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Spatiotemporal Point Pattern Analysis 
Using Ripley’s K Function

Alexander Hohl, Minrui Zheng, Wenwu Tang, 
Eric Delmelle, and Irene Casas

7.1 Introduction

Many geospatial phenomena are involved with movement across space, for 
instance, movement of humans and animals, the dispersal of plants, and the 
diffusion of infectious disease (Gould 1969; Demšar et  al. 2015). Our abil-
ity to collect fine-resolution spatiotemporal data with high accuracy has 
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substantially improved, given the rapid development of geospatial tech-
nologies: location-aware smartphones track their owner’s daily movements, 
sensor networks record biophysical variables in real time, and volunteered 
geographic information is easily accessible online (Kwan and Neutens 2014). 
While the study of geospatial movement or diffusion phenomena has received 
increased attention, the analysis of the spatiotemporal data associated with 
these phenomena remains challenging (Diggle 2013; Goodchild 2013; An et al. 
2015). In this study, we aim to investigate the use of Ripley’s K function for the 
analysis of spatiotemporal point patterns to gain insight into this challenge.

The Ripley’s K function (Ripley 1976) is a quantitative approach that falls 
within the domain of spatial and spatiotemporal point pattern analysis. 
Spatial point pattern analysis is concerned with quantifying the distribution 
of point events in 2D geographic space (Illian et al. 2008). It has widespread 
applications, such as in plant ecology (Wiegand and Moloney 2004; Perry, 
Miller, and Enright, 2006), epidemiology (Gatrell et al. 1996), and criminol-
ogy (Anselin et  al. 2000). Ripley’s K function characterizes a given set of 
points and distinguishes between random, clustered, and regular patterns. 
However, the use of point pattern analysis for evaluating spatiotemporally 
explicit phenomena lags behind in the availability of spatiotemporal datas-
ets. It is important to note that spatiotemporal does not equal 3D, due to the 
orthogonal relationship between space and time (Nakaya and Yano 2010) and 
due to the peculiarity of the temporal dimension that clearly distinguishes it 
from the 2D spatial dimensions (Aigner et al. 2007). This further complicates 
the analysis of spatiotemporal point patterns.

The objective of this work is to investigate the capability of Ripley’s K 
function-based point pattern analysis for the study of dynamic geospatial 
phenomena. Specifically, we focus on the combined use of global and local 
forms of Ripley’s K function and present a case study of dengue fever in the 
city of Cali, Colombia to illustrate the benefits of this methodology.

The remainder of the chapter is organized as follows: Section 7.2 provides 
the background about global Ripley’s K function, followed by Section 7.3, 
which discusses the temporal extension of the K function and its local vari-
ant, as well as specific details about our own implementation of the local 
Ripley’s K function for spatiotemporal point pattern analysis. In Section 7.4, 
we present a case study where we apply Ripley’s K function, followed by 
results (Section 7.5) and conclusions (Section 7.6).

7.2  Background: Global Ripley’s K Function 
for Spatial Point Pattern Analysis

Different approaches exist to evaluate the level of spatial clustering among 
point events (Bailey and Gatrell 1995; Delmelle 2009). For instance, the 
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quadrant analysis essentially counts the number of events within each cell 
(quadrant) of a grid imposed on a study area. The results are compared with 
the expected frequency of occurrence if the mechanism generating those 
events was a homogeneous Poisson process (corresponding to point patterns 
that exhibit complete spatial randomness—i.e., CSR). Despite its ease of imple-
mentation, quadrant analysis is an area-based approach that aggregates orig-
inal point events into quadrant counts, which makes this approach sensitive 
to the design of quadrants (e.g., shape and size). The nearest neighbor statistic 
(Diggle, Besag, and Gleaves 1976) alleviates this problem by testing whether 
point events are closer together (or farther apart) than expected under CSR 
based on nearest-neighbor distance. This distance-based approach suffers 
from some limitations, most notably that clustering is typically detected at a 
relatively small scale, and that distance among events is the only parameter 
governing the statistic. While the nearest-neighbor approach uses distances 
only to the closest events and hence only considers the smallest scales of 
patterns, Ripley’s K Function provides a superior alternative in that it evalu-
ates point patterns at different scales (Ripley 1976). By comparing the spatial 
pattern of the observed data points to simulated data, the K function can 
indicate for each of the scales evaluated whether the observed point pattern 
follows a random, clustered, or regular configuration.

