaluated parameters (DTAVG and
RRDAYS) were tested to determine if large daily temperature
ranges (which might reduce outdoor mosquito survivability
but also encourage more mosquitoes to seek a less variable
environment indoors) were more relevant than daily extreme
temperatures and if regular rainfall (which maintains regular
sources of stagnant water for breeding) was more relevant than
total rainfall, respectively. Figures 3 –5 show the biweekly

Figure 2. Reported biweekly dengue case totals and population-adjusted incidence rates from 2001 to 2010. Biweekly case totals (DTOT)
are shown by vertical gray lines, and the population-adjusted incidence rates (DPOP) are depicted in black for Cali during the model development
period between January of 2001 and December of 2010.

Table 1

Weather and climate parameters evaluated for use in the predictive models

Weather/climate parameter Symbol Category Biweekly Monthly

Maximum temperature ( °C) TMAX Temperature X X
Mean temperature ( °C) TAVG Temperature X X
Minimum temperature ( °C) TMIN Temperature X X
Number of days with TMIN < 18 °C L18DAYS Temperature X X
Number of days with TMAX > 32 °C G32DAYS Temperature X X
Mean daily temperature range ( °C) DTAVG Temperature range X X
Maximum daily temperature range ( °C) DTMAX Temperature range X X
Mean relative humidity (%) RHAVG Humidity X X
Relative humidity range (%) DRH Humidity X X
Total rainfall (mm) RRTOT Rainfall X X
Number of days with measurable rainfall RRDAYS Rainfall X X
SOI SOI Climate X
N12 index N12 Climate X
N3 index N3 Climate X
N4 index N4 Climate X
N34 index N34 Climate X
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DPOP with a select set of biweekly weather parameters for the
entire study period (2000–2012).
Analysis of climatic relationships with Cali’s dengue inci-

dence rates was restricted to the El Niño Southern Oscillation

(ENSO) because of its close proximity. The state of ENSO
during our study period was determined from the monthly
Southern Oscillation Index (SOI) as well as the monthly
Niño-1.2 (N12), Niño-3 (N3), Niño-4 (N4), and Niño-3.4 (N34)

Figure 3. Observed biweekly weather variability and reported dengue incidence rates from 2000 to 2011. The biweekly mean temperature
(TAVG), mean relative humidity (RHAVG), and mean daily temperature range (DTAVG) are shown in solid black, total rainfall (RRTOT) is shown
by vertical gray lines, and the population-adjusted dengue fever incidence rate (DPOP) is shown in thick dashed black for Cali from January of 2000
to December of 2012. The thin dashed black horizontal lines denote the TAVG, DTAVG, and RHAVG long-term baseline means. Only dengue data
during the model development period (2001–2010) are shown.

Figure 4. Number of days with non-optimal cold temperatures and reported biweekly dengue incidence rates from 2000 to 2011. The numbers
of days during each biweekly period with a minimum temperature (TMIN) less than 19 °C, 18 °C, and 17 °C are depicted by vertical light grey,
medium grey, and dark grey lines, respectively, for Cali from January of 2000 to December of 2011. Note that a simple 1–2–1 filter was applied
to the non-optimal daily counts for greater clarity. Also shown in black is the biweekly population-adjusted dengue fever incidence rate (DPOP)
from 2001 to 2010.
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indices (Table 1) readily available from the Climate Prediction
Center (CPC; http://www.cpc.ncep.noaa.gov/). Using a standard
definition, significant El Niño (La Niña) events occur when the
5-month running mean of sea surface temperature (SST) anoma-

lies (relative to the 1971–2000 base period) for a given index
exceeds +0.4°C (−0.4°C) for at least 6 consecutive months.47

Based on the N4 index (Figure 6), a total of four El Niño events
and two La Niña events occurred during our study period.

Figure 5. Number of days with non-optimal warm temperatures and reported biweekly dengue incidence rates from 2000 to 2011.
The numbers of days during each biweekly period with a maximum temperature (TMAX) greater than 31 °C, 32 °C, and 33 °C are depicted by
vertical grey, red, and orange lines, respectively, for Cali from January of 2000 to December of 2011. Note that a simple 1–2–1 filter was applied
to the non-optimal daily counts for greater clarity. Also shown in black is the biweekly population-adjusted dengue fever incidence rate (DPOP)
from 2001 to 2010.

