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Theory of Forward Stimulated Brillouin Scattering in
Dual-Mode Single-Core Fibers

P. St. J. Russell, D. Culverhouse, and F. Farahi

Abstract—Recently, stimulated Brillouin scattering in a forward di-
rection (FSBS) in a dual-mode single-core optical fiber was reported
for the first time. Frequency shifts on the order of 17 MHz were seen
in fiber supporting LP,, and LP;; modes at 514.5 nm. The phenomenon
is examined here in more detail, and the governing differential equa-
tions of the three-wave parametric process (involving laser pump, Bril-
louin signal, and acoustic flexural-wave phonon) are derived and solved.
FSBS is possible because although the overlap integral between a flex-
ural fiber mode and the light is small, the phonon lifetime is much
longer than in conventional SBS. FSBS may also be the first example
of a nonlinear effect which is enhanced by increasing the optical mode
area at constant pump power.

1. INTRODUCTION

HIS paper presents a detailed analysis of a new nonlinear
effect observed recently for the first time by the authors [1]—
intermodal stimulated Brillouin scattering in a forward direction
(FSBS) in dual-mode (DM) fibers. FSBS differs from the guided
acoustic-wave Brillouin scattering reported by Shelby et al. [2]
in being based on genuine collinear phase matching between
three distinct guided waves and displaying a stimulated thresh-
old. The recent growth of interest in DM optical fibers for a
variety of nonlinear switching and modulation schemes [3]-[8]
owes its origin to the long interaction lengths that are possible
in fiber waveguides, and to the interesting new experimental
possibilities offered by a structure that supports two nondegen-
erate copropagating modes at the same optical frequency. These
factors give DM fiber waveguides unique advantages over bulk
optics for the study of new nonlinear optical phenomena. Some
recent examples include all-optical switching in twin-core [3],
Hi-Bi [4], and periodically rephased mismatched dual-core fi-
bers [5], [6]. DM fibers have also been used to form acous-
tooptical frequency shifters [7]-[9] by exciting flexural waves
on them and matching the acoustic wavelength to the intermo-
dal beat length. Detailed analyses [8], [10] of these devices are
of direct relevance to the present study of FSBS; intermodal
beating (between the Brillouin and pump light) excites (via
electrostriction) a flexural wave that, in turn, couples power
between the modes.
This paper is organized as follows. In Section 11, the under-
lying physical intuitive basis for FSBS is discussed. Intermodal
beating between the LP,, and LP,, modes at different frequen-
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cies is treated in Section III, and an expression is found for the
induced electrostrictive moment. The wave equation for low-
frequency flexural waves is obtained in Section VI, and the
electrostrictive source term is incorporated. Intermodal cou-
pling via flexural microbending is analyzed in Section V, and
the full set of differential equations describing the parametric
interaction, normalized to power, it obtained in Section VI. In
Section VII, approximate analytical expressions for the Bril-
louin gain are found and solutions are obtained. These results
are discussed in Section VIII, the evolution of the power in the
three waves with propagation distance is modeled (by numerical
integration of the equations), and threshold power levels for
BSBS and FSBS are calculated. Conclusions are drawn in Sec-
tion IX.

II. PHYSICAL BASIS: MOMENTUM AND ENERGY
CONSERVATION

Two basic conservation laws must be obeyed for Brillouin
scattering to occur. The first is conservation of energy:

hw, = hwg + hQ 2.1
and the second is conservation of momentum:
k, =ks + K 2.2)

where w,, wg, and § are the radian frequencies and k;, kp, and
K are the wavevectors of the pump laser, Brillouin, and acoustic
waves. In addition to these conservation laws, there must exist
two nondegenerate normal modes at the pump optical fre-
quency. In a single-mode optical fiber, only two modes satis-
fying this condition are available—the backward and forward
propagating ones; hence, the Brillouin signal appears in the
backward direction (leading to backward stimulated Brillouin
scattering—BSBS). In a DM fiber, by contrast, the LP,, and
LP,, modes satisfy this condition, making permissible the gen-
eration of an intermodal SBS signal in the forward direction.
The physical process underlying FSBS is a circular loop of
cause and effect. Spontaneous acoustic phonons (flexural waves
in this case) generate, through the strain-optical effect, weak
traveling refractive index gratings in the fiber core. Those pho-
nons whose wavelength Ap = vy /fr (where v, is their phase
velocity and fr is their frequency) equals the intermodal beat
period L, will weakly Bragg scatter light between the fiber
modes, causing Stokes and anti-Stokes frequency conversion
from the pump into the Brillouin signals. The pattern of moving
interference fringes generated by intermodal frequency mixing
of the Stokes and pump modes has points of constructive inter-
ference that alternate back and forth across the fiber core (see
Fig. 1). This creates, via electrostriction, a moving, periodi-
cally reversing moment wave whose wavelength matches that
of the original spontaneous phonon. If, in addition, the spatial
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Fig. 1. Schematic of intermodal beating. Constructive interference be-
tween the LP,, and LP,, modes occurs on alternate sides of the core at a
spatial beat period L, = 27/ |k, — kg|. During FSBS, this pattern moves,
its wavelength and phase velocity matching those of a flexural acoustic
mode of the fiber.