Ripley’s K function is a statistical approach computed on a set of point 
events distributed in n-dimensional space, and estimates the second-order 
property (variance) exhibited by the data. It takes into account (1) the number 
and (2) distance between the point events, and allows for quantifying how 
much the observed pattern deviates from randomness at multiple spatial 
scales (Bailey and Gatrell 1995; Dixon 2013). The theoretical K function, given 
a set of point-events S, is calculated by dividing E, the number of events 
that are expected to fall within distance d, by the intensity λ of S (first-order 
property) as in:

 K(d) E(d)/= λ  (7.1)

Equation 7.1 is computed by centering a circle of radius d on each sampling 
point and counting the number of neighboring events that fall inside it. In 
this case, the number and locations of the sampling points coincide with the 
event locations. Dividing the total number of events n by the area of the circle 
πd2 results in estimated intensity λ. Ripley’s K function is the cumulative dis-
tribution of observed point events S with increasing distance. It is expected 
that K(d) = πd2 if the point distribution conforms to CSR, K(d) > πd2 if the 
points cluster within distance d, and K(d) < πd2 if the data exhibit a regular 
pattern. The K function is a second-order analysis of point patterns usually in 
a two-dimensional space (Haase 1995; Dixon 2013). Second-order effects are 
caused by the spatial dependence in the process. In essence, Ripley’s K func-
tion approach uses a circular search window (h) around each event (i) and 
counts how many other events are observed in that window. The window 
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then moves to the next event until all events (n events) in the study area are 
visited. The process is repeated at different spatial scales. Specifically,

 

K(h) A/n I d /w2
h ij ij

j

n

i

n

= ∑∑( ) * ( ( ) )

 

(7.2)

Equation 7.2 evaluates the structural characteristics of a given set of events, 
where dij is the distance between events i and j, and A is the size of the study 
region. The term wij is a factor to correct for edge effects. The K function is 
potentially biased as edge effects arise when circles intersect the boundary 
of the study region. There are different methods to deal with edge effects of 
the K function, which have been thoroughly studied (Yamada and Rogerson 
2003). Ih(dij) is an indicator function defined by Equation 7.3:

 I d 1 if d h otherwiseh ij ij( ) ,= ≤ 0  (7.3)

The K function increases as distance h becomes larger. To statistically test 
whether the observed point pattern follows a regular, clustered, or random 
pattern, the K function is evaluated for a large number (M) of Monte Carlo 
simulations. For each simulation, a number (n) of events are generated (e.g., 
randomly) within the study area. If the observed K value is larger than the 
upper simulation envelope, spatial clustering for that distance is statistically 
significant. Observed K values smaller than the lower simulation envelope 
show that point patterns exhibit regularity that is statistically significant for 
the corresponding distance. K(h) is then evaluated against distance (h) to 
identify the scales at which the point pattern follows a regular, clustered, or 
random pattern. For a given value of h, if the K function is above, between, or 
below the upper and lower envelopes, the point pattern is clustered, random, 
or regular, respectively.

The K function can be transformed to the L function using Equation 7.4 to 
obtain constant variance with respect to a benchmark of zero, which facili-
tates the comparison of L values across all h:

 L(h) K(h)/ h1 2= −( ) /π  (7.4)

where L(h) = 0 if the pattern conforms to CSR, L(h) > 0 if clustered, and 
L(h) < 0 for regular patterns.

Recent methodological advancements of Ripley’s K function improve the 
ability to find the appropriate scale of clustering by computing K for dis-
tance increments (Tao, Thill, and Yamada 2015). In addition, the K function 
was adapted for network-constrained data (Yamada and Thill 2007) which 
violate the planar space assumption that underlies many spatial point 
pattern analysis methods. Although the K function is popular because it 
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evaluates levels of clustering at different scales, its computation is time-
consuming, especially for large datasets. Recent work has underscored 
the capability of high performance computing, for instance through the 
use of Graphics Processing Units (GPU) for its acceleration (Tang, Feng, 
and Jia 2015).

7.3  Ripley’s K Function for Spatiotemporal 
Point Pattern Analysis

In this study, we investigate the use of Ripley’s K function in the analysis of 
spatiotemporal point patterns. We focus on the combination of global and 
local forms of Ripley’s K function. While the former evaluates the spatiotem-
poral characteristics of a point pattern at the aggregated level (i.e., the entire 
dataset), the local form of Ripley’s K function quantifies the characteristics 
of the point pattern, as well as its deviation from what would be expected, 
locally. In this section, we discuss in detail global and local forms of Ripley’s 
K function for spatiotemporal point pattern analysis.

