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Lidar (light detection and ranging) has demonstrated the ability to provide highly
accurate information on forest vertical structure; however, lidar data collection and
processing are still expensive. Very high spatial resolution optical remotely sensed data
have also shown promising results to delineate various forest biophysical properties. In
this study, our main objective is to examine the potential of Quickbird (QB) imagery to
accurately estimate forest canopy heights measured from small-footprint lidar data. To
achieve this, we have developed multiscale geographic object-based image analysis
(GEOBIA) models from QB data for both deciduous and conifer stands. In addition to
the spectral information, these models also included (1) image-texture [i.e., an internal-
object variability measure and a new dynamic geographic object-based texture
(GEOTEX) measure that quantifies forest variability within neighboring objects] and
(2) a canopy shadow fraction measure that acts as a proxy of vertical forest structure. A
novel object area-weighted error calculation approach was used to evaluate model
performance by considering the importance of object size. To determine the best object
scale [i.e., mean object size (MOS)] for defining the most accurate canopy height
estimates, we introduce a new perspective, which considers height variability both
between- and within-objects at all scales. To better evaluate the improvements resulting
from our GEOBIAmodels, we compared their performance with a traditional pixel-based
approach. Our results show that (1) the addition of image-texture and shadow fraction
variables increases the model performance versus using spectral information only,
especially for deciduous trees, where the average increase of R2 is approximately 23%
with a further 1.47 m decrease of RootMean Squared Error (RMSE) at all scales using the
GEOBIA approach; (2) the best object scale for our study site corresponds to an MOS of
4.00 ha; (3) at most scales, GEOBIA models achieve more accurate results than pixel-
based models; however, we note that inappropriately selected object scales may result in
poorer height accuracies than those derived from the applied pixel-based approach.

Keywords: geographic object-based image analysis; multiscale; geographic object-
based texture; shadow fraction; Quickbird; lidar; forests

1. Introduction

Lidar (light detection and ranging), a relatively recent remote sensing technique, has demon-
strated the ability to provide highly accurate information on forest vertical structure (Means
et al. 1999, Lim et al. 2003); however, compared with optical satellite data of similar spatial
resolution and extent, the costs associated with lidar forest data acquisition are much higher.
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The availability of very high resolution (VHR) optical imagery (,5.0 m) creates great
opportunities for forest inventory. These VHR data have shown promising results to estimate
various forest biophysical properties, such as individual tree species (Wulder et al. 2004a),
stem density (Wang et al. 2004), and tree crown size and position (Culvenor 2003). Although
VHR optical remote sensing data are typically used to acquire horizontal forest canopy
structure, they can also be used to describe forest vertical structure (e.g., canopy height)
when additional image-derived variables such as canopy texture and shadow information are
utilized. To date, only a few studies have evaluated the accuracy of estimating forest height
information exclusively from VHR optical imagery. For example, Franklin and McDermid
(1993) found a significant correlation between VHR (pixel size of 1.0 by 1.3 m) CASI
(Compact Airborne Spectrographic Imager) red band data and tree-top mean height at the
stand level (R = 0.75). Hyde et al. (2006) compared different types of remotely sensed data to
map forest structure for wildlife habitat analysis and found an R2 of 0.566 using Quickbird
(QB) imagery to estimate mean canopy height. Similarly, Donoghue and Watt (2006) used
IKONOS data to estimate lidar-measured forest height in spruce plantation forests in northern
England. They reported that lidar and IKONOS data appear to show a good agreement in
densely stocked plantation areas with tree height less than 10 m. A small number of studies
have also investigated the potential of using medium resolution optical data (e.g., 30 m
resolution Landsat imagery) to update forest stand height information (Hudak et al. 2002,
Wulder and Seemann 2003).

Traditional pixel-based approaches for extracting geographic information have been
applied to remote sensing for over three decades. However, in recent years, remote sensing
has undergone an evolution in data acquisition technologies (e.g., higher resolution sensors
andmore affordable data) andmore sophisticated user requirements. At high spatial resolution,
individual pixels are typically smaller than the geographic objects of interest. Although this
provides more details for visual interpretation, it also creates higher spectral variance within
the classes of interest that can decrease classification accuracy when using pixel-based
approaches (Hay et al. 1996). To minimize the effect of high spectral variance, new (nonpixel-
based) approaches are needed. In this respect, object-based image analysis (OBIA), which
combines spatial and spectral information within image analysis using image objects (i.e.,
groups of connected pixels that are relatively homogeneous and different from their surround-
ings) instead of individual pixels as basic study units to capture geographic objects, provides a
viable alternative to the traditional pixel-based paradigm. To differentiate OBIA in the geo-
graphic domain (vs. computer vision and biomedical imaging), the name geographic object-
based image analysis (GEOBIA) was recently proposed by Hay and Castilla (2008).
Advantages of GEOBIA over pixel-based approaches have been illustrated in several forest
studies (Wulder et al. 2004b, Yu et al. 2006, Addink et al. 2007). However, there remain
numerous challenges to be addressed (Hay and Castilla 2008), including the investigation of
the best object scales [(i.e., mean object sizes (MOS)] to achieve the desired model accuracy.

