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High-resolution digital canopy models derived from airborne lidar data have the ability to provide detailed
information on the vertical structure of forests. However, compared to satellite data of similar spatial
resolution and extent, the small footprint airborne lidar data required to produce such models remain
expensive. In an effort to reduce these costs, the primary objective of this paper is to develop an airborne lidar
sampling strategy to model full-scene forest canopy height from optical imagery, lidar transects and
Geographic Object-Based Image Analysis (GEOBIA). To achieve this goal, this research focuses on
(i) determining appropriate lidar transect features (i.e., location, direction and extent) from an optical
scene, (ii) developing a mechanism to model forest canopy height for the full-scene based on a minimum
number of lidar transects, and (iii) defining an optimalmean object size (MOS) to accurately model the canopy
composition and height distribution. Results show that (i) the transect locations derived from our optimal
lidar transect selection algorithm accurately capture the canopy height variability of the entire study area;
(ii) our canopy height estimation models have similar performance in two lidar transect directions
(i.e., north–south and west–east); (iii) a small lidar extent (17.6% of total size) can achieve similar canopy
height estimation accuracies as those modeled from the full lidar scene; and (iv) different MOS can lead to
distinctly different canopy height results. By comparing the best canopy height estimate with the full lidar
canopy height data, we obtained average estimation errors of 6.0 m and 6.8 m for conifer and deciduous
forests at the individual tree crown/small tree cluster level, and an area weighted combined error of 6.2 m,
which is lower than the provincial forest inventory height class interval (i.e., ≈9.0 m).
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Recent studies have proven the feasibility of using lidar (light
detection and ranging) data to characterize forest vertical structure
(e.g., canopy height), by generating accurate estimates of forest
above-ground biomass and timber volume (Hyyppä et al., 2008;
Lefsky et al., 2002; Lim et al., 2003; Means et al., 1999). In these cases,
promising results were reported using airborne lidar scanners, whose
small-footprint and high-pulse-density returns can accurately esti-
mate forest canopy height at the individual tree level. Compared to
data acquisition costs from spaceborne sensors, the cost associated
with airborne lidar data is highly influenced by several critical — but
varying — factors, such as the project location, topography, the
number of flight turns and banks, distance between lidar transects
and pulse density, etc.

To reduce airborne acquisition costs while still collecting useful
estimates of forest vertical structure, research is beginning to be
conducted on the integration of airborne lidar transects and high-
resolution optical remotely sensed data. For example, Hudak et al.
(2002) combined lidar data and Landsat ETM+ panchromatic
imagery to estimate forest canopy height in western Oregon, USA.
Here, a lidar canopy height model was sampled in both transect and
point patterns with equal spatial intervals of 2000, 1000, 500, and
250 m. Best results were reported by using lidar samples with smaller
spatial intervals. Similarly, Wulder and Seemann (2003) developed
regression models between lidar and Landsat TM data to estimate
canopy height at the stand level. This relationship was then extended
to polygons without lidar data to predict/update canopy height
inventory information. Their models revealed a correlation (R2) of
0.61 between digital numbers (DNs) and associated lidar-estimated
heights for segmentation-derived polygons. Hilker et al. (2008)
further investigated the potential of combining small-footprint lidar
transect data and QuickBird imagery to update forest inventories.
They found a strong relationship (R=0.89) between the stand height
predicted from a single lidar transect and Quickbird imagery, and the
stand height from the full-area lidar coverage. Though encouraging
results have been obtained by integrating lidar transects and optical
imagery, several important lidar transect features such as location,
direction and extent are still heuristically defined, which ultimately
could decrease the accuracy of estimating canopy height for the whole
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study area. This is because heuristically defined lidar transect locations
may fail to represent the height structure of the full-scene— especially
over large areas. Therefore, decisions regarding the appropriate
selection of lidar transect features are critical for developing robust
integrated models.