Figure 6. Monthly time series of non-optimal days, ENSO, and dengue incidence rate from 2000 to 2011. The number of days each month with
a maximum temperature (TMAX) greater than 32 °C is shown by vertical light grey lines, whereas the number of days with a minimum temperature
(TMIN) less than 18 °C is depicted by vertical bark grey lines for Cali from January of 2000 to December of 2011. Note that a simple 1–2–1 filter was
applied to the non-optimal daily counts for greater clarity. Also shown is population-adjusted dengue fever incidence rate (DPOP; solid black) and
normalized N4 index (dashed black), where vertical dotted grey lines denote significant El Niño (EL) and La Niña (LA) events.47
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Statistical analysis. Overall, the biweekly and monthly
DPOP values were compared with the full set of computed
weather parameters and climate indices (listed in Table 1)
across a range of lags and then predicted using an optimal form
of an autoregressive integrated moving average (ARIMA)
model with transfer functions. Other multivariate regression
models (linear, Poisson, and negative binomial) were evaluated
with a subset of our developmental data,48 but the ARIMA
transfer models produced the best fit, which is in agreement
with previous studies.49

Our model development methods were as follows. First,
any non-normal distributions in the developmental dataset
(2000–2010) were dealt with through transformations; the
DPOP, G32DAYS, L18DAYS, and RRTOT parameters were trans-
formed using log10(x + 1) to meet the requirements of regres-
sion analysis. Second, normalized anomalies from their
respective long-term mean during the period were computed
for DPOP and each meteorological parameter. Third, each
normalized meteorological time series was checked for sta-
tistically significant long-term trends (none were identified
at the 5% level) and then pre-whitened to account for any
non-randomness or serial correlation. Fourth, through exami-
nation of the DPOP autocorrelation and partial correlation
functions, we progressively adopted ARIMA form until the
residuals exhibited temporal randomness and normality (or an
appropriate predictive form). Fifth, cross-correlations between
each pre-whitened normalized parameter and DPOP over a
range of biologically plausible (with respect to the Aedes
lifespan) time lags (t = 0 to −8) were used to select the most
significant independent variables among each meteorological
group (temperature, temperature range, humidity, rainfall,
and climate) (Table 1). Sixth, all possible combinations of
the most significant independent lagged parameters were
incorporated into the appropriate ARIMA models using
transfer functions and then evaluated for goodness of fit. The
best-fit ARIMA models were expected to exhibit a low
Akaike’s information criterion (AIC), a low mean absolute
error (MAE), a large coefficient of determination (R2), statis-
tically significant (at the 5% level) regression coefficients for
each meteorological parameter and ARIMA component, and
a low variance inflation factor (VIF) among any multiple
independent predictors. The goodness of fit was further con-
firmed through normality tests and autocorrelation analysis
of model residuals. All statistical analyses and model devel-
opments were conducted using JMP 9.0 at the two-tailed sig-
nificance level of P < 0.05 (or the 95% confidence level).

Independent evaluation of the best-fit models was per-
formed using the 2011 verification data. The first few forecast
periods for 2011 used developmental data from 2010, but later
periods used only verification data with the predicted DPOP

used for autoregression. Agreement between model predic-
tions of DPOP (with lagged meteorological parameters) and
the actual reported DPOP during 2011 was evaluated through
MAE and confidence interval analyses.

RESULTS

Intraseasonal prediction: biweekly data. Dengue incidence
rates in Cali do not exhibit strong seasonal or annual cycles,
but when outbreaks occur, incidence rates have a tendency to
increase during the latter one-half of a warm-dry season, when
the diurnal temperature range is large, and then decrease as
the subsequent cooler-wet season begins (Figures 3–5). Cross-
correlation analysis showed that several evaluated weather
parameters were significantly associated with DPOP at various
biweekly lags, but the most significant associations (within each
meteorological group from Table 1) were for TAVG, DTAVG,
and RHAVG at a 1-biweek lag and RRTOT at a 2-biweek lag
(Table 2). Only these four lagged parameters were evaluated as
potential covariate predictors in the subsequent model devel-
opment; the others were excluded because of either large colin-
earity within their group (G32DAYS with TAVG) (Table 3) or
their most significant lag being more interseasonal (L18DAYS

at the biweekly equivalent of 3–4 months).