Brillouin (LP ) pump (LPy )
sound (32 GHz)
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pump (LE )
—
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Brillouin (LP“) torward
sound (17 MHz)
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|
pump (LP ) backward |
1" sound (17 MHz)!|

Fig. 2. Wavevector conseivation in normal backscattered SBS, LPy, —
LP,, FSBS, and LP,; = LP,, FSBS. The arrows represent (schematically)
the wavevectors, pointing parallel to the phase velocities of each wave.
Note that in FSBS (b), the acoustic phase velocity is negative.

registration of the moment wave relative to the acoustic wave-
fronts is correct, the spontaneous acoustic wave will experience
gain. This, in turn, increases the scattering strength into the
Brillouin wave, thus closing the loop of cause and effect. If the
electrostrictive gain over the phonon coherence length is greater
than the acoustic loss, then FSBS can occur; both the acoustic
and the Brillouin waves will experience exponential gain.

In FSBS, the direction of the phonon wave depends on
whether the frequency down-conversion is LPo; = LP;, or vice
versa (Fig. 2). Unlike backward SBS where the threshold power
depends strongly on the laser linewidth, in FSBS, this condition
is considerably relaxed, permitting a multifrequency laser pump
to be used. This is because the pump and Brillouin waves prop-
agate along exactly the same optical path, and hence can main-
tain mutual coherence over very long lengths of fiber.

III. INTERMODAL BEATING: INDUCED ELECTROSTRICTIVE
MOMENT

The superposition of pump and Brillouin signals (each in a
different linearly polarized fiber mode) yields a total electric
field:

Eo(r, 6,2, ) = 4 {ea(r, $)A45(2) exp {—jksz — wp)}

+e,(r, $)AL(2) exp {—jk,z — w )} + c.c.}
3.1

where Ag and A, are the electric field amplitudes and ez (r, ¢)
and e, (r, ¢) are the dimensionless transverse mode profiles,
equal either to g, (1) or e, (1, ¢), depending on circumstances
(see Fig. 3 for the coordinate system). It is clear that this com-
pound field will contain intermodulation components at fre-
quency @ = w; — wp, With associated wavevector K=k -
kp. If K equals the wavevector at frequency @ of a flexural fiber
mode, these components will phase match to it. Acoustic gain
is then possible via electrostriction, and FSBS may occur. To
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Fig. 3. Coordinate system for evaluation of the overlap integral Q =
req/2a. The elliptical shaded regions represent the intermodal beat
pattern.

treat the effect of electrostriction, it is necessary to find the en-
ergy stored per unit volume (W = eEZ,/2) and convert it into
a change in pressure [11]. Selecting those components of W that
travel forward (for LPy, — LP,, conversion) at velocity € /K,
one obtains

W ==e,(r, d)eo (NAFAL

€
4
(3.2

For a uniaxial strain s along the fiber axis, electrostriction is
governed by the parameter [8]
¢
as

- exp {—j(Kz — Qn} + c.c.

=21 — x) 3.3

where e, = € /¢, and x = 0.22 for fused silica, yielding de,/0s
= 3.3. This leads to an axial component of electrostrictive stress
Ap in the form

de, 1
0 Ge g len(n D OAFD A

- exp {—j(Kz — @0} + c.c.}.