7.3.1  Global Ripley’s K Function for the Analysis 
of Spatiotemporal Point Pattern

Tests for spatial patterns fail at evaluating the dynamics of the point process. 
When point events have a temporal attribute, we can investigate whether two 
events are space and time dependent, suggesting the presence of a space-time 
link. There are several techniques to evaluate patterns among spatiotempo-
ral point events. The Knox test for space-time interaction evaluates the pres-
ence of a space-time cluster at given spatial and temporal distances (Knox 
1964). Knox’s test method is limited due to its arbitrary definition of close-
ness and the critical distance does not account for population heterogeneity 
(Jacquez 1996). The Mantel test (Mantel 1967) incorporates the notion of dis-
tance decay in which nearby pairs of events are more important than distant 
pairs. Jacquez’s k-Nearest Neighbor k-NN statistic (Jacquez 1996) addresses 
the weaknesses of the Knox and Mantel statistics by counting the number of 
pairs of events that are nearest neighbors in both space and time.

Equivalent to the purely spatial K function (discussed above), the space-
time Ripley’s K function is a global statistic computed on the entire set of 
space-time point events. The theoretical space-time K function, given a set 
of point events S, is calculated by dividing E, the number of events that are 
expected to fall within spatial distance d and temporal distance t, by the 
intensity λ of S (first-order property):

 K(d t) E(d t), , /= λ  (7.5)
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Equation 7.5 characterizes the pattern of S within the space-time cube 
framework (Nakaya and Yano 2010), where a cylinder of base πd2 and height 
t is centered on each sampling point to compute the number of events falling 
within. Again, the sampling points are equal to the event locations. Then 
the total number of events n is divided by the volume of the irregular prism 
formed by the study area/period, which results in intensity λ. Space-time 
Ripley’s K function is the cumulative distribution of observed point events S 
with increasing space and time distance. It is expected that K(d,t) = πd2t if the 
point distribution conforms to complete spatiotemporal randomness (CSTR), 
K(d,t) > πd2t if the points cluster within spatial and temporal distance d and 
t, and K(d,t) < πd2t for regular space-time patterns. Using Equation 7.6, the 
space-time K function is formulated as (Bailey and Gatrell 1995):

 

K(h t) L R /n I d t /w2
h t ij ij ij

j

n
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n
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(7.6)

where tij is the time that separates two events i and j. dij is the distance 
between events i and j. L denotes the area of the study region and R is the 
duration of the study period. The product of L and R results in the volume 
of the irregular prism that is formed by the study area (base) and the study 
period (height). Ih,t(dij,tij) is an indicator function defined in Equation 7.7:

 I d t 1 if d h and t t otherwiseh t ij ij ij ij, ( , ) ,= ≤ ≤ 0  (7.7)

Larger time t and distance h intervals will contribute to an increase in 
the space-time K function. For the case that no space-time interaction exists, 
Equation 7.6 becomes the product of the spatial and temporal K functions 
K(h)*K(t). Testing for space-time dependence is achieved by subtracting 
K(h)*K(t) from the combined space-time I function K(h,t). Methods for han-
dling edge effects of the space-time K function have been studied by Gabriel 
(2014).

The space-time Ripley’s K function is transformed to the space-time L 
function by Equation 7.8:

 L(h t) K(h t)/ t h1/2, ( , )= −π  (7.8)

where L(h,t) = 0 under CSTR, L(h,t) > 0 for clustered patterns, and L(h,t) < 0 
for regular patterns.

7.3.2  Local Ripley’s K Function for the Analysis 
of Spatiotemporal Point Patterns

While Ripley’s K evaluates the spatial pattern at the global level (i.e., indicat-
ing whether clustering is present in the entire study area or not), the same 
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measure can be considered in its local form to pinpoint where the clustering 
actually occurs (Getis and Franklin 1987):

 

K h A/n I d /wi h ij ij( ) ( ) * ( ( ) )= ∑
j

n

 
(7.9)

Here, the local K function is evaluated at each sampling point i, which 
either is part of (1) a regularly spaced grid drawn over the study area, (2) the 
events themselves, or (3) a number of random points. The indicator function 
I is equivalent to Equation 3. Several meaningful extensions to local Ripley’s 
K function have been suggested, such as the local K function for network-
constrained space to study transportation-related cases (Okabe and Yamada 
2001; Yamada and Thill 2007), as well for characterizing patterns in flow 
data, thereby upgrading the classic hot spot detection paradigm to the stage 
of “hot flow” detection (Tao and Thill 2016).

Equivalent to the purely spatial case, the local K function for spatiotempo-
ral point patterns identifies the location and time of clusters within the study 
area/period. The local space-time K function is evaluated at any sampling 
point i:
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(7.10)

Using Equation 7.10 for each sampling point i, we can estimate the local 
level of space-time clustering and its statistical significance using Monte 
Carlo simulations. Further, we can identify the scale at which space-time 
clustering is the greatest. This information can be very valuable when con-
ducting spatial analysis over a non-homogeneous population of events. 
Despite these attractive outcomes, the local version of the space-time K 
function is computationally very demanding, and the execution time 
depends on (1) the number of data points, (2) the number of sampling 
points, and (3) the number of spatial and temporal bandwidths, for which 
K is computed.