At a high spatial resolution (b5.0 m), individual pixels typically
represent only a small portion of the geographic objects of interest
(e.g., individual trees). While this resolution provides details that can
further facilitate landscape management, it also creates higher
internal spectral variance within each geographic object which can
decrease scene model accuracy when using pixel-based approaches
(Hay et al., 1996; Strahler et al., 1986). To acquire detailed geographic
information while minimizing the effect of high internal spectral
variance, Geographic Object-Based Image Analysis (GEOBIA) provides a
feasible alternative to the traditional pixel-based approach (Hay &
Castilla, 2008). GEOBIA is essentially a way to move from the analysis
of individual pixels to image-objects (i.e., groups of connected pixels
that are relatively homogeneous and different from their surround-
ings), to the generation of geo-intelligence (i.e., spatial content within
context) (Hay & Blaschke, 2010). In high-resolution remote sensing
studies, image-objects can be used to represent forest entities ranging
from small tree clusters to large stands, etc. Compared to the
traditional pixel-based approach, segmented objects are more similar
to forest inventory polygons and easier to use within a GIS, and/or
modeling environment.
Fig. 1. (a) Study area located southwest of Campbell River, Vancouver Island, Canada. (b) Lid
from a false color composite using near infrared (NIR), red and green bands.
Based on these ideas, the main objective of this research is to
develop an airborne lidar sampling strategy to model full-scene forest
canopy height from optical imagery, lidar transects and GEOBIA. To
achieve this goal, the following sections provide detail regarding
(i) data processing; (ii) how GEOBIA was used to define an optimal
mean object size (MOS) for modeling canopy pseudo-height distribu-
tion; (iii) a description of the methods developed to define
appropriate lidar transect features (i.e., location, direction and extent)
from an optical scene; and (iv) how we modeled full-scene forest
canopy height based on a minimum number of lidar transects. Results
are then provided and discussed, followed by our conclusions and
future work.

2. Data and preprocessing

2.1. Study area

Our study site is located (49°52′N, 125°20′W) approximately
10 km southwest of Campbell River on Vancouver Island, British
Columbia, Canada (Fig. 1). The size of the study area is 5.1×5.1 km
(2601 ha) and is characterized by conifer and deciduous forests,
clearcuts, roads and a river. The study area is comprised of 65% conifer
forests, of which ≈80% is dominated by Douglas-fir [Pseudotsuga
menziesii (Mirb.) Franco], along with small proportions of Western
Red Cedar [Thuja plicata (Donn.)] and Western Hemlock [Tsuga
ar canopy height segmentation image (CHS). (c) Quickbird grayscale image converted
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heterophylla (Raf.) Sarg.] (Morgenstern et al., 2004). Another 16% of
the study area is dominated by Red Alder (Alnus rubra Bong.), with the
rest of site composed of clearcuts, roads and a river that diagonally
bisects the site from southeast to northwest (Morgenstern et al.,
2004). Topographically, the site has an average elevation of 300 m
above sea level, ranging from 180 m (southwest) to 440 m (north-
east), with a gentle slope of 5°–10° except at the river where elevation
varies (+/−25 m).

2.2. Lidar data

Lidar data were acquired on June 8, 2004, by an airborne Terrain
Scanning Lidar system (Terra Remote Sensing Inc., Sidney, Canada). As
a discrete return lidar system (Lightwave Model 110), this system has
a pulse repetition frequency of 10 kHz, a wavelength of 1047 nm, a
swath width of 56°, and a beam divergence of 3.5 mrad. A continuous
scanning mode in the typical zigzag pattern was used during
data acquisition, with a footprint size of 0.19 m and a point density
of 0.7/m2 (Hilker et al., 2008). A lidar digital elevation model (DEM)
and a digital surface model (DSM) were generated at a 1.0 m spatial
resolution and delivered by the data vendor. A forest canopy height
model (CHM) was then derived by subtracting the DEM from
the DSM.

2.2.1. Canopy height segmentation (CHS)
While a lidar CHM characterizes forest height at the per-pixel

level, such a model fails to represent actual forest entities (i.e.,
individual trees). To overcome this limitation, a watershed segmen-
tation was applied to the CHM to create a canopy height segmentation
image (CHS), which visually contained segmented objects that well
represented individual tree crowns or small tree clusters. Watershed
segmentation was conducted by (i) searching tree tops in the CHM
based on a local maximum algorithm, (ii) flooding (inverted) canopy
areas using a watershed algorithm (Dougherty & Lotufo, 2003),
(iii) indentifying canopy crowns using a 2.0 m height threshold, and
(iv) filling each crown/canopy area with the corresponding average
CHM pixel values. Average height was used based on previous studies
that show a strong relationship between the average height of lidar
returns and above-ground forest biomass and volume (Lefsky et al.,
2002; Lim et al., 2003). Table 1 illustrates the proportion of each forest
canopy height class in the study area; where the height classes were
adopted from the British Columbia forest inventory height class codes
(MFR, 2010). To remove non-tree components such as low bushes and
shrubs, our height range started from 2.0 m instead of 0.0 m.