In this article, we explore the potential of GEOBIA and pixel-based models applied to QB
imagery to best estimate forest canopy height over a range of object scales. The results of these
canopy height estimates are then compared with a lidar-measured canopy height model
(CHM), and errors are defined. To achieve this, the objectives of this research are (1) to
examine the potential using QB imagery to estimate mean canopy height measured from
small-footprint lidar data; (2) to evaluate the contribution of spectral, image-texture, and
shadow information derived from QB imagery to the accuracy of canopy height estimation
for GEOBIA and pixel-based approaches; (3) to explore a range of object scales (i.e., MOS) to
find the most accurate canopy height estimates; and (4) to compare the performance (defined
by canopy height error) of GEOBIA and pixel-based approaches in canopy height estimation.
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2. Data collection

2.1. Study area

The study site (49�520N, 125�200W) is located approximately 10 km southwest of Campbell
River on the east coast of Vancouver Island, British Columbia, Canada (Figure 1). This study
was performed over a 5.1 · 5.1 km (2601 ha) area, characterized by regenerating conifer
and deciduous forests and clearcuts. Conifer forest types compose 65% of the study area,
with a mean canopy height of 19.7 m, and are dominated by approximately 80% Douglas-fir
[Pseudotsuga menziesii (Mirb.) Franco], with small proportions of Western Red Cedar

Figure 1. (a) Study area located southwest of Campbell River, Vancouver Island, Canada. (b) Lidar
canopy height model (CHM). (c) Quickbird grayscale image converted from a false color composite
using near-infrared (NIR), red, and green bands.
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[Thuja plicata (Donn.)], andWestern Hemlock [Tsuga heterophylla (Raf.) Sarg.]. Deciduous
forest of Red Alder (Alnus rubra Bong.) comprises 16% of the study area, with a mean
canopy height of 17.4 m. Most forest stands in this study area are composed of regenerated
forest from harvest and are between 20 and 60 years of age. Topographically, the average
elevation is approximately 300 m above sea level, ranging from 180 (southwest) to 440 m
(northeast), with a gentle slope of 5�–10�.

2.2. Lidar data

Twelve overlapping flight lines of lidar data were acquired on 8 June 2004, by a Terrain
Scanning Lidar system (Terra Remote Sensing Inc., Sidney, Canada) on a Bell 206 Jet
Ranger helicopter. The positioning systems, a Litton LTN-92 inertial navigation system
(INS) and an Ashtech Z-surveyor Dual Frequency P-code differential global positioning
system (DGPS), were installed to record the aircraft’s altitude and position within 5–10 cm.
Terrain scanning lidar is a discrete return lidar system (Lightwave Model 110) with a pulse
repetition frequency of 10 kHz, a wavelength of 1047 nm, a swath width of 56�, and a beam
divergence of 3.5 mrad. This mission used a continuous scanning mode in the typical zigzag
pattern, yielding point densities of 0.7/m2 and a footprint size of 0.19 m.

The raw lidar point cloud data were collected containing both ground and nonground
returns. Nonground points were assumed equivalent to the returns from the vegetation/
tree canopy, as no artificial objects existed in the study site. Classifying point cloud data
into ground and tree canopy returns was implemented with Terrascan software (v4.006 –
Terrasolid, Helsinki, Finland), which was developed using iterative algorithms that
combine filtering and thresholding methods (Kraus and Pfeifer 1998, Axelsson 1999).
Ground and tree canopy returns were then separately interpolated (Hutchinson 1989) to
form a digital elevation model (DEM) and a digital surface model (DSM) with 1-m grid
cell size. The final step was to obtain the forest CHM by subtracting the DEM from the
DSM. The lidar CHM represents a canopy height range from 0.0 to 72.9 m, with an
average height of 19.3 m and a standard deviation of 8.0 m over the entire forest
canopy. Over 50% of the forest area is covered by canopies with heights ranging from
20 to 30 m. Young canopies (lower than 10 m) account for approximately 8%, with only
1% very tall canopies (larger than 35 m).