7.4 Case Study

To gain insights into the mechanisms of spatiotemporal point pattern analy-
sis, we now illustrate our implementation of the global and local Ripley’s K 
function spatiotemporal explicit set of dengue fever cases in Colombia for 
the years 2010–2011.
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7.4.1 Study Area and Data

The city of Cali is located in the southwest of Colombia. It is the third largest 
metropolitan area in the country with a total population of around 2.3 mil-
lion and a population density of 4140/km2 in 2013 (Cali 2014). Cali experiences 
two rainy seasons: the first from April to July and the second from September 
to December. Located at approximately 1000 m above sea level, it has an aver-
age temperature of 26°C and an average precipitation of 1000 mm over most 
of the metropolitan area (Cali 2014). The city is administratively divided into 
22 communes covering 120.9 km2, and composed of 340 neighborhoods (see 
Figure 7.1). A commune is a grouping of neighborhoods based on homoge-
neous demographic and socioeconomic characteristics. Neighborhoods are 
classified using a stratification system composed of six classes, one being the 
lowest and six the highest. The strata are developed by evaluating the type 
of housing, urban environment, and context. The city, as in most colonial cit-
ies in Latin America, grew from its central core, following the city spine, and 
toward the periphery. Peripheral neighborhoods are typically characterized 
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by high density and low income since they have been the result of squatter 
settlements and poor urban planning (Restrepo 2011).

We use a dataset of dengue fever cases within the city of Cali in this study. 
The data are extracted from the “Sistema de Vigilancia en Salud Pública 
(SIVIGILA)” (English: Public Health Surveillance System) for the city of Cali 
for the years 2010 and 2011. The SIVIGILA system has as a main responsibility 
to observe and analyze health events with the objective of planning, follow-
up, and evaluation of public health practices (Colombia 2017). Reported cases 
of dengue fever are entered into the system daily. Each case includes personal 
information about the patient such as their home address and when they were 
diagnosed. A total of 11,056 cases were geocoded to the closest intersection to 
guarantee a level of privacy for both years. There were 9606 cases in 2010 and 
1562 in 2011. The difference in the number of cases is explained by the fact 
that 2010 was identified as an epidemic year (Varela et al., 2010).

7.4.2 Analysis

7.4.2.1 Global Space-Time K Function

Since the epidemiological interest is to find clusters of disease occurrence, 
we evaluated the magnitude of space-time clustering within the dengue 
fever dataset (n = 11,056) by computing the global space-time Ripley’s K and 
corresponding L functions (see Section 3.1). We used spatial bandwidths 
from 50 m to 1000 m in 50 m increments and temporal bandwidths from 0 
to 14 days in 1-day increments. Using Equation 7.11, we assessed statistical 
significance of the observed K function by comparison with 100 population-
adjusted random simulations and finding the spatial and temporal scales at 
which the difference between the observed function and the upper simula-
tion envelope (noted as Ldiff_upper(h,t)) was maximal (also see Hohl et al. 2016):

 L h t L h t L h tdiff upper obs upper envelope_ _( , ) ( , ) ( , )= −  
(7.11)

where Lobs(h,t) is the observed L value and Lupper_envelope(h,t) represents the L 
value of the upper simulation envelope at spatial bandwidth h and temporal 
bandwidth t.

7.4.2.2 Local Space-Time K Function

Once we determined the presence of clusters in the dengue fever dataset, 
we illustrated the locations and times at which the clusters may occur by 
computing the local space-time Ripley’s K function. We imposed a regularly 
spaced grid of sampling points on our study area/period using a space-time 
resolution of 250 m and 7 days. This results in a total of 202,755 sampling 
points at which the local space-time K functions were evaluated (although 
more accurate results can be obtained at a finer scale, e.g., 100 m and 1 day, 
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estimating local space-time clusters every 250 m and 7 days is computation-
ally more accessible). Equivalent to our estimation of the global space-time 
K function (see Section 4.2.2), we used spatial bandwidths of 50 m to 1000 m 
in increments of 50 m and temporal bandwidths of 0–14 days in 1-day incre-
ments at each sampling point. Again, using Equation 11, we assessed statis-
tical significance of the observed local K function by comparison with the 
upper simulation envelope of 100 population-adjusted Monte Carlo simula-
tions. To illustrate the effects of scale on space-time point pattern, we show 
significantly clustered sampling locations at two different scales by drawing 
a point cloud within the space-time cube (Delmelle et al. 2014): (1) 500 m and 
7 days, (2) 750 m and 10 days.