Table 2

Lagged cross-correlation coefficients between selected biweekly
weather parameters and the population-adjusted dengue fever
incidence rate (DPOP) during the development period from 2000
to 2010

Lag
(biweekly) TAVG L18DAYS G32DAYS DTAVG RHAVG RRTOT

−8 0.086 −0.274* 0.091 −0.073 −0.006 0.025
−7 0.122 −0.330*† 0.098 −0.078 −0.090 0.019
−6 0.092 −0.261* 0.113 0.072 −0.028 −0.043
−5 0.121 −0.173* 0.113 −0.005 −0.091 −0.082
−4 0.136* −0.161* 0.126* −0.016 −0.005 −0.111
−3 0.137* −0.129* 0.082 0.166* −0.047 −0.123*
−2 0.249* −0.093 0.207* 0.305* −0.155* −0.136*†
−1 0.305*† −0.073 0.241*† 0.328*† −0.314*† −0.124*
0 0.255* −0.057 0.213* 0.253* −0.264* −0.053

*Statistical significance at the 5% level after accounting for serial correlation and pre-
whitening the time series.
†Maximum coefficients.

Table 3

Cross-correlation coefficients at zero lag among selected monthly weather and climate parameters during the development period from 2000
to 2010

Parameters TAVG DTAVG RHAVG RRTOT TMIN L18DAYS TMAX G32DAYS N4 N34

TAVG − − − − − − − − − −

DTAVG 0.55* − − − − − − − − −

RHAVG −0.76* −0.63* − − − − − − − −

RRTOT −0.51* −0.39* 0.53* − − − − − − −

TMIN 0.17 −0.42* 0.08 0.03 − − − − − −

L18DAYS −0.20 0.50* −0.08 −0.05 −0.79* − − − − −

TMAX 0.66* 0.72* −0.64* −0.29 −0.04 0.05 − − − −

G32DAYS 0.77* 0.69* −0.58* −0.41* 0.02 0.02 0.87* − − −

N4 0.58* 0.32 −0.30 −0.35* 0.02 −0.24 0.38* 0.60* − −

N34 0.61* 0.30 −0.32 −0.32 0.07 −0.27 0.37* 0.61* 0.94* −

The cross-correlations coefficients for the same set of biweekly parameters (excluding N4 and N34) are not shown, because they exhibit similar magnitudes, signs, and levels of statistical significance.
*Statistical significance (from zero) at the 5% level.
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Initial exploratory tests showed that the general ARIMA
form of AR(2) with no intercept regularly produced the best-
fit intraseasonal model. Such form implies a strong auto-
regressive component to the DPOP time series with significant
variability at monthly intervals. Thus, to provide a baseline
before the inclusion of independent meteorological predictors,
an AR(2) model fitted from only DPOP (hereafter model 1) is
provided. The performance statistics for model 1 are shown in
Table 4, and the full prediction equation is

DPOP t=0 = 0:703 +DPOP t�1 + 0:208 +DPOP t�2: ð1Þ

Figure 7 shows the reported and model 1-predicted DPOP

during the development (2001–2010) period. Overall, the
model performed well (R2 = 0.884) but significantly
underpredicted dengue incidence just before and during the
three most severe outbreaks. To determine whether the inclu-
sion of independent meteorological predictors could improve

the prediction, all possible combinations of the four previ-
ously identified potential predictors were fitted with an AR
(2) model using transfer functions (a total of 24 models) and
evaluated. Performance statistics are shown in Table 4 for the
best model (hereafter, model 2), which incorporates only
DTAVG information based on an initial 1-biweek lag. The full
prediction (transfer) equation is

DPOP t=0 = 0:735 +DPOP t�1 + 0:219 +DPOP t�2 + 0:083

+ DTAVG t�1+ −0:049 +DTAVG t�2 +−0:017

+ DTAVG t�3, ð2Þ

where the two additional apparent lags for DTAVG (at t – 2
and t – 3) result from expanding the polynomials associated
with transferring the second-order autoregressive backshift
operator from the DPOP time series to the DTAVG time series.
Comparison of the regression coefficients (b) for DTAVG and
the cross-correlations coefficients in Table 3 suggests that
dengue incidence rates increase soon after warm-dry periods
when daily extreme temperatures are above average (e.g.,
DTAVG is negatively associated with RRTOT, RHAVG, and
TMIN but positively associated with TAVG, L18DAYS, and
G32DAYS). Model 2 satisfies all performance expectations
(lower AIC, lower MAE, larger R2, and significant b), and
the remaining residuals fluctuated randomly around zero with
no significant trend or autocorrelation, further implying a
well-fitted model. Conversion of the MAE for the predicted
normalized DPOP to dimensional form results in an equivalent
MAE of 1.04 dengue cases per 100,000 individuals.
Figure 7 shows the reported and model 2-predicted DPOP

during the development (2001–2010) and verification (2011)
periods. Incidence rates during the development period