2.3. Quickbird data

A cloud-free QB image was acquired on 11 August 2004 over the same study area. The
image used in this study consists of four multispectral bands [i.e., blue, green, red, and near-
infrared (NIR)] and one panchromatic band, with an off-nadir view angle of 11.1�.

The different spatial resolutions between the QB image (2.4 m multispectral bands and
0.6 m panchromatic band) and lidar data (1.0 m) make comparison difficult. Therefore, a
principal components spectral sharpening technique (Welch and Ahlers 1987) was used to
rescale the QB image to a 1.0 m spatial resolution multispectral image by fusing the blue,
green, red, and NIR channels with the panchromatic band. This method was selected as both
spectral values and high spatial resolution information content were well retained. The QB
image was then geometrically coregistered to the lidar data using 118 ground control points. A
second-order polynomial warping method and the nearest neighbor resampling were selected
for the coregistration, yielding a RMSE of 0.85 m. Because the study area was covered by
relatively dense forests, the coregistration was performed using tree-tops only.
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3. Data analysis

The flowchart shown in Figure 2 summarizes the steps completed in this study, whereas the
following subsections provide greater detail and explanation.

3.1. GEOBIA approach

3.1.1. Multiscale image segmentation

The basic study units in the GEOBIA approach are segmentation-derived regions. These are
typically referred to as segments, whose purpose is to spatially model geographically
referenced image-objects or geo-objects. Geo-objects represent delineated areas, entities,
or objects in the image that are meaningful to the image analyst – within a geographic
context. In our case, well-generated geo-objects represent forest patches of varying size and
shape that resulted from applying the size-constrained region merging (SCRM) algorithm to
the pan-sharpened multispectral QB imagery. SCRM is a freeware image segmentation tool,
containing six main processing steps in the algorithm, that is, image resampling, image
smoothing, gradient magnitude image generation, watershed partition, region merging, and
vectorization (Castilla et al. 2008). Key advantages of SCRM over currently existing
segmentation algorithms are (1) the size of the objects of interest can easily and explicitly
be controlled through input parameters, such as MOS, minimum object size, and maximum
object size; and (2) the well-defined polygons contain smooth pixel boundaries, which are
similar to human-made delineation.

In this study, 15 different object scales (i.e., MOS) were evaluated with the SCRM input
parameters listed in Table 1. Figure 3 illustrates examples of the segmentation results derived
at five scales for a small sample area. A MOS of 0.04 ha was chosen as the smallest scale.
The main reason for this size was that lidar and optical remote sensing systems have different

Figure 2. Flowchart of the research process with reference to Data Analysis sections.
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data acquisition geometry, which introduce relatively large coregistration errors – especially
in areas where large canopy height variation exists. Therefore, model performance using a
MOS smaller than 0.04 ha was in some places highly affected by the coregistration error. The
MOS of 6.00 ha was selected as the largest scale, because, in preliminary tests, the QB image
tended to be undersegmented, meaning that the resulting segments contained various land
cover types (rather than a single cover-type) when using a MOS larger than 6.00 ha.

Table 1. Segmentation parameters used in SCRM.

Scale Minimum object size (ha) Mean object size (ha) Maximum object size (ha)

1 0.008 0.040 0.048
2 0.030 0.150 0.180
3 0.070 0.350 0.420
4 0.130 0.650 0.780
5 0.200 1.000 1.200
6 0.300 1.500 1.800
7 0.400 2.000 2.400
8 0.500 2.500 3.000
9 0.600 3.000 3.600
10 0.700 3.500 4.200
11 0.800 4.000 4.800
12 0.900 4.500 5.400
13 1.000 5.000 6.000
14 1.100 5.500 6.600
15 1.200 6.000 7.200

Figure 3. (a) A sample area in the study site, and the SCRM-derived segmentation boundaries
overlaid on the corresponding area with the mean object size (MOS) of (b) 0.04 ha, (c) 0.36 ha, (d)
1.00 ha, (e) 4.00 ha, and (f) 6.00 ha.
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3.1.2. NDVI classification