7.4.2.3 Global Space-Time K Function of Local Settings

For illustration purposes, we assess the magnitude and statistical significance 
of space-time clustering at various scales by selecting three distinct locations 
from the space-time grid of sampling points (see section 4.2.2). Each of the 
three locations is representative of a particular space-time pattern. We chose 
Location 1 in the center of the dengue fever cluster in the south-western part 
of the city during the first half of 2010. Location 2 is the same as Location 1, 
but has a much later time stamp, during which the infectious outbreak is 
in its declining stage. It can be seen that Locations 1–2 are sites where the 
virus is present throughout the endemic period. It is a constant focal point 
of infection for more than 150 days. This information is valuable to health 
authorities in order to target the location to stop the spread of the disease. 
This area corresponds to a military base where the municipality spraying 
cycles are not as regular as in other areas in the city. Location 3 lies in the 
eastern part of the city, which never exhibits a clustered pattern during the 
entire study period. Their space-time coordinates (x, y, t), using the Bogota 
Transverse Mercator coordinate system and Julian date [0–730], are: Location 
1: (1,058,498.1, 864,811.9, 35); Location 2: (1,058,498.1, 864,811.9, 210); Location 3: 
(1,064,998.1, 870,311.9, 35). For each of the three locations, we identified sur-
rounding dengue fever cases within distance 1000 m and 14 days, and com-
puted the global space-time K and L functions for this local setting (the same 
way as we compute the global K and L functions for the entire study area/
period as in Section 4.2.1). To distinguish between clustered, random, and 
regular space-time patterns, we compared the observed L functions with an 
upper simulation envelope from the population adjusted simulations using 
Equation 11, as well as a lower simulation envelope using Equation 7.12:

 L h t L h t L h tdiff lower obs lower envelope_ _( , ) ( , ) ( , )= −  (7.12)

where Lobs(h,t) is the observed L value and Llower_envelope(h,t) represents the L 
value of the lower simulation envelope at spatial bandwidth h and temporal 
bandwidth t.
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7.4.2.4 Implementation

All programs were written using Python and R (package: stpp) and we used 
a high performance computing cluster with 32 nodes connected through an 
infiniband network switch (Pfister, 2001) to accelerate the spatiotemporal 
point pattern analysis using Ripley’s K function. Each computing node of 
the high performance computing cluster has 12 CPUs and 12 GBs of memory, 
in total 384 CPUs (Intel Xeon processor with a 2.67 GHz clock speed). Similar 
to Delmelle et al. (2014), we used Voxler, an interactive 3D modeling environ-
ment (Golden Software, Colorado), for the visualizations of the local space-
time K functions.

7.5 Results

7.5.1 Global Space-Time K Function

Figure 7.2 shows the difference between L values of the observed data and 
the upper simulation envelope of 100 population-adjusted Monte Carlo 
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simulations. Note that we did not account for edge effects in our case study, 
therefore setting parameter wij to 1 in all calculations (same for the K func-
tion analysis of local settings). Observed L values greater than simulated 
ones (positive difference) indicate clustering at the corresponding scale: the 
greater the difference, the stronger the clustering is. Figure 7.2 shows posi-
tive values across all bandwidths, with the overall trend of stronger cluster-
ing for larger spatial bandwidths. However, the magnitude of the difference 
in clustering decreases with increasing temporal bandwidth, suggesting that 
dengue fever cases tend to occur shortly after one another, but do not exhibit 
strong temporal clustering beyond a week. Thus, the change in clustering 
intensity is mainly driven by the spatial scale, meaning that, as opposed 
to changing the temporal bandwidth, the difference becomes larger when 
increasing the spatial bandwidth.

7.5.2 Local Space-Time K Function

We estimate the local space-time K function at 202,764 regularly spaced grid 
points (250 m, 7 days intervals). For each grid point, we report the absolute 
difference in L values of the observed data and the upper simulation enve-
lope of 100 population-adjusted Monte Carlo simulations at different spatial 
and temporal bandwidths.

Figure 7.3 illustrates a map that visualizes the difference in L-values for 
each grid point (or voxel, volumetric pixel), using a spatial and temporal 
bandwidth of 500 m and 7 days (from two different perspectives: south-
east and northwest). Negative values (where observed counts are less than 
expected) are not shown on the map. Colored dots denote regions where the 
number of observed cases is greater than what is expected; the magnitude of 
this difference is illustrated with tones of red (darker red dots are on the end 
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of that spectrum). We note the presence of strong clusters at the beginning 
of the year 2010, coinciding with an increase in cases during the first few 
months of the year (see Hohl et al. 2016). Figure 7.4 is similar to Figure 7.3, 
but uses larger spatial and temporal bandwidths (750 m and 10 days). Using 
the same legend as in Figure 7.3, we observe a much greater number of grid 
points where the difference between the observed and expected L-values is 
large (n = 25,124 voxels or 12.39%, compared to 13,329 or 6.57% in the former 
scenario with spatial and temporal bandwidths of 500 m and 7 days).