Ap(r, ¢, 2z, 1) = €

(3.4

The stress wave in (3.4) is periodic, with a wavelength equal
to the beat length between the LPy, and LP,, modes. When the
background dc electrostrictive stress field is superimposed, re-
gions of high stress alternate with z between the upper and lower
hemispheres of the core (as already depicted in Fig. 1). The
induced electrostrictive driving moment may be calculated as
follows:

Mz, t) = S S Ap(r, ¢)r’ cos ¢ do dr (3.5)

where the integral is over the fiber cross section (Fig. 3). This
yields finally

de, a

°3s 4
-exp {—j(Kz — QO} +cc.}

Md(z’ t) = € {QAqu;(Z)AL(Z)

(3.6)
where a is the fiber radius and the overlap integral Q is given

by

a 2x
0= S S _ eaden, é)r? cos pdrdd  (3.7)

aA,q r=0 Jo=

and e, and e, are defined such that the equivalent modal area
(spot size) is

Ay = S S &, (r, dyrdrde = S S e (Hrdrde. (3.8)
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The overlap integral may be shown to be given approximately
by Q = r.,/2a where r., = v/ (Aq/ ™) is the mode spot radius.

IV. Low-FREQUENCY FLEXURAL-WAVE EQUATION WITH
DRIVE TERM

Low-frequency flexural waves obey the wave equation [12]

8%y 3ty
pA 3 + EI 3 0 “4.1)
where y is the transverse deflection, z is the axial coordinate, E
is Young’s modulus, p is the mass density, and / = wa'/4is
the second moment of area for a fiber of cross-sectional area A.
For small deflections |y/a|*> << 1, the local moment may be
expressed as

3%y
M(z, 1) = EI —,. .
(0 322 4.2)
The condition for validity of (4.1) is [10]
afe/v, < 0.1 4.3)

where fy ~ 17 MHz and v, = 3764 m /s, the shear velocity in
silica. In the reported experiment [1], this parameter has the
value 0.28, which places the waves in the transition regime be-
tween low- and high-frequency waves [10] and has implications
for the overlap of acoustic and optical power; at higher fre-
quencies, the acoustic energy shifts from a bulk flexural dis-
turbance to an acoustic surface wave, thus reducing its influence
on the guided modes. Under these conditions, the actual overlap
integral will therefore be somewhat smaller than Q. A useful
additional quantitative correction may be made by carefully dis-
tinguishing the group from the phase velocity and replacing
them with accurate values from the more complete theory [10].
The phase velocity of the flexural waves described by (4.1)
is
EIK?
pA

vi= = (rav,/Af)’ 4.4)
where v, = V(E /p) is the extensional wave phase velocity
(5760 m/s in silica). The general relationship for the group

velocity of dispersive waves is

Q dve
o=t (1 - 5 52)]
and it may be used to show that for low-frequency flexural

waves, v, = 2vp. Using 8°/31% = —Q? in (4.1) and substi-
tuting (4.2) yields

4.5)

1 oM

M0 = g

=M,z 1 4.6)

where the driving term M, has been incorporated (3.6). Ex-
pressing the moment wave as

M@z 1) =1Ap@) exp {—j(Kz — 0} + cc.  @4.7)
where Ar(z) is its slowly varying amplitude, substituting M(z,

1) into (4.6), neglecting all but first-order spatial derivatives of
Ap, and collecting coefficients of exp {—j(Kz — Q1)} yields

. Qa de, ) o
A= i g {eoQAeq as}ABA,_ @.8)
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where the expression in (3.6) has been substituted for M, and a
phenomenological absorption oz m™' is incorporated. This ab-
sorption is related to the phonon lifetime 7 and bandwidth Af;-
by ar = Afe/vr = 1/vete. The upper sign is chosen if the
acoustic wave copropagates with the optical waves, i.e., if the
pump light is launched into the LP,, mode.

V. INTERMODAL COUPLING BY FLEXURAL
MICROBENDING

It is straightforward to show that the mechanical strain s due
to the presence of a low-amplitude flexural wave is

32
s=rcos¢5z—)2)=rczj¢M(z, o). (5.1)
Using (3.3), one can translate s into a change in ¢,:
de, r cos o
Ae, (r,.¢,2) = 3s 2B Ap(2)
cexp {—j(Kz — @O} + c.c. 5.2)

Incorporating Ae, in Maxwell’s equations for the fiber modes
and carrying out a standard coupled-wave analysis yields, with
some rearrangement,

04y « cwpa { Q Jde)

— + - Ay = — —t A A 53

az 2% J 4v,p {Elnf, 3s ) FOL -3
and

A4,  « cwea( O e,

e R L B d 5.4

3z 27T Tay, iEInz s §Fan -4

where, once again, a phenomenological optical absorption «
per meter has been added. The optical group velocities v,p and
v, arise from a more accurate treatment of the guided modes;
they are distinguished from the phase velocities ¢ /n, and ¢ /n,
(which they closely equal) for clarity. The FSBS process is now
described by (4.8), (5.3), and (5.4). For full benefit, it is nec-
essary to normalize the amplitudes Az, A,, and A, to the total

power involved in the parametric process.