Forests with different tree species tend to possess very different spectral reflectance char-
acteristics in optical remote sensing imagery. In our study area, deciduous canopies tend to
show higher digital numbers (DNs) than conifers in the NIR band, whereas conifers contain
more spectral variability than deciduous trees because of their steeper conical crowns,
resulting in more visible forest gaps and shadows. Therefore, to improve canopy height
estimation using QB imagery, the study area was classified into three classes: conifers,
deciduous, and clearcuts (i.e., non- or sparse-forest areas) using an NDVI (normalized
difference vegetation index) thresholding method. Based on visual inspection, deciduous
canopies also consistently show higher NDVI values than conifers. Thus, two thresholds
(0.55 and 0.70) were applied to classify the NDVI image. The first threshold was used to
separate clearcuts from forests, whereas the latter was applied to differentiate conifers and
deciduous vegetation. This schema was applied to the segmented images at all 15 scales.

3.1.3. Regression analysis – variables and models

Regression models were developed to estimate canopy height with the predicting variables
derived from QB data, and the canopy height as dependent variable, derived from the lidar
CHM. The independent (i.e., predicting) variables used in the analysis were (1) the spectral
response – (i.e., DNs) of four optical bands; (2) the image texture derived from the standard
deviation of the DNs within objects, as well as between neighboring objects for each of the
four optical bands; and (3) the shadow fraction – a quotient of the shaded areas and the entire
corresponding forest unit area – calculated from the NIR band (Table 2). More details of
these variables are provided below.

3.1.3.1. Spectral response. There are four spectral response variables, one per each band
of the QB image (i.e., NIR, red, green, and blue). The values of these variables in a given
segment are the mean DNs of pixels within the segment.

3.1.3.2. Image-texture. Remote sensing image-texture refers to the local variation of
brightness in an image, which is typically measured using the Grey-Level-Co-occurrence
Matrix method. Essentially, this is based on the co-occurrence of DNs located within an
arbitrarily sized square moving window, and evaluated at a choice of different directions and
lags (Hay and Niemann 1994). In this study, image-texture is considered a surrogate spatial

Table 2. Independent variables used in the regression analysis.

Variables
GEOBIA
approach

Pixel-based
approach Description

Spectral
response

DNi_Obj DNi_Pix Average of DNs for the itha band within study area unitsb

Image-
texture

TXIti_Obj TXIti_Pix Internal standard deviation for the ith band within study
area units

GEOTEXi TXNbi_Pix Neighboring standard deviation for the ith band within
neighboring study area units

Shadow
fraction

SF_Obj SF_Pix A quotient of the size of shadow areas and the size of
corresponding entire study area units

ai is the band number (i.e., 0 – blue band, 1 – green band, 2 – red band, and 3 – NIR band).
bFor the GEOBIA approach, the study area units are objects; whereas for the pixel-based approach, the study area
units are fixed-size windows.
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information source that represents both vertical and horizontal forest structure. Instead of a
traditional square window we used the geo-object boundary as an adaptive window. Thus,
image-texture is calculated in two ways: (1) internal-object texture was calculated as the
standard deviation of all DNs within the geo-object extent; and (2) geographic object-based
texture (GEOTEX) was calculated as the standard deviation of the averaged DNs of the
center object and its neighboring objects.

3.1.3.3. Shadow fraction. Shadows become more visually recognizable in VHR imagery.
Shadow fraction provides clues about tree vertical structure and forest species type because of the
geometric relationship between tree shapes, sun rays, and shadows (Figure 4). The shadow
fraction of a given areal unit (segment or window) is the ratio of shaded area to total area within
that unit. For this research, shadow fraction was derived using the QB NIR band because it
contained the highest contrast between shaded and nonshaded forest areas among the available
spectral bands. The shadow fractionwas calculated using two steps: (1) a heuristically definedDN
threshold of 420was used to separate theNIR band pixels into shaded and nonshaded groups; and
(2) the quotient of the number of shaded pixels to the number of all pixels within each object was
calculated to obtain the shadow fraction value. At all scales, the independent variables (i.e.,
spectral response, image-texture, and shadow fraction) were computed for the individual geo-
objects. Similarly, the dependent variable (i.e., canopy height) was calculated by averaging all
height values from the lidar CHMwithin the extent of the corresponding multiscale geo-objects.

3.1.3.4. Regression models. Nonlinear multiple regression models were developed to
estimate canopy height for the GEOBIA approach at all 15 scales. After initial tests, a
model formulated using a combination of exponential and quadratic forms was found
suitable for canopy height estimation:

CH ¼ exp
Xn
i¼0
ðaiX 2

i þ biXi þ ciÞ
 !