Figure 7.5 shows the interpolated variation in the space-time K function, 
with bandwidths of 500 m and 7 days. Essentially, this map uses data from 
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Figure 7.3 as an input, but shows a smooth continuous volume. We use a 
combination of visualization techniques (volume rendering, transparency; 
see Delmelle et al. (2014)) to render the strength of the clustering, while iso-
surfaces reinforce the extent of such clusters. For this map, of more interest 
are regions of strong positive clustering (represented in red). Although we 
observe strong, positive clusters at the beginning of 2010, we note that at the 
end of 2011, some regions are showing negative values, suggesting a ten-
dency toward regularity.

7.5.3 Global Space-Time K Functions of Local Settings

Figure 7.6 depicts the absolute difference between observed Ripley’s K and 
the upper simulation envelope for Location 1 within 1000 m and 14 days of 
the space-time bandwidth. Location 1 lies within a space-time cluster of den-
gue fever cases. Local Ripley’s K values suggest clustered patterns of dengue 
fever cases within 1000 m and 14 days with respect to Location 1 since all the 
values of the absolute difference with respect to the upper simulation enve-
lope are positive. As the spatial bandwidth increases, the clustering response 
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becomes stronger, but weakens with decreasing temporal bandwidth values. 
Strongest clustering response concentrates within a space-time range of 500–
1000 m and 1 day.

The difference between observed data and the upper simulation envelope 
for Location 2 is shown in Figure 7.7. For this location, there is no cluster-
ing pattern that we can observe. However, when the temporal bandwidth 
is from 0 to 1 day or 6 to 14 days within 150 m of the spatial bandwidth, 
the dengue fever data around that location exhibit a weaker clustering pat-
tern—only a small-scale cluster is observed. To have a better understanding 
of the dengue fever pattern at Location 2, we compare the difference between 
observed data and the lower simulation envelope (see Figure 7.8). When the 
difference between the observed and simulated data is higher than the lower 
envelope, a completely spatiotemporally random (CSTR) pattern is sug-
gested. Otherwise, space-time regularity is observed when the difference 
with respect to the lower envelope is negative. As we see in Figure 7.8, posi-
tive values of the difference with the lower envelope are observed across all 
space-time bandwidths. Therefore, we cannot reject the null hypothesis that 
the spatiotemporal pattern of dengue fever incidents is completely random.
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For Location 3, all the differences in L-values between observed and upper 
simulation envelope are negative (see Figure 7.9). When we plot the differ-
ence between observed values and the lower simulation envelope (see Figure 
7.10), we observe a random pattern throughout all scales, especially for spa-
tial bandwidths from 150 to 750 m and temporal bandwidths between 0 and 
1 day. For spatial bandwidths from 250 to 650 m and temporal bandwidths 
longer than 1 day, the dengue fever data exhibit spatiotemporal regularity 
with respect to Location 3.

7.6 Conclusions

In this study, we investigated the use of Ripley’s K function for the analysis 
of spatiotemporal point patterns. Using a combination of global and local 
Ripley’s K functions allowed us to discover the space-time characteristics of 
dengue fever in Cali, Colombia for the years 2010 and 2011.
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In the case of dengue fever and other vector-borne diseases, being able to 
identify the space-time location of potential clusters of infection can make 
a difference in controlling and stopping the spread of the virus. It will help 
health authorities to better design and plan control strategies in a timely way 
to stop an epidemic from happening. It will also provide insight into under-
standing the timeline of the infectious process.

The 3D visualization approach is able to map the shape of each cluster, 
while giving a clear understanding of the presence of clusters of dengue 
fever over space and time. Our future work will focus on a number of 
threads. First, we will perform edge correction to improve global and local 
forms of space-time Ripley’s K function. Second, once a fine spatial-temporal 
resolution is used, the 3D visualization approach will map more accurate 
shapes and forms of each cluster. Third, more years of dengue fever data 
will be added in our study to better understand and explain the space-time 
complexity of the infectious process.

1000

800

600

Sp
at

ia
l b

an
dw

id
th

 (m
)

400

200

20 4 6 8 10 12 14
Temporal bandwidth (days)

Location 3: observed—upper envelope

–10.0

–15.0

–20.0
–25.0

–30.0

–35.0

–40.0

–45.0
–5

0.0

–5
5.0

–6
0.