VI. POWER-NORMALIZED COUPLED-WAVE EQUATIONS
FOR FSBS

The power density in any guided wave is given by the aver-
age energy stored per unit volume (W) multiplied by the group
velocity. For flexural waves, this leads to a total power of

2nf?
IAFlz:lng = { =

m 6.1)

Pp = { ! |4 |2] v

F = 2EI F gF *
In the case of pump and Brillouin modes, the equivalent expres-
sions are

A, n,z_e,,
P, = [ eq2 |AL|2:| Vgt
and
Aeanéo
Py = [ 5 |A,,12] Ve 6.2)
Defining the normalized amplitudes a,, ag, and af as
ap = NP/ P (6.3)
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where m = L, B, or s and P, is the total incident power, the
three coupled amplitude equations (4.8), (5.3), and (5.4) may
be reexpressed in normalized form as follows:

da; « .

—a—z + 2 a, = —jKk apag (6.4a)

da a .

B—ZB + 2 ag = —jkgara, (6.4b)

B_aF + gfa = —jKkpa,ay (6.4c
3 5 9r JKrQLap Ac)

where the upper sign is taken if the flexural wave copropagates
with the laser and Brillouin waves, and the lower sign if it coun-
terpropagates. If the laser is launched into the LPy, mode, the
upper sign holds. The coupling constants are defined by

KL = wL/CF» Kg = “)B/CF’

kp = Q/Cr 6.5)
and the velocity Cy is given by the expression
= npng J{z"r VoL UgpVprEa 2} 6.6)
Q( er/a s) Py

The approximations v, = ¢/n, and veg = ¢/ng are valid in
these expressions. The energy conservation equation (2.1) yields
the result that

Kk, — kg — kg = 0,

6.7

which, in turn, may be used to demonstrate that solutions of
(6.4) conserve power.

VII. SOLUTIONS AND BRILLOUIN GAIN

Equation (6.4) may be recast in a mathematically more ele-
gant form if each of the complex amplitudes is expressed in
terms of the real-valued quantities b,, and ¢,,:

a, = b, exp (jé.)
where m is L, B, or S. After some manipulation, it is found that
bybgbrcos ¢ = B, exp {—(a £ ar/2)z} (7.1)
where B, is set by the boundary conditions. Power conservation

is expressed by the equation

3
Py (pL+ps 2 pr) +alp, +pp) + aepr=0 (7.2)

where p,, = b is the normalized power in wave m. Finally,
the coupled-wave equation set becomes

Py op, = 2 bybrby sin ¥
9z
9‘? + apg = 2kgb,brbg sin
Zz
+ %ﬁf + appp = 2xpb beby sin ¥ 1.3)
where
¥ = (¢, — b5 — &) (7.9

is the relative phase and the + sign refers to the case where the
flexural wave copropagates with the light.
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The boundary condition at z = O must be such that all the
waves carry finite power, although, of course, the pump will,
in general, overwhelmingly dominate. The maximum para-
metric gain is experienced when the relative phase at z = 0 is
¥ = w/2 (power flow p, = pg) or 3w /2(py — p,), which
yields, from (7.1), B, = 0. This is the case of interest in FSBS
since Brillouin and flexural waves satisfying this phase rela-
tionship will reach threshold first. From this point on, there-
fore, B, = 0 is assumed, which implies that { remains at 7 /2
or 37 /2 throughout the interaction (because the product b, bgbr
is zero only under very special conditions).