2.3. Quickbird (QB) data

A cloud-free QB image of the study site was acquired on August 11,
2004. Four multispectral bands [i.e., blue, green, red and near infrared
(NIR)] and one panchromatic band were used in this study.

A principal components spectral sharpening technique (Welch &
Ahlers, 1987)was used to combine and resample (to 1.0 m) the spectral
information from the QB multispectral bands and the spatial informa-
tion from the QB panchromatic band, as this method maintains the
integrity of the original DNs. The lidar and pan-sharpened optical data
were then geometrically co-registered using the CHS as the base. A
Table 1
Forest proportion of each lidar-measured canopy height class in the study area.

Canopy height class (m) Forest proportion (%)

2–10.4 7.41
10.5–19.4 25.11
19.5–28.4 56.47
28.5–37.4 10.94
37.5–46.4 0.07
second-order polynomial warping method and nearest neighbour
resampling were applied based on 118 tie points, yielding a RMSE of
0.85 m. Due to the dense forest cover in this area, co-registration was
performed using tree tops only.

3. Data analysis

An important consideration of this research was to exploit the
canopy height variability inherent within the high-resolution optical
scene, and use it as a guide for selecting the most appropriate
locations to extract lidar transects. Though seldom explored in the
remote sensing literature (Hay, 1993), visual depth and height
information are readily available from a monocular image via: size
perspective (diminution of size with distance), motion parallax, areal
perspective (haziness associated with distance), occlusion effects,
outline continuity (complete objects look closer), and surface shading
variations (Horn & Brooks, 1989; Jarvis, 1983). Furthermore, high-
resolution optical data have shown promise in previous forest studies
to estimate tree height (Donoghue & Watt, 2006; Franklin &
McDermid, 1993; Hyde et al., 2006).

To exploit this inherent optical-height relationship, a multiscale
segmentation was first applied to the QB imagery. Using ‘structural’
information exclusively derived from this QB segmentation, we then
created a pseudo canopy height map, from which optimal lidar transect
locationswere selected.We also compared the performance of different
models that employed various lidar transect extents with the full-scene
lidar dataset. Different sizes of canopy objects (derived from GEOBIA)
and their sensitivity to height estimation accuracies were further
analyzed. The flowchart in Fig. 2 summarizes these steps; while the
following sub-sections provide greater detail and explanation.

3.1. Multiscale segmentation

The basic areal units for GEOBIA are segmentation-derived
partitions (a.k.a., geo-objects), which represent delineated areas,
entities or objects in the image that are meaningful to the analyst
and have a geographic referent. In this study, automated image
segmentation software — Size-Constrained Region Merging (SCRM)
(Castilla et al., 2008) was applied to the pan-sharpened multispectral
QB data. Compared to currently existing segmentation algorithms, key
advantages of SCRM are: (i) the size (e.g., mean, minimum and
maximum area) of the objects of interest can easily and explicitly be
controlled through input parameters; and (ii) smooth pixel bound-
aries can be generated, which results in objects (i.e., polygons) similar
to those delineated by experienced forest analysts. SCRM contains six
main processing steps: image resampling, image smoothing, gradient
magnitude image generation, watershed partitioning, region merging
and vectorization (Hay et al., 2005).

A forest is a complex system composed of different sized, shaped
and spatially distributed entities of interest that is seldom fully
characterized at a single scale of analysis. To investigate the optimal
mean object size (MOS) to estimate canopy height, SCRM was applied
to the pan-sharpened QB data to generate 15 derived (multiscale)
images composed of different sized canopy-objects, ranging from
0.04 ha to 6.00 ha. Table 2 list the SCRM parameters used, which were
chosen to avoid under- and over-segmentation of visibly distinct
canopy components within the QB imagery. They also follow a scale
range that often appears in natural systems (Hay et al., 2001; O'Neill
et al., 1996).