0
–6

5.
0–7

0.
0–7

5.
0

FIGURE 7.9
Global space-time K function of a local setting (Location 3 in Figure 7.5). Absolute difference 
between observed data and the upper simulation envelope. Dashed lines denote negative 
differences.



172 Geospatial Data Science Techniques and Applications

Acknowledgment

The authors would like to thank the Public Health Secretariat of the city of 
Cali for the dengue fever surveillance data. Support of computing resources 
from University Research Computing (URC) at the University of North 
Carolina at Charlotte, U.S. NSF XSEDE Supercomputing Resource Allocation 
(SES170007) is acknowledged.

References

Aigner, W., S. Miksch, W. Müller, H. Schumann, and C. Tominski. 2007. Visualizing 
time-oriented data—A systematic view. Computers & Graphics 31 (3): 401–409.

1000

800

600

Sp
at

ia
l b

an
dw

id
th

 (m
)

400

200

20 4 6 8 10 12 14
Temporal bandwidth (days)

5.0

0.0

5.0

10.0

20.0 15.0

0.0

Location 3: observed—upper envelope

FIGURE 7.10
Global space-time K function of a local setting (Location 3 in Figure 7.5). Absolute difference 
between observed data and the lower simulation envelope.



173Spatiotemporal Point Pattern Analysis Using Ripley’s K Function

An, L., M.-H. Tsou, S. E. Crook, Y. Chun, B. Spitzberg, J. M. Gawron, and D. K. Gupta. 
2015. Space–time analysis: Concepts, quantitative methods, and future direc-
tions. Annals of the Association of American Geographers 105 (5): 891–914.

Anselin, L., J. Cohen, D. Cook, W. Gorr, and G. Tita. 2000. Spatial analyses of crime. 
Criminal Justice 4 (2): 213–262.

Bailey, T. and Q. Gatrell. 1995. Interactive Spatial Data Analysis. Edinburgh Gate, 
England: Pearson Education Limited.

Cali, A. d. S. d. ed. 2014. Cali en cifras. Cali, Colombia: Alcaldía de Santiago de Cali.
Chen, B. Y., H. Yuan, Q. Li, S.-L. Shaw, W. H. Lam, and X. Chen. 2016. Spatiotemporal 

data model for network time geographic analysis in the era of big data. 
International Journal of Geographical Information Science 30 (6): 1041–1071.

Colombia, M. d. S. 2017. Sistema de vigilancia en salud pública. Ministerio de Salud 
Colombia 2017 [cited February 2017]. Available from https://www.minsalud.
gov.co/salud/Paginas/SIVIGILA.aspx.

Delmelle, E. 2009. Point pattern analysis. International Encyclopedia of Human 
Geography 8: 204–211.

Delmelle, E., C. Dony, I. Casas, M. Jia, and W. Tang. 2014. Visualizing the impact 
of space-time uncertainties on dengue fever patterns. International Journal of 
Geographical Information Science 28 (5): 1107–1127.

Demšar, U., K. Buchin, F. Cagnacci, K. Safi, B. Speckmann, N. Van de Weghe, D. 
Weiskopf, and R.  Weibel. 2015. Analysis and visualisation of movement: An 
interdisciplinary review. Movement Ecology 3 (1): 5.

Diggle, P. J. 2013. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Boca 
Raton: CRC Press.

Diggle, P. J., J. Besag, and J. T. Gleaves. 1976. Statistical analysis of spatial point pat-
terns by means of distance methods. Biometrics 32: 659–667.

Dixon, P. M. 2013. Ripley’s K function. Encyclopedia of Environmetrics.
Gabriel, E. 2014. Estimating second-order characteristics of inhomogeneous spatio-

temporal point processes. Methodology and Computing in Applied Probability 16 
(2): 411–431.

Gatrell, A., T. Bailey, P. Diggle, and B. Rowlingson. 1996. Spatial point pattern analy-
sis and its application in geographical epidemiology. Transactions of the Institute 
of British Geographers 21 (1): 256–274.

Getis, A. 1984. Interaction modeling using second-order analysis. Environment and 
Planning A 16 (2): 173–183.

Getis, A. and J. Franklin. 1987. Second-order neighborhood analysis of mapped point 
patterns. Ecology 68 (3): 473–477.

Goodchild, M. F. 2013. Prospects for a space–time GIS: Space–time integration in 
geography and GIScience. Annals of the Association of American Geographers 103 
(5): 1072–1077.

Gould, P. R. 1969. Spatial Diffusion. Resource Paper 4. Washington, DC: Association of 
American Geographers.

Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: 
Introduction and methods of edge correction. Journal of Vegetation Science 6 (4): 
575–582.