Although (7.3) may be numerically solved (this is easier when
all three waves copropagate), it is instructive to follow the prec-
edent set in many backward SBS analyses [13], and to treat the
special case when dp./dz is negligible. For validity, this im-
plies that the characteristic phonon absorption length 1 / o must
be smaller than the characteristic length for the FSBS process
1/ggr. This is a good approximation in backward SBS; how-
ever, this is not necessarily true in FSBS, as we shall see.
Adopting it for the present, the following differential equation
pair may be obtained:

dps/dz = {—a + gerPL}Ps

8pL/dz = {—a — gerPa}pL (7.5)
where the Brillouin gain ggr m™' is
gsr = (Akpre/ar) (7.6)

and k, = g is used. The general solution of these equations is

(Pro + Pao) €Xp (—7) }
= 7.7
Pa(@) = Poo gpm + pio exp { —8ar(Ppo + PLi} a7

where p,(2) = {(pso + Pro) €xp (—@2z) — ps(2)} and the ef-
fective interaction length

L= {1 — exp (—a2)}/a.

The quantities pgo and p; are the initial values of pg and p, at
z = 0. If pump depletion due to FSBS is neglected, the solution
becomes

(7.8

Pa(@) = pao exp {—az + garLi} (7.9

which is formally identical to the expression commonly derived
in backward SBS, and which makes no distinction as to whether
the flexural wave is co- or counterpropagating.

In order to compare the gains in FSBS to those in BSBS, it is
necessary to derive the coupling constants for the backward SBS
interaction. They take a form similar to (6.5), the only differ-
ence being in the definition of Cr, which becomes

c - nyng 80,1 Vgpgo EAcq
7 0e/ds P

where a subscript “‘0”’ is used to signify backward SBS, and
otherwise all of the parameters have the same meanings.

It is now possible to obtain an expression for the ratio of ggr
to the Brillouin gain at the same power level in backward SBS,

880"

(7.10)

Qofrgo [2Q7eq ’
8sr/ 880 = l: }

oA, F‘q
apfoUer |l a

4
= 7.11
20pAf a} ( )

where Q = r.,/2a has been used. The reasons for this strong
dependence on r.,/a are that 1) the acoustic power is distrib-
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Fig. 4. The electrostrictive moment arm for two different spot diameters
in a fiber of constant cladding radius. Because the axial electrostrictive
force depends only on the optical power, it is advantageous (at a fixed total
optical power) to have an optical spot size as large as possible, in contrast
to every other known nonlinear effect. This is because the axial electro-
strictive force is independent of the area of the elliptical regions, whereas
the resulting moment is proportional to the moment arm (marked).

uted over the entire fiber cross section, while the optical power
is concentrated in the core, and 2) the induced electrostrictive
moment scales with r.,. Point 2) is further clarified by noting
that the axial electrostrictive force (pressure X area) depends
only on the optical power, whatever its intensity; enlarging the
spot size yields a higher moment since the moment arm length-
ens while the electrostrictive force remains unchanged (see Fig.
4). The consequence is that, in peculiar contrast to all other
nonlinear effects, larger spot sizes of the optical mode increase
the nonlinearity (r., < a).

VIII. DisCuUsSION
A. Brillouin Gain

Explicit expressions for the Brillouin gain in units for m /W
(denoted gz, and gp,) take the forms

_ (N
8sr = Gg [q—}

Ay 8.1)
and
2
88, = Gg { AO%} (8.2)
where
_ (mde,/ds)
Gs = NgenngE’ @3

In the experiment recently reported [1], A; = 514.5 nm and E
= 73 kN - mm~?, yielding G5 = 4.5 X 10”2 m/W. Graphs
of gz versus r., /a for various values of o are plotted in Fig.
5forL, = Ap = 0.17 mm and r,; = 2.3 pm. For comparison,
8soat A, = Ng/2n = 176 nm and &, = 10° m~" is also plotted.
Large values of r., /a significantly favor FSBS. If Teq is varied,
keeping a constant, a similar result is obtained, although the
beat length L, = A at constant normalized frequency ¥ (chosen
to lie in the dual-mode regime 2.405 < V < 3.832) will scale
linearly with r,, and reduce the quartic dependence on Teq tO
cubic. Even so, under these circumstances, increasing the spot
size at constant pump power will still lower the FSBS threshold.
The flexural phase velocity and frequency, together with the
parameter af- /v, from (4.3), are plotted in Fig. 6 for the same
case as in Fig. 5. The limits of validity of the low-frequency
flexural wave approximation are marked. The experiment in [1}]
lies in the shaded region. Taking an acoustic loss a of around
1 m™!, the ratio of forward to backward Brillouin gain is on the
order of 1072,
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Fig. 5. Brillouin gains in meters /watt plotted against the ratio of modal
to cladding radii at different levels of flexural-wave absorption . The
parameter values were Ay = 0.17 mm and r,, = 2.3 um. The equivalent
BSBS gain is included for comparison.