(1)

where CH is canopy height; Xi is the ith independent variable; ai, bi, and ci are coefficients for
the ith variable; and n is the number of independent variables.

To avoid the overfitting problem common to regression models, correlation coefficients
were first calculated between all independent and dependent variables. Each independent
variable was evaluated and retained under two rules: (1) its correlation value with any other
independent variable is lower than 0.7; and (2) it shows a correlation value greater than 0.7,

Figure 4. A grayscale Quickbird image converted from a false color image (using NIR, red, and green
bands) illustrating forest structure of (a1) conical-shaped conifers, and (b1) irregular-shaped deciduous
trees, with their corresponding binary shadow images (a2 and b2). Black tones in shadow images
represent shaded forest areas.
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but it has the highest correlation value with the canopy height of all other variables with
which its correlation value exceeds 0.7. After discarding redundant variables, a stepwise
method was used in the regression analysis to develop models at a 0.05 significance level.

To validate our models, a 10-fold cross-validation was performed to estimate the model
accuracy. Theory and extensive tests have shown that the fold (i.e., subset) number of 10 can
provide a better estimate of error than other fold numbers (Witten and Frank 2005).
The 10-fold cross-validation was applied by (1) randomly splitting all object groups into
10 subsets of approximately equal size; (2) training the model using 9 subsets and calculat-
ing the errors (i.e., RMSE) for the remaining subset; and (3) repeating the second step
10 times with each of the subsets used only once as validation dataset. For the model
validation, it is important to be aware that in the GEOBIA approach the objects are of
varying sizes – even at the same scale (i.e., MOS). Consequently, large objects tend to have
more influence than small objects in the canopy height error calculation. Therefore, an object
area-weighted RMSE was applied using the following equation:

RMSEArea-weighted ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

AN

XN
i¼1

AiðCHQB_i � CHLidar_iÞ2
h ivuut (2)

where RMSEArea-weighted is the area-weighted RMSE; CHQB_i is the canopy height calcu-
lated from the regression model using QB imagery for the ith object; CHLidar_i is the canopy
height measured from lidar data for the ith object; Ai is the area size for the ith object; AN is
the forest-covered area; and N is the number of objects.

3.2. Pixel-based approach

3.2.1. Plot size selection

We evaluated the plausibility of using geo-objects as areal units to estimate canopy height by
comparing the results with those obtained using areal units of fixed arbitrary size and shape,
namely, square plots of 20 m side. This size and shape is similar to that used in conventional
forest inventories, with the particularity that in our case the plots cover the study area exhaus-
tively, that is, the entire study site was divided into 65,025 adjacent 20 · 20 m plots. Because
each pixel in VHR imagery only covers a small portion of a tree area, each plot encompasses at
least several trees. Compared with individual pixels, the plots also reduced the errors caused by
the co-registration between two different data types (i.e., QB and lidar). Therefore, the plots are
akin to pixels of 20 m size and will hereafter be referred to as pixel-based.

3.2.2. NDVI classification

Similar to the methods used in the previously described GEOBIA approach, we assigned
each plot to one of the three classes (i.e., conifers, deciduous trees, and clearcuts) using the
majority rule, that is, each plot was assigned to the most frequent class among the pixels of
the classified image within it.

3.2.3. Regression analysis

Tomake a direct comparisonwith theGEOBIA approach, themodeling procedure in the pixel-
based approach followed the rules of the previous GEOBIA approach by using similar
variables and methods (Table 2), including a nonlinear multiple regression model
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(Equation 1) and a 10-fold cross-validation method. It should be noted that there are two
differences between these two approaches: (1) the areal units for the pixel-based approach are
20 · 20 m square plots instead of geo-objects with varying sizes and shapes; and (2) no
weights were considered in the pixel-based approachwhen calculating RMSE in the validation
step, because all plots were of the same size for both canopy types (i.e., conifer and deciduous).

3.3. Multiscale analysis

We also evaluated the object scale (i.e., MOS) that achieves the most accurate height
estimates. In forest studies, there are typically two types of methods applied to select the
best scale(s): (1) expert judgment with consideration of the specific requirements (Desclée
et al. 2006, Yu et al. 2006, Wulder et al. 2007); and (2) the comparison of modeling results
derived from various scales (van Aardt et al. 2006, Addink et al. 2007). Method (1) requires
a priori knowledge of the study area, which is not always available or known. By applying
method (2), regression model-derived R2 and RMSE are typically plotted at each scale, when
continuous biophysical properties (e.g., canopy height and volume) are the research sub-
jects. Typically, the ‘best’ scale is the one where the highest R2 and the lowest RMSE are
located. This is based on the models that only consider between-object canopy height
variability, regardless of object size and internal variance. However, objects are the basic
areal units for GEOBIA, and their internal variability changes with scale. Therefore, we
propose that within-object canopy height variability should also be considered when con-
ducting multiscale geo-object-based regression.