Table 4

Summary statistics for the best intraseasonal autoregressive
prediction models of dengue incidence without using lagged
weather parameters (model 1) and using lagged weather
parameters (model 2)

Variable Lag b SE R2 MAE AIC VIF

Model 1 0.884 0.220 134 1.00
DPOP AR1 0.703* 0.057
DPOP AR2 0.208* 0.057

Model 2 0.928 0.216 131 1.00
DTAVG −1 0.083* 0.022
DPOP AR1 0.735* 0.059
DPOP AR2 0.219* 0.059

The full prediction equations are provided in the text.
*Statistical significance (from zero) at the 5% level.

Figure 7. Reported and predicted intraseasonal dengue incidence rates from 2001 to 2011. The reported population-adjusted biweekly dengue
incidence rates (DPOP) for Cali during the model development period (2001–2010) are shown by vertical grey lines, whereas reported rates during
the model verification period (2011) are denoted by vertical black lines. Also shown are biweekly predictions by the best intraseasonal autoregressive
model not using weather parameters (model 1; dashed black) and the best model using lagged weather parameters (model 2; solid blue) during
both subperiods. The dashed blue lines denote the 95% confidence interval for model 2 during the verification period.
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compare well (R2 = 0.928) with a 5–6% improvement in total
variance explained compared with the model 1 baseline.
Model 2 also captured the timing and magnitude the three
severe outbreaks better than model 1 without losing predic-
tive skill during the intermediate low-magnitude periods.
Thus, although the overall statistical improvement may be
modest, inclusion of meteorological information into the
intraseasonal model improves its predictive skill for the most
critical situations. Finally, during the independent verification
period, all 26 biweekly predictions fell within the 95% confi-
dence interval (R2 = 0.885), timing of the modest mid-year
peak was well-captured, and the equivalent (dimensional)
MAE was 0.61 dengue cases per 100,000 individuals.
Interseasonal prediction: monthly data. Cali’s dengue inci-

dence rates also exhibit relationships to the local climate and
ENSO (Figures 3–6); the most severe outbreaks tend to occur
over multiple seasons during El Niño events, when the mean
rainfall is below average and temperatures remain warmer
than 18°C. For example, the largest dengue outbreak (from
late 2009 to early 2010) coincided with an exceptionally warm
and dry 9-month period during a strong El Niño when the late
year wet season failed and daily minimum temperatures never
dropped below 17°C. Cross-correlation analysis showed that
the most significant associations with DPOP were for TAVG,
G32DAYS, and DTAVG at a 1-month lag, L18DAYS and RRTOT

at a 4-month lag, and RHAVG and N4 at a 6-month lag
(Table 5). Only the lagged L18DAYS, RHAVG, RRTOT, and
N4 were included in the interseasonal model development as
potential predictors; the lagged TAVG, G32DAYS, and DTAVG

were deemed equivalent to their biweekly counterparts and
considered more intraseasonal.
The general AR(1) form with no intercept regularly pro-

duced the best-fit interseasonal model, further implying a
strong autoregressive monthly component to DPOP prediction.
Again, before the inclusion of independent meteorological
predictors, an AR(1) model fitted from only DPOP (hereafter
model 3) is provided as a baseline. The performance statistics
for model 3 are shown in Table 6, and the full prediction
equation is

DPOP t=0 = 0:870 +DPOP t�1: ð3Þ

Figure 8 shows the reported and model 3-predicted DPOP

during the development (2001–2010) period. Overall, the
model performed well (R2 = 0.846), but again, it significantly
underpredicted dengue incidence just before and during the
three most severe outbreaks. Next, all possible combinations

of the potential interseasonal meteorological predictors were
fitted with an AR(1) model using transfer functions (24 total
models) and evaluated. Performance statistics are shown in
Table 6 for the best model (hereafter model 4), which incorpo-
rates RHAVG, L18DAYS, and N4 information based on initial
4- to 6-month lags. The full prediction (transfer) equation is