Low frequency
regime

LS
Y v v,
~ / ]
v
Nafp /v
L~

Fig. 6. Various parameters plotted against r., /a for the FSBS case in Fig.
5. The analysis is valid in the low-frequency region where [from (4.3)] the
parameter (afy/v,) < 0.1.

B. Numerical Solutions

Numerical solutions allow treatment of the case, clearly of
importance in FSBS, when it is no longer valid to neglect
dpr/dz. This will happen if the acoustic loss is small compared
to the Brillouin gain, i.e., when ay/gzr << 1. The conse-
quence of an increased phonon lifetime is that an acoustic wave
excited in one part of the fiber may travel a significant distance
without serious absorption to another section of fiber where the
relative phase y is different. Graphs of the z dependence of pg,
Ps, and p, for a series of transition cases are plotted in Fig. 7.
The traveling optical interference fringes that provide gain via
electrostriction for the flexural wave in one section of fiber flip
their phase by 180° at the transition between one coupling cycle
and the next (see Fig. 8 for a logarithmic plot of the case in
Fig. 7(c), including the acoustic-wave power p;). An acoustic
wave that travels over this transition will immediately experi-
ence negative electrostrictive gain and begin to lose power, do-
nating energy to the Brillouin signal, which is then up-con-
verted back to the pump frequency. As the parameter ay/gpp
falls in magnitude, the number of possible coupling cycles rises.
As it rises in value, the solution (7.7) is approached when fre-
quency up-conversion of the Brillouin signal is impossible since
the acoustic phonons are absorbed almost immediately after
being created; they do not then travel far enough to experience
the flip in phase just mentioned. Under these conditions, it is
expected that the approximate solution in (7.7) will become
valid. To provide confirmation of this, the accurate and approx-
imate solutions are compared in Fig. 9; (7.7) predicts a pre-
mature onset of the stimulated Brillouin process, somewhat
nearer the launch end than is correct. Otherwise, the behavior
is very similar. The initial value of pp was set arbitrarily to
107° for these calculations, p,(0) was set equal to
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Fig. 7. Growth of FSBS with distance, calculated by numerical integration
of (7.3) at three different values of acoustic loss: (a) 0.1 m™', (b) 0.05
m~!, and (c) 0.01 m™". The other parameter values are Py, = 200 mW,
an optical wavelength of 514.5 nm, r,q = 5 pm, @ = 25 ym, and a =
0.005 m™', giving vy = 1330 m/s and fr = 3.9 MHz. The Brillouin gain
in cach case is (a) 0.54 m~', (b) 1.1 m~', and (c) 5.4 m™'. See the text
for a more detailed interpretation.

Normalised Powers

o 100 200 100 100 500

z (m)

Fig. 8. Plot in Fig. 7(c) rescaled logarithmically and including the flex-
ural-wave power pr. The complex interdependence of the three paramet-
rically coupled waves is clear (see text).

Normalised Powers

200 300 400 500

z (m)
Fig. 9. Comparison of (a) the approximate solution (7.7) to (b) that re-
sulting from numerical integration of (7.3). The other parameter values are
the same as in Fig. 7, with the exception that the power level is 1 W and

gsr = 0.27 m~'. The approximate solution underestimates the interaction
length needed before the FSBS signal becomes significant.

{Qxr/ar) PpoPro} and ¥ was set equal either to 7 /2 or 37/2,
depending on the position in the coupling cycle.

C. Thresholds for BSBS and FSBS

Following Smith [14], the spontaneous Brillouin signal
(caused by the scattering of pump light at thermally excited
acoustic phonons) can be incorporated into (7.5) as follows:

3ps/dz = —apy + gerpLipPs + S8}
8.4)

where the normalized spontaneous Brillouin power s is given
by

dp./dz = —ap, — gerpLiPs + S8}

5 = vgAv kT v  Av kT
? fFPwl fF‘P\ul

and k is Boltzmann’s constant. As before, these equations are
valid only if ap >> ggr. Although (8.4) may be numerically
integrated, the threshold power can be found by neglecting non-
linear pump depletion, i.e., setting p,(z) = exp (—az), and
integrating the first equation labeled (8.4). This yields