To better understand whether within-object canopy height variability affects the model
performance and the decision of best scale(s), a new canopy height map was created as the
reference dataset in the study. All regression model-derived results (from 15 scales) were
compared with this dataset. Because individual trees represent meaningful basic objects in a
real forest height scene, the reference dataset was generated at the individual tree level by
averaging canopy height within each tree crown extent from the lidar CHM. The dataset was
created using four steps: (1) a median filter with a 3 · 3 pixel windowwas used to smooth the
lidar CHM; (2) a watershed algorithm (Dougherty and Lotufo 2003) was applied to the
smoothed lidar CHM using the tree-top pixel as a local minimum (i.e., seed) for flooding the
individual tree areas; (3) a height threshold (i.e., 2.0 m) was used to derive tree crowns by
deleting nontree areas (e.g., tree gaps and shrubs); and (4) each tree crown area was filled with
the average lidar height data. The average height is used based on previous studies that have
demonstrated a high correlation between the average height of lidar returns and forest above-
ground biomass and volume (Lefsky et al. 2002, Lim et al. 2003). To compare the model
performance from both GEOBIA- and pixel-based approaches, both sets of results were also
evaluated using this reference dataset.

4. Results and discussion

4.1. Performance of spectral response, image-texture, and shadow fraction in canopy
height estimation

4.1.1. GEOBIA approach

The performance (i.e., adjusted R2 and RMSE) of the GEOBIA models at all 15 scales with
MOS from 0.04 to 6.00 ha, and that of the pixel-based models at 20 m are shown in Figure 5.
The models for deciduous and conifers gave similar performance trends, showing that larger
MOS results in higher adjusted R2 values and a lower RMSE. Specifically, there are two
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clear trends: (1) a relatively strong increase of adjusted R2 values and a decrease of RMSE
occur below the scale of 1.00 ha; and (2) relatively steady trend lines are found above the
scale of 1.00 ha, with a slightly decrease in model performance at some scales. However, the
object scale plays a more important role for the deciduous trees than conifers. When only
spectral response were used in modeling, 20% of the canopy height variance was explained
(with an RMSE of 8.03 m) for deciduous trees at the scale of 0.04 ha; whereas for the conifer
model, spectral response explained approximately 49% of the canopy height variance (with
an RMSE of 6.66 m) at the same scale. With the increase of the MOS, the highest R2 values
reached 64% and 76%, occurring at the MOS of 4.50 ha and 4.00 ha for deciduous trees and
conifers, respectively (Figure 5a and b). Compared with conifers (27%), a remarkable
change of the R2 values for deciduous trees (44%) indicates that the two forest types exhibit
different sensitivities to the scales applied in our research. A similar condition of tree-type-
dependent scale sensitivity is also found in the modeling results when the variables of
spectral response, image-texture, and shadow fraction are used in a combined fashion for the
canopy height prediction (Figure 5).

The addition of the variables image-texture and shadow fraction increased the model
performance for both canopy types at all 15 scales. For deciduous trees, the average increase
of R2 values is approximately 23%, with a 1.47 m decrease in RMSE at all scales (Figure 5a
and c) compared with the model performance using spectral response only. For conifers, the
values are only 7% and 0.20 m (Figure 5b and d). Overall, our results show that modeling the
canopy height of deciduous trees can reach a similar performance as modeling the height of
conifers using the three combined types of variables and a GEOBIA approach (Figure 5),
even though the biophysical properties for deciduous forests are normally more difficult to
model than conical-shaped conifers because of their irregular shaped canopy.

Figure 5. The change of adjusted R2 values at various mean object sizes (MOS) (i.e., MOS) for (a)
deciduous trees and (b) conifers; and the change of RMSE at various MOS for (c) deciduous trees and
(d) conifers, using GEOBIA and pixel-based approaches.
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Table 3 represents an example of the relationships (i.e., adjusted R2) between various
types of QB-derived variables and lidar-measured canopy height for two types of canopies at
three sample scales (i.e., 0.04 ha, 4.00 ha, and 6.00 ha). For both canopy types, the addition
of image-texture variables (i.e., both internal-object texture and GEOTEX) proved to be
useful to increase model performance. It should be noted that, when small scales are used,
GEOTEX is more significant than the internal-object texture. This makes sense, as Tobler’s
first law of geography (Tobler 1970) states that spatially near entities tend to be similar.
When the MOS is small, close objects tend to be of similar classes or types; however, this
relationship changes at larger MOS. In fact, as MOS gets larger, internal-object texture is
better than GEOTEX to estimate canopy height.