DPOP t=0 = 0:933 +DPOP t�1 +−0:076 +RHAVG t�6 + 0:071

+RHAVG t�7 +−0:160 +L18DAYS t�4 + 0:150

+L18DAYS t�5 + 0:246 +N4 t�6 + 0:229 +N4 t�7, ð4Þ

where like before, the additional apparent lags for RHAVG,
L18DAYS, and N4 (at t − 5 and t − 7) result from expanding the
polynomials associated with transferring the first-order auto-
regressive backshift operator from the DPOP time series to the
meteorological time series. Comparison of the regression coef-
ficients (b) and the cross-correlations coefficients in Table 3
supports the notion that dengue incidence rates increase in
those months after a warm period that was preceded by an
abnormally dry season coincident with peak El Niño condi-
tions. Model 4 satisfied all performance expectations (lower
AIC, lower MAE, larger R2, and significant b), and the
remaining residuals exhibited no significant trend or auto-
correlation. The model’s equivalent (dimensional) MAE was
2.8 dengue cases per 100,000 individuals.
Figure 8 shows the reported and model 4-predicted DPOP

during the development and verification periods. Incidence rates
during the development period compare well (R2 = 0.901),
with a 5.5% improvement in total variance explained compared
with the model 3 baseline, and model 4 captured the severe
outbreaks better than model 3 without losing skill during inter-
mediate periods. Thus, as with the best intraseasonal model,

Table 5

Lagged cross-correlation coefficients between selected monthly weather/climate parameters and the population-adjusted dengue fever incidence
rate (DPOP) during the development period from 2000 to 2010

Lag (monthly) TAVG L18DAYS G32DAYS DTAVG RHAVG RRTOT N4

−8 0.128 −0.005 0.003 0.046 −0.115 −0.018 0.100
−7 0.224* 0.072 0.145* 0.213* −0.183* 0.008 0.163*
−6 0.219* 0.033 0.185* 0.117 −0.360*† 0.046 0.252*†
−5 0.205* −0.158* 0.161* 0.064 −0.246* 0.113 0.143*
−4 0.179* −0.315*† 0.055 −0.006 −0.138* 0.142*† 0.047
−3 0.224* −0.241* −0.046 0.059 −0.130 0.059 0.101
−2 0.264* −0.096 0.023 0.142* −0.048 −0.113 0.218*
−1 0.393*† −0.008 0.274*† 0.320*† −0.251* −0.132* 0.193*
0 0.159* −0.039 0.219* 0.197* −0.170* −0.097 0.059

*Statistical significance at the 5% level after accounting for serial correlation and pre-whitening the time series.
†Maximum coefficients.

Table 6

Summary statistics for the best interseasonal autoregressive prediction
models of dengue incidence without using lagged weather/climate
parameters (model 3) and using lagged weather/climate parameters
(model 4)

Variable Lag b SE R2 MAE AIC VIF

Model 3 0.846 0.251 92 1.00
DPOP AR1 0.870* 0.029

Model 4 0.901 0.229 76 1.18
RHAVG −6 −0.076* 0.030
L18DAYS −4 −0.161* 0.052
N4 −6 0.246* 0.089
DPOP AR1 0.932* 0.029

The full prediction equations are provided in the text.
*Statistical significance (from zero) at the 5% level.
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inclusion of meteorological information into the interseasonal
model improves its predictive skill for the most critical situa-
tions. Finally, during the verification period, all monthly pre-
dictions fell within the 95% confidence interval (R2 = 0.882),
timing of the intra-annual extremes was well-captured, and
the equivalent (dimensional) MAE was 1.4 dengue cases per
100,000 individuals.