8.5

" exp (gary/@)
pe(2) = (spgpr/ @) exp (—a2) S ———SB gy

0y + exp (—az2) ®.6)

where Y = 1 — exp (—az). Making the approximation that the
integrand is significant only in the range where y = 1 (assuming
that the fiber is long enough to allow exp (—az) << 1), (8.6)
may then be integrated. Following Smith in defining the thresh-
old as occurring when the Brillouin signal equals p; (z) = exp
(—az), the threshold power Py, is a solution of

Py = W Av kT/fr) exp {ZorPuLi/wreg) 8.7

where the exponential function is assumed to be much greater
than 1. This shows that the growth from noise can be approxi-
mately modeled by means of an equivalent injected Brillouin
power Pgr(0) = (v, Av kT/fr) at z = 0, which corresponds to
an injected photon flux of kT/hfy per mode within the pump
laser linewidth. The equivalent BSBS signal is usually consid-
ered to be injected at the point in the fiber where the local Bril-
louin gain is exactly balanced by the optical loss [14]; since, in
our case, this point mostly lies beyond the fiber length, we set
it at z = L. The equivalent injected power at z = L is Pg, (L)
= (v, Av, kT/f,), which leads to an equation analogous to (8.3):

Py = (v, Av KT/f,) exp {EBaP:hLi/""’:q}- (8.8)
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Fig. 10. Threshold pump power levels in FSBS and BSBS for different
values of o plotted against the cladding radius a at constant mode spot
size r,, = 2.3 um. Refer to the text for more details.

For a laser linewidth Ay, = 25 MHz, \, = 5145 nm, T =
293°C, fr = 17 MHz, and f, = 32 GHz, the equivalent injected
powers turn out to be Pgr(0) = 3.5 uW and Py, (L) = 1.8 nW.

Computed threshold power levels, obtained by iteratively
solving (8.7) and (8.8), are presented in Fig. 10 as a function
of a, the cladding radius, for « = 20 dB/km, &, = 10°/m, r,
=2.3pum, L =20m, and Ly = 0.17 mm. The acoustic flexural-
wave loss oy is varied as a parameter, and account is taken of
the variation of fr with a. As expected, smaller values of a sig-
nificantly favor FSBS. In the reported experiment [1], a much
lower threshold for FSBS than predicted by Fig. 10 was found.
The implications of this will require further careful experimen-
tal study.

Since FSBS does not require a long laser coherence length
(the Brillouin and pump waves copropagate, and are therefore
closely correlated), the use of a multifrequency laser line will
suppress the BSBS signal in favor of the FSBS.

IX. CONCLUSIONS

It is emphasized that the analysis presented is fully valid only
in the low-frequency flexural-wave regime where the inequality
in (4.3) holds. It will remain qualitatively valid outside this re-
gime, however, with somewhat reduced values of acoustic/op-
tical overlap, and hence Brillouin gain. Within this restriction,
the FSBS gain can be greatly enhanced by appropriate fiber de-
sign and by employing a laser running single line, but multifre-
quency. It varies as (r./ a)*, and hence, it is improved (at con-
stant pump power) for larger modal spot sizes. FSBS is thus
unique in being the only known nonlinear effect which is en-
hanced by reducing the optical intensity while keeping the power
constant. This odd behavior arises because 1) the axial elec-
trostrictive force is independent of the spot radius 7.4, and 2)
its moment arm increases with r.,. The standard approximation
used in BSBS—that the acoustic absorption length is much
shorter than the Brillouin gain length—is no longer always valid
in FSBS. The consequence is that nonlocalized acoustic-wave
coupling in both directions between the pump and the Brillouin
modes can take place. Within the effective interaction length
L;, many cycles of coupling can take place. Experiments re-
main to be done on specially designed fibers with 1) plastic
coating removed to reduce ay, 2) large dual-mode spot sizes
(requires a small core/cladding refractive index step), and 3)
large values of r.,/a. Attention to these details will greatly re-
duce the FSBS threshold power level. For example, a fiber with
a mode spot radius of 10 um and an outer radius of 25 um would
have a beat period of around 0.7 mm, an FSBS shift of around
1 MHz (v = 646 m/s), and a Brillouin gain of 1.6 x 1078
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m/W for oz = 0.01 m™". In the same fiber, the BSBS gain is
5.3 x 107" m/W, some three orders of magnitude smaller.
The FSBS gain would then be a factor of 3 X 10° greater than
under the recorded experimental conditions [1].
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