The shadow fraction variable plays different roles for the two canopy types. Shadow
fraction performs better than image-texture variables when estimating conical-shaped con-
ifers, whereas it decreases the model performance for deciduous forests. One possible
explanation for this may be due to the difficulty in creating the deciduous shadow threshold
(Section 3.1.3.3 and Figure 4). Because of their complex canopy structure, a single decid-
uous threshold may not fully capture its shadow content, whereas conifer shadows are
simpler, even though their tree heights vary greatly.

4.1.2. Pixel-based image analysis approach

The performance of the pixel-based approach was evaluated using the plot size of 0.04 ha (i.e., a
20 · 20mwindow, Figure 5). Similar to the GEOBIA approach, a better result was obtained for
conifers (adjusted R2 = 0.60 and RMSE = 5.97 m) than for deciduous trees (adjusted R2 = 0.31
and RMSE = 7.94 m) when we used the spectral response only. The inclusion of image-texture
and shadow fraction also resulted in a better canopy height estimation for conifers (adjusted
R2 = 0.65 and RMSE = 5.74 m) than for deciduous trees (adjusted R2 = 0.50 and
RMSE = 7.21 m), although a greater improvement (i.e., 20% increase of R2 with 0.74 m
decrease of RMSE) of model performance was achieved for deciduous trees (Figure 5).

4.2. Multiscale analysis

Figure 6 compares the RMSE directly derived from the regression models with the RMSE
derived by differentiating the regression model estimated canopy height and the reference

Table 3. Relationships (adjusted R2) between Quickbird-derived variables and lidar-measured
canopy height for deciduous and conifer forests at three sample scales (i.e., mean object sizes).

Input independent
variables

Deciduous model Conifer model

Scale 1a Scale 2b Scale 3c Scale 1 Scale 2 Scale 3

Spectrald 0.20 0.62 0.60 0.49 0.76 0.72
Spectral + image-texture_1e 0.35 0.78 0.84 0.53 0.80 0.78
Spectral + image-texture_2f 0.47 0.70 0.69 0.55 0.79 0.77
Spectral + shadow fraction 0.22 0.51 0.49 0.56 0.81 0.80

a0.04 ha.
b4.00 ha.
c6.00 ha.
dSpectral response.
eInternal-object texture.
fGEOTEX.
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dataset for all forest canopies in our study area. The former RMSE represents the error
resulting from between-object canopy height variability, whereas the latter represents the
error of both between- and within-object height variability. The error trend of regression
models clearly shows that the regression models developed at larger scales have better
performance (Figure 6a). For example, the lowest error of 3.75 m is located at the scale of
5.50 ha. By considering the height variability within objects, Figure 6b shows that the lowest
error (i.e., RMSE = 6.27 m) is found at the scale of 4.00 ha. The error trend is also different,
as low errors exist between small and large scales. There are two main reasons which might
cause the error differences in this study:

(1) Large scales (i.e., largeMOS) tend to decrease the canopy height variability between
objects and increase the height variability within individual objects. Because typical
GEOBIA models are developed only based on the height variability between
objects, the results are prone to be of high R2 and low RMSE. It is therefore expected
that a theoretically best result may still be obtained, even though the forest patches
are undersegmented;

(2) When small MOS are selected, the height variability within each object tends to be
low, whereas the height variability between objects is relatively high. This normally
causes a low-performance (i.e., large estimation error) GEOBIA model. However,
the details (i.e., forest structure) within objects are retained.

To select the best object size, both between- and within-object height variability should be
considered, where the errors are derived by differentiating the regression model estimated canopy
height and the reference dataset, even though a larger error (6.27m vs. 3.75m)might be obtained.
Based on these concepts, we chose the MOS of 4.00 ha as the best scale in this study.