DISCUSSION

The influence of meteorological factors on dengue trans-
mission dynamics in Cali, Colombia during 2000–2010 has
been established at biweekly and monthly time scales. Signif-
icant cross-correlation maxima between DPOP and various
local weather and regional climate parameters were identi-
fied; positive associations were found for TAVG (at a time lag
of 1–2 weeks), G32DAYS (1–2 weeks), DTAVG (1–2 weeks),
RRTOT (4 months), and N4 SSTs (6 months), whereas nega-
tive associations were found for L18DAYS (3–4 months),
RHAVG (1–2 weeks and 6 months), and RRTOT (3–4 weeks).
Using these intra- and interseasonal relationships, multivari-
ate autoregressive models that best predict DPOP were devel-
oped for each timescale; the best intraseasonal (interseasonal)
model used DTAVG at a 1- to 2-week lag (used L18DAYS at a
4-month lag and RHAVG and N4 at 6-month lags). Both
models showed precision (high R2) and skill (low MAE) dur-
ing the 2000–2010 development and 2011 verification periods.
Moreover, inclusion of meteorological predictors into both
autoregressive models provided significant forecast skill
improvement during the most critical situations (during severe
dengue outbreaks) compared with their autoregressive coun-
terparts without meteorological predictors.

Influence of local weather variability on dengue dynamics.
Based on our time series analysis, variability in intraseasonal
weather plays a significant role in dengue transmission across
Cali, Colombia; reported cases often peaked 2–4 weeks after a
warm-dry period when DTAVG was above average. Such prior
environmental conditions are broadly consistent with other
weather-based EWSs for dengue.13,27,36,39 Moreover, a recent
study discussed the expected time lag between mosquito birth
and the appearance of clinical symptoms in humans: larval and
pupa development (10–21 days), a gonotrophic cycle (3–7 days
per cycle), extrinsic incubation in mosquitoes (7–15 days), and
in-human incubation (1–12 days) for a total lag of 21–55 days
(or 3–8 weeks).39 Because the rate of these sequential events
increases at warmer temperatures20,22 and feeding frequency
increases with lower humidity,24 our findings that the number
of dengue cases often peaks 2–4 weeks after a warm-dry period
are consistent with such expected lags.
Our most unexpected finding was that lagged DTAVG pro-

vided the best prediction of dengue incidence. This study is
the first empirical study that specifically evaluated the rela-
tionships between DTAVG and dengue incidence. A recent
study, through a combination of laboratory experiments and
a thermodynamic model, showed that dengue transmission
could be highly dependent on DTAVG.

32 In particular, it showed
that, at mean temperatures less than (greater than) 18°C,
larger DTAVG resulted in increased (reduced) transmission
because of increases (reductions) in viral amplification and
vector survival during the warmer (colder) hours of each day.
Hence, the study suggests that maximum dengue transmission
would occur for those combinations of TAVG and DTAVG that
minimize the number of daily hours in which ambient temper-
atures are outside the optimal 18–32°C range for mosquito

Figure 8. Reported and predicted interseasonal dengue incidence rates from 2001 to 2011. The reported population-adjusted monthly dengue
incidence rates (DPOP) for Cali during the model development period (2001–2010) are shown by vertical light grey lines, whereas reported rates
during the model verification period (2011) are denoted by vertical medium grey lines. Also shown are monthly predictions by the best
interseasonal autoregressive model not using weather parameters (model 3; dashed dark grey) and the best model using lagged weather parameters
(model 4; solid black) during both subperiods. The thin dashed black lines denote the 95% confidence interval for model 4 during the verifica-
tion period.
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survival and dengue transmission.20 Figures 4–6 illustrate the
number of days with non-optimal temperature extremes
(L18DAYS, G32DAYS, and similar parameters computed over
small ranges) for Cali during 2000–2011. Note how each sig-
nificant dengue outbreak was preceded by multiple weeks
(or months) when extreme daily temperatures were largely
confined within the optimal 18–32°C range. The relationship
is strongest with the minimum temperatures (Figure 4), sug-
gesting that prolonged warm periods (whereby temperatures
rarely drop below 18°C) foster vector population growth,
faster virus amplification in the larger population, and
increased vector feeding and human host contact, leading to
increases in human infections.22 In contrast, cooler periods
(when temperatures often drop below 18°C) provide a regular
effective brake on vector population growth and viral devel-
opment, which reduces human host contact and limits the
number of infections.
Why then was lagged DTAVG our strongest local predictor

of dengue incidence for Cali if the frequency of extreme tem-
peratures seems more critical for vector survival and dengue
transmission? This finding may result from considerable over-
lap among the optimal temperature range for transmission
(18–32°C), the climatological range for extreme daily temper-
atures in Cali (15–35°C), the variability in this overlap on
intraseasonal time scales, and its relation to other meteoro-
logical parameters (RHAVG and RRTOT) that influence vector
populations and disease transmission. Indeed, inspection of
Table 3 reveals that DTAVG is the only parameter to exhibit
statistically significant relationships with each parameter used
in previously developed weather-based EWSs for dengue
(TAVG, TMIN, TMAX, RHAVG, and RRTOT)