Hohl, A., E. Delmelle, W. Tang, and I. Casas. 2016. Accelerating the discovery of 
space-time patterns of infectious diseases using parallel computing. Spatial and 
Spatio-Temporal Epidemiology 19: 10–20.

https://www.minsalud.gov.co/salud/Paginas/SIVIGILA.aspx
https://www.minsalud.gov.co/salud/Paginas/SIVIGILA.aspx


174 Geospatial Data Science Techniques and Applications

Illian, J., A. Penttinen, H. Stoyan, and D. Stoyan. 2008. Statistical Analysis and Modelling 
of Spatial Point Patterns. New York: John Wiley & Sons.

Jacquez, G. M. 1996. A k nearest neighbour test for space–time interaction. Statistics 
in Medicine 15 (18): 1935–1949.

Kiskowski, M. A., J. F. Hancock, and A. K. Kenworthy. 2009. On the use of Ripley’s 
K-function and its derivatives to analyze domain size. Biophysical Journal 97 (4): 
1095–1103.

Knox, G. E. 1964. The detection of space-time iterations. Journal of the Royal Statistical 
Society 13: 25–29.

Kwan, M.-P. and T. Neutens. 2014. Space-time research in GIScience. International 
Journal of Geographical Information Science 28 (5): 851–854.

Mantel, N. 1967. The detection of disease clustering and a generalized regression 
approach. Cancer Research 27 (2 Part 1): 209–220.

Mountrakis, G. and K. Gunson. 2009. Multi-scale spatiotemporal analyses of moose–
vehicle collisions: A case study in northern Vermont. International Journal of 
Geographical Information Science 23 (11): 1389–1412.

Nakaya, T. and K. Yano. 2010. Visualising crime clusters in a space-time cube: An 
exploratory data-analysis approach using space-time kernel density estimation 
and scan statistics. Transactions in GIS 14 (3): 223–239.

Okabe, A., B. Boots, and T. Satoh. 2010. A class of local and global K functions and 
their exact statistical methods. In Perspectives on Spatial Data Analysis, edited by 
L. Anselin, and S. Rey, 101–112. Berlin: Springer.

Okabe, A., and I. Yamada. 2001. The K-Function Method on a Network and Its 
Computational Implementation. Geographical Analysis 33 (3): 271–290.

Perry, G. L., B. P. Miller, and N. J. Enright. 2006. A comparison of methods for the 
statistical analysis of spatial point patterns in plant ecology. Plant Ecology 187 
(1): 59–82.

Pfister, G. F. 2001. An introduction to the infiniband architecture. High Performance 
Mass Storage and Parallel I/O 42: 617–632.

Restrepo, L. D. E. 2011. El plan piloto de cali 1950. Bitácora Urbano Territorial 1 (10): 
222–233.

Ripley, B. D. 1976. The second-order analysis of stationary point processes. Journal of 
Applied Probability 13 (2): 255–266.

Tang, W., W. Feng, and M. Jia. 2015. Massively parallel spatial point pattern analysis: 
Ripley’s K function accelerated using graphics processing units. International 
Journal of Geographical Information Science 29 (3): 412–439.

Tao, R. and J. C. Thill. 2016. Spatial Cluster Detection in Spatial Flow Data. Geographical 
Analysis 48 (4): 355–372.

Tao, R., J.-C. Thill, and I. Yamada. 2015. Detecting clustering scales with the incre-
mental K-function: comparison tests on actual and simulated geospatial data-
sets. In Information Fusion and Geographic Information Systems (IF&GIS’2015), 
edited by V. Popovich, C. Claramunt, M. Schrenk, K. Korolenko, and J. Gensel, 
93–107. Heidelberg: Springer.

Varela, A., E. G. Aristizabal, and J. H. Rojas. 2010. Analisis epidemiologico de dengue en 
Cali. Cali: Secretaria de Salud Publica Municipal.

Wiegand, T. and K. A. Moloney. 2004. Rings, circles, and null-models for point pat-
tern analysis in ecology. Oikos 104 (2): 209–229.



175Spatiotemporal Point Pattern Analysis Using Ripley’s K Function

Yamada, I. and P. A. Rogerson. 2003. An Empirical Comparison of Edge Effect 
Correction Methods Applied to K-function Analysis. Geographical Analysis 35 
(2): 97–109.

Yamada, I. and J. C. Thill. 2007. Local Indicators of Network-Constrained Clusters in 
Spatial Point Patterns. Geographical Analysis 39 (3): 268–292.

Yamada, I. and J.-C. Thill. 2010. Local indicators of network-constrained clusters 
in spatial patterns represented by a link attribute. Annals of the Association of 
American Geographers 100 (2): 269–285.