Figure 7 illustrates an error map when subtracting regression model estimated canopy
height (at the scale of 4.00 ha) from the reference dataset. Approximately 86% of the errors
in forests are below 9 m. Some large errors tend to exist in (1) river bank areas, where
spectral information were highly affected by topography and heavy tree shadows
(Figure 7a1 and a2); and (2) mixed canopy types including both deciduous and conifer
forests (Figure 7b1 and b2). Figure 8 represents the change of estimation error and canopy
cover at various canopy heights. As canopy cover increases, the estimation accuracy

Figure 6. The errors (a) directly derived from the regression models (only considering height
variablity between-objects), and (b) derived by differentiating the regression model estimated canopy
height and the reference dataset (considering height variability both between- and within-objects) for
all trees in the study area at 15 scales.
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increases. High accuracy (RMSE ,5 m) occurs in two ranges: (1) young trees with canopy
heights lower than 5 m; and (2) canopies between 12 and 25 m. When two stands have a
similar cover, low canopies (i.e., lower than 20 m) tend to have lower errors than those of tall
canopies (i.e., higher than 20 m).

4.3. GEOBIA versus pixel-based approach

The basic study units in the pixel-based approach are arbitrarily determined pixels or plots
(e.g., square plots of 0.04 ha) compared with the varying sized and shaped geo-objects. For

Figure 7. Error map derived at the scale of 4.00 ha with samples representing large errors for (a1)
river bank areas and (b1) mixed canopy types, and their corresponding Quickbird images (a2) and (b2).

Figure 8. The change of estimation error and canopy cover at various canopy heights.
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both tree types, the pixel-based approach results in a lower accuracy for the estimated canopy
height than for most of the GEOBIA models over the 15 tested scales, that is, 15 different
MOS (Figures 5 and 6). However, it should be noted that the pixel-based approach still has
comparable or better performance than the GEOBIA approach at some very small scales.
The potential reason is that segmentation in GEOBIA is highly affected by tree shadows in
VHR imagery when small scales are performed. This indicates that selecting an appropriate
object scale is crucial for the GEOBIA approach, because the selection of arbitrary scales
may result in poorer canopy height accuracy than for a canopy height derived with a pixel-
based approach.

5. Conclusions

In this study, we investigated the potential of VHR QB imagery to estimate canopy height
and compared the results with a CHM derived from small-footprint lidar data. GEOBIA and
pixel-based models were developed for two types of trees: deciduous and conifers. A novel
object area-weighted error calculation approach (Section 3.1.3.4), which considered the
importance of object size, was also developed to evaluate the RMSE of the CHM derived
from GEOBIA. Results show that VHR QB imagery can be used to accurately estimate
canopy height using a GEOBIA approach with approximately 86% of canopy height errors
less than one British Columbia forest inventory height class (i.e., ,9 m).

Specific results show that the addition of image-texture [both internal-object texture and
GEOTEX, a dynamic neighboring image-texture measure (Section 3.1.3.2)] increased
GEOBIA model performance over those using only spectral response. Shadow fraction
(Section 3.1.3.3) was also found to more significantly improve the model performance for
conifers than other variables. However, it increased error for deciduous forests. Overall, the
addition of image-texture and shadow fraction resulted in anR2 increase of approximately 23%
with a 1.47 m decrease in RMSE for deciduous trees, compared with the model performance
using spectral response only. For conifers, the values were 7% and 0.20 m, respectively.

The best object scale (i.e., MOS) for defining the most accurate canopy height estimates
using GEOBIA was a MOS of 4.00 ha. When estimating continuous forest biophysical
properties (e.g., canopy height), typical GEOBIA modeling approaches tend to focus only
on the performance of regression models (i.e., between-object variability), regardless of
object size and internal variability. In this study, we evaluated both the between- (as typically
modeled) and the within-object height variability as they represent two unique perspectives
of forest structure. Specifically, forest-objects should exhibit (relatively) low internal var-
iance. When this variance significantly changes (through scale), the forest class is no longer
representative of its initial class conditions and thus requires reevaluation.

This study also compared GEOBIA and pixel-based approaches for canopy height estima-
tion. The best GEOBIA models achieved better results than those developed using only the
pixel-based approach. Furthermore, we confirm that the selection of an appropriate object scale
plays an important role inGEOBIA (Addink et al. 2007); as an arbitrary scale selection can result
in accuracies that may be lower than those derived from a pixel-based approach.

Future research will focus on evaluating whether forest canopy height can be accurately
estimated from individual lidar transects, rather than a full lidar dataset covering the entire
study area. If this is possible, we will evaluate whether narrow lidar transects and VHR broad
extent optical imagery can be integrated with GEOBIA to accurately define canopy height,
biomass, and volume for complex forest cover over very large areas.
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