13,27,33,36,39 while
also exhibiting significant associations with the metrics for
non-optimal temperatures (L18DAYS and G32DAYS). In other
words, variability in DTAVG alone provides a holistic measure
of the aforementioned environmental conditions known to be
favorable for dengue transmission.
However, why were lagged RHAVG and RRTOT not signif-

icant predictors of intraseasonal dengue incidence for Cali?
The cross-correlation analysis with DPOP (Table 2) implied
that dengue incidence peaked after dry periods initiated up
to 6 weeks before. Similar lagged relationships were found for
Singapore27 and New Caledonia,36 but other tropical locales
exhibited either increased dengue incidence after wet
periods13,33,34,37 or no correlation.21 Two plausible explana-
tions are suggested. First, moist tropical regions (such as Cali)
may exhibit weaker correlations between rainfall variability
and mosquito density than dry tropical or subtropical regions
(such as Taiwan) if the moist regions receive sufficient rainfall
to maintain a regular supply of abundant breeding sites.9,29

Second, variability in rainfall intensity may be more critical
than total accumulation, because heavy rainfall can destroy
larvae and reduce the survival rate of adult female mosqui-
toes, whereas light rainfall increases the usage of water storage
containers that may serve as breeding sites.27,28 Resolution of
this speculation through detailed multisite analysis is left for
future work.
Influence of regional climate variability on dengue dynamics.

Our findings also support the hypothesis that interseasonal
climate variability, linked to ENSO, plays an important role
in dengue transmission across Cali; incidence often peaked 4–
6 months after an El Niño event associated with above-average
local temperatures and below-average local rainfall and

humidity. Similar ENSO-lagged relationships were found for
Mexico50 and Thailand,51 although the relationships seem to
be complex and exhibit signs of non-stationarity.52,53

How does ENSO impact local Cali weather? The (objec-
tive) statistical selection of N4 as the best predictor among the
five ENSO indices is consistent with the traditional notion
that the N4 index is best correlated with the eastward shift of
the Walker Circulation during an El Niño event.54 This east-
ward shift often enhances subsidence (and suppresses convec-
tion) over Colombia. At the same time, the SST gradient
between the Colombian coast and the normally cold waters off
Peru and Ecuador decreases, weakening the easterly winds and
moisture advection (from the Amazon) into central/western
Colombia and further lowering humidity and limiting rainfall.55

Indeed, during 1980–1999, the Colombian climate in years
immediately after an El Niño event was characterized by less
rainfall, lower humidity, warmer temperatures, and a national
increase in dengue incidence.56 Our 2000–2010 interseasonal
cross-correlation analysis with DPOP (Figures 6 and 8 and
Table 5) is broadly consistent with such a local response to
remote ENSO forcing.
The interseasonal impacts of ENSO on local dengue dynam-

ics are probably most facilitated through its subsidence-
induced drying effects, which in turn, could enhance the
long-term abundance of water storage containers for use as
breeding sites. Because Ae. aegypti eggs, under laboratory
conditions, can withstand desiccation for up to 4 months
depending on ambient humidity levels,57 it seems plausible
that the lagged RHAVG predictor (at 6 months) reflects
an interseasonal memory, whereby moisture conditions dur-
ing prior wet/dry seasons influence the number of dengue
cases in the current season. Similar interseasonal lags
between dengue incidence and either moisture or rainfall
have been noted.35,38,58

Influence of other factors. Although our results show that
weather and climate have played significant roles in facilitat-
ing recent dengue transmission across Cali, transmission
dynamics are a function of complex relationships between
hosts, vectors, and their environment. Several other con-
founding factors may contribute to the observed intra- and
interseasonal variability of dengue incidence. First, Cali has
experienced rapid population growth over the past two decades
(~35% since 1993), primarily in the lower socioeconomic
neighborhoods, where simple vector control measures are less
common, housing density is greater, underreporting is more
common, and water storage containers are more abun-
dant.43,44,59 Second, budget constraints have reduced timely
vector control programs, and the localAe. aegypti populations
has exhibited at least partial resistance to all commercially
available insecticides.3,60,61 Third, given the close proximity
of Colombia to the equatorial tropical Pacific, we only evalu-
ated ENSO–dengue relationships, but other modes of climate
variability, such as the Madden–Julian Oscillation (a 30- to
90-day cycle)62 and the North Atlantic Oscillation (a 3- to
5-year cycle),63 may play significant interseasonal roles.
Fourth, ecological factors, such as seasonal vegetation dynam-
ics,58 may influence vector density on the local scale. Finally,
interannual variability in dengue incidence can be related to
the rotation of herd immunity (by human hosts) through the
four serotypes.19,36,39