3.2. Canopy-object pseudo-height classification

An important objective of this research was to determine
appropriate locations to acquire lidar transects. Therefore, lidar data
cannot be used at this stage of analysis. However, it is necessary to
have a general idea of how canopy height is distributed in the study



Fig. 2. Flowchart of the research process with reference to Data analysis section.
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area. Otherwise, lidar data sampling will be arbitrary, with the
possibility of completely omitting the height class(es) of interest. In
this step, QB imagery was used to simulate the canopy composition
and height variability for the entire study area. This was based on
previous research (Chen et al., 2010), which demonstrated the utility
of applying high-resolution QB data to estimate lidar-measured forest
canopy height from three types of QB-derived object-based variables:
(i) spectral mean (i.e., mean of the DNs within segments for each
spectral band — blue, red, green and NIR); (ii) image-texture of the
spectral bands, which includes (a) internal-object texture — a measure
of the spatial variability of DNs within a segmented object, and
(b) geographic object-based texture (GEOTEX) — a measure of the
spatial variability within neighbouring objects (see Fig. 3); and
(iii) shadow fraction — a quotient of the size of shaded areas and the
size of the corresponding forest objects based on the DNs of the NIR
band. These variables were calculated from the QB data following the
methods of Chen et al. (2010).

An ISODATA unsupervised classification algorithm (Tou & Gonza-
lez, 1974) was then applied to these variables to generate 14 pseudo-
height classes using an iteration number of 20. The choice of class
number was based on seven corresponding British Columbia forest
Table 2
Segmentation parameters used in SCRM.

Scale Minimum object
size (ha)

Mean object
size (ha)

Maximum object
size (ha)

1 0.008 0.040 0.048
2 0.030 0.150 0.180
3 0.070 0.350 0.420
4 0.130 0.650 0.780
5 0.200 1.000 1.200
6 0.300 1.500 1.800
7 0.400 2.000 2.400
8 0.500 2.500 3.000
9 0.600 3.000 3.600
10 0.700 3.500 4.200
11 0.800 4.000 4.800
12 0.900 4.500 5.400
13 1.000 5.000 6.000
14 1.100 5.500 6.600
15 1.200 6.000 7.200
inventory height classes (MFR, 2010) for two forest types (conifer and
deciduous).

We note that QB data, segmented at the smallest MOS of 0.04 ha,
were used in this canopy-object pseudo-height classification step.
This was because the within-object canopy height variability was
found to be relatively low with this MOS (Fig. 4), resulting in a high
between-object variability. This ensured that canopy height and
composition variability [i.e., deciduous (35%) versus coniferous
(65%)] were well modeled by the (0.04 ha) segmented image,
which was necessary for accurate lidar transect selection.

3.3. Lidar transect selection

Lidar transect selection was defined by employing the canopy
pseudo-height classification result as a proxy for forest height class
variability. Based on our actual lidar data acquisition parameters, a
lidar swath width of 450 m (representing 8.8% of the total study area)
was used as the minimum transect size. Three main rules were
applied to select candidate lidar transects: (i) transects must contain
no overlap with other transects; (ii) transect-covered areas must
sample all canopy-object pseudo-height classes (with the non-
vegetated objects masked out prior to analysis); and (iii) the canopy
Fig. 3. Two types of texture measures: (1) an internal variability measure calculating
standard deviation of DNs within an object (A), and (2) a geographic object-based
texture (GEOTEX)measure for object (A) based on calculating the standard deviation of
DNs averaged within neighbouring objects — A, B, C, D, E and F.

image of Fig.�2
image of Fig.�3


Fig. 4. Canopy height within-object variance derived from lidar CHM for all 15 MOS.
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pseudo-height histogram derived from the transect-covered objects
must have the highest correlation with the pseudo-height histogram
derived from all objects.

Transect selection involved comparing 11 different sizes (and
locations) of transect extents, each defined as a percentage of the total
study area: (1) 8.8%, (2) 17.6%, (3) 26.4%, (4) 35.2%, (5) 44.0%,
(6) 52.8%, (7) 61.6%, (8) 70.4%, (9) 79.2%, (10) 87.4% and (11) 100.0%—

the full lidar scene. The transect locations were determined bymeeting
the previously defined lidar transect selection rules within an iterative
process. Lidar transect selection performance was evaluated based on
two orthogonal directions: N–S (north–south) and W–E (west–east).
Fig. 5. Examples of 22 combinations of lidar transects derived from the lidar transect selec
extent: (1) 8.8%, (2) 17.6%, (3) 26.4%, (4) 35.2%, (5) 44.0%, (6) 52.8%, (7) 61.6%, (8) 70.4%, (9
subscripts (a) and (b) respectively. For illustrative purposes, the QB image was used as the
3.4. Regression modeling

Building upon previous research (Chen et al., 2010), nonlinear
stepwise regression models (formulated using a combination of
exponential and quadratic form) were used to develop multiscale
relationships (i.e., using 15 MOS) between QB and lidar forest-objects
within the lidar transect areas:

CH = exp ∑
n

i=0
aiX

2
i + biXi + ci

� �� �
+ εi ð1Þ

where CH is the canopy height — extracted from the canopy height
segmentation image (CHS — Section 2.2.1); Xi is the ith independent
variable (derived from theQB scene),which includes the same three QB
variables used in Section 3.2; ai, bi and ci are coefficients for the ith
variable; n is thenumber of independent variables; and an error term, εi.

To evaluate canopy height information at multiple scales, the CHS
was generalized using 15 different mean object sizes (MOS) (Table 2).
Specifically, object boundaries derived from the 15 previously
segmented QB images (Section 3.1) were overlaid onto the CHS;
then each object was filled with the average CHS values within its
extent. The CHS image was used rather than the original CHM because
we wanted to understand the effect of canopy objects, not arbitrarily
located individual pixels. Additionally, canopy objects reduce the bias
caused by non-canopy pixels (i.e., gaps and barren ground, etc.).

Different forest types (e.g., deciduous and conifer) reveal different
spectral reflectance characteristics within the QB imagery. In
tion algorithm (Section 3.3), which represent various transect numbers and their (%)
) 79.2%, (10) 87.4% and (11) 100.0%. Directions of N–S andW–E are designated with the
base layer with lidar transects overlaid.

image of Fig.�4
image of Fig.�5


Fig. 6. Canopy height histograms derived from the selected lidar transects (in Fig. 6) for 22 combinations representing various transect numbers and their (%) extent: (1) 8.8%, (2) 17.6%, (3) 26.4%, (4) 35.2%, (5) 44.0%, (6) 52.8%, (7) 61.6%, (8)
70.4%, (9) 79.2%, (10) 87.4% and (11) 100.0%, in (a) N–S and (b) W–E directions.
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particular, conifers typically have lower NDVI (Normalized Difference
Vegetation Index) values than deciduous trees. There are two main
reasons for this: first, the leaf cell structure of conifers produces
smaller reflectance differences between red and NIR bands (Lillesand
et al., 2007). Second, conifer stands contain more gaps and crown
shadows than deciduous forests. Therefore, two NDVI thresholds (i.e.,
0.55 and 0.70) were heuristically defined to classify our study area
into three classes: conifers, deciduous, and non-vegetated. Then
separate regression models were developed for conifer and deciduous
canopies. To assess the NDVI threshold accuracy, 90 points were
randomly extracted from each class and manually interpreted as the
reference data. An overall accuracy of 86.7% was achieved, with an
overall kappa statistic of 0.8.

To better understand the relationship between the lidar transect
features (i.e., location, direction and extent) and the canopy height
estimation using various MOS, we tested three cases: using (i) 11
different transect extents (Section 3.3); (ii) two transect directions
(N–S and W–E), and (iii) 15 different MOS (Section 3.1). In total, 330
models (i.e., 11×2×15) were generated and tested for each forest
canopy type. Processing was completed in 2 h using a quad core
2.33 GHz workstation and 16.0 GB RAM.

3.5. Model performance evaluation

The model performance of canopy height estimation for the entire
study area was determined by comparing the model-derived canopy
height with the canopy height segmentation (CHS) data of the full
scene using an object area-weighted RMSE (Chen et al., 2010):

RMSEArea−weighted =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
AN

∑
N

i=1
Ai CHQB i−CHLidar i

� �2s
ð2Þ

where RMSEArea-weighted is the area-weighted RMSE; CHQB_i is the
canopy height calculated from the regressionmodel using QB imagery
for the ith object; CHLidar_i is the canopy height measured from the
lidar CHS for the ith object; Ai is the area size for the ith object; AN is
the forest-covered area, and N is the number of objects.

Since the CHS was generated at the small tree/cluster level, model
performance was also evaluated at this level. To facilitate the
extension of canopy height information from the area covered by
lidar transects to areas without transects, we needed to understand
whether the best MOS (i.e., corresponding to the lowest model error)
derived from the optimal lidar transect(s) was still the best for the
entire study area. Therefore, we examined the sensitivity of model
performance on MOS by comparing canopy height estimation
Fig. 7. Canopy height estimation errors derived from 11 combin
accuracy for two cases: (i) models that were applied to the entire
study area; and (ii) models that were applied only to lidar transect-
covered areas.

4. Results and discussion

4.1. Lidar transect features (location, direction and extent)

In our study area, canopy height estimation accuracy was affected
by three lidar transect features: (i) location, (ii) direction and
(iii) extent. More detail on these features is provided in the following
sub-sections.

4.1.1. Transect location
Fig. 5 illustrates22 transect combinations inN–S andW–Edirections.

TheQB image is displayed as thebase layer,with lidar transects overlaid.
Canopy heights within transect locations are displayed using different
colors representing height variability. It should be noted that each
combination image illustrates the best transect locations (per % study
area) derived from our lidar transect selection algorithm (Section 3.3).
We note that the lower left portion of the study area is occupied by
relatively homogenous forests, which exhibit low canopy height
variability. However, other areas (e.g., forest stands close to clearcuts)
contain much higher canopy height variability. Fig. 5 visually confirms
that the selected lidar transects consider this condition by sampling
areas with greater height variability.

Ideally, the ‘best’ lidar transect location(s) will represent canopy
height variability similar to that derived from the entire lidar dataset.
To test this condition, Fig. 6 shows the canopy height histograms
derived from the same 22 lidar transects (in N–S andW–E directions)
illustrated in Fig. 5. The Chi-square test was performed to compare the
transect-covered canopy height distributions with those derived from
the full lidar coverage (see histograms 11a and 11b in Fig. 6). All
histograms were discretized to five height classes (Table 1), with
values normalized to the range of 1 to 100. The calculated one-tailed
probability values (p values) are all higher than 0.05 (Fig. 6), which
states that there is no significant difference between the two types of
height distributions using the transect selection algorithm and the full
lidar coverage. Thus, the transect locations determined by our
algorithm well model the visual and statistical canopy height
variability of the entire study area.

4.1.2. Transect direction
In this site, the canopy height estimation models have similar

performance in N–S and W–E directions. This implies that the spatial
distribution of forest canopy height in our study area is similar in
ations of lidar transects with 15 MOS (N–S direction only).

image of Fig.�7


Fig. 9. Comparison of canopy height estimation accuracy when models are applied to
the entire study area versus the transect-covered area using examples of (a) 17.6%,
(b) 35.2%, and (c) 70.4% transect extents (N–S direction only).
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these two directions. Typically, forests are complex ecosystems, which
are unlikely to exhibit (N–S or W–E) direction-specific canopy height
distribution patterns over a large area. To simplify the remaining
discussion, only those results derived from the N–S direction will be
presented in the following sections.

4.1.3. Transect extent
The performance of the canopy height estimation models for the

entire study area is summarized in Fig. 7. This graph compares the
model accuracies of 11 different transect combinations using 15 MOS
in the N–S direction. When a small number of lidar transects are
chosen, canopy height estimation errors (represented by the RMSE)
derived from small object sizes tend to be much lower than those
derived from large object sizes. For example, the RMSE is 7.9 mwith a
MOS of 0.04 ha; however, it is 12.5 m at the MOS of 6.0 ha. By using
more transects, canopy height estimation errors decrease at most
MOS. However, it should be noted, there exist two transect extent
thresholds of 17.6% and 35.2%, where several MOS represent low
estimation errors. For example, the RMSE is 6.20 m with a MOS of
0.04 ha and a 17.6% extent; while it is 6.10 m with a MOS of 4.00 ha
and a 35.2% extent. Beyond 35.2%, increasing transect cover appears
unlikely to affect the model performance of any MOS. Since a smaller
transect area represents reduced lidar acquisition and processing
costs, the transect size of 17.6% (RMSE: 6.20 m) is selected as optimal
for this study.

The above observations can be further explained by the correlation
of canopy height variability between transect-covered and full-scene
lidar data. Fig. 8 illustrates the correlation derived from 11 transect
combinations using 15 MOS in the N–S direction. Typically, a small
transect extent (e.g., 8.8%) tends to decrease model performance,
because it is unlikely to fully cover canopy height variability within a
complex scene. This is especially true, when larger MOS are used
within smaller transects, as the number of different object samples
(i.e., object variability) within the transect(s) tends to be less,
resulting in poorer canopy estimation performance than those using
a smaller MOS.