In our predictive models, such confounding factors are col-
lectively represented through the autoregressive DPOP terms.

ENVIRONMENTAL PREDICTION OF DENGUE FEVER IN COLOMBIA 607



Moreover, the large AR regression coefficients (Tables 4
and 6) imply that the density of infected hosts remains a
strong short-term predictor of subsequent incidence rate.
Thus, until the full range of factors influencing dengue trans-
mission is known, the use of autoregressive models in local
EWSs seems to be an effective means to incorporate con-
founding factors that are unique to a given region.27,33,37,39

Integration of weather-based prediction into multicompo-
nent EWSs. Until an effective vaccine or antiviral drug for
dengue fever becomes available, EWSs will remain an essen-
tial tool for curbing dengue transmission and reducing the
case numbers. However, the implementation of an EWS can
be resource- and labor-intensive, posing an economic burden
on communities with limited resources. Given the complex
dynamics of dengue transmission, an effective low-cost EWS
requires a multicomponent approach that combines (1) envi-
ronmental surveillance, including weather-based predictive
models, (2) entomological surveillance, (3) proactive vector
control strategies, including the targeted use of insecticides and
breeding habitat reduction, (4) public awareness and education,
and (5) timely emergency response and case management.
In Colombia, dengue outbreaks were managed historically

through vector eradication efforts using widespread dichloro-
diphenyl-tricloroethane (DDT) spraying, but the Ae. aegypti
became highly resistant to the insecticide.3,60,61 Since the
1980s, vector control strategies have followed an integrated
community-based approach, combining limited entomologi-
cal surveillance and regular application of chemical and
bacterial larvicides to permanent stagnant water sources;
insecticide spraying is used only after dengue outbreaks
are confined.3,64,65

The predictive models described herein could be integrated
into a low-cost dengue EWS for Cali. Both models use pub-
licly available weather and climate data, which remove any
need for financial investment in weather-based predictive
methods. The interseasonal model could be used to initiate
proactive public awareness and education campaigns as well
as long-term resource planning, such as setting municipal
budgets and acquiring sufficient mitigation resources. The
intraseasonal model could then be used to guide any initial
outbreak response efforts, such as the acquisition of sufficient
medical supplies, timely public awareness reminders, and
intensity of targeted vector control efforts. Studies have shown
that such low-cost weather-based EWSs can help mitigate
potential dengue epidemics in a timely manner.34–36,38

Conclusions and future work. A comprehensive global
dengue research agenda requires simultaneously addressing
known deficiencies in the medical, public, and health policy,
vector control, and vector surveillance arenas.66 Here, we
contribute to the latter by developing weather-based intra-
and interseasonal prediction models that can be integrated
into the existing community-based EWSs for Cali, Colombia
and provide sufficient lead time to initiate effective vector
control and medical response operations when periods of
elevated dengue risk are predicted.
Our results also suggest new avenues for future study. First,

it seems important to further evaluate the impact of daily
temperature variability on the behavior and full lifecycle of
the Ae. aegypti mosquito, because significant dengue out-
breaks often occurred when extreme daily temperatures are
confined within the 18–32°C range. Second, more research is
needed to develop spatiotemporal predictive models of den-

gue fever incidence. Patterns of spatial variability across
endemic regions (such as Colombia) may be related to varia-
tions in the built environment, ecology, local weather and
climate, population density/migration, mitigation efforts, and
host mobility. A few recent studies have evaluated spatial den-
gue transmission pattern, but unique site-specific factors limit
the extrapolation of their results to other geographic
regions.4,43,59,67 Given that global climate change is expected
to spread the risk of dengue fever into higher latitudes and
higher elevations and to a greater percentage of the global
population,9,11,16 such efforts could provide effective regional
EWSs for all at-risk populations.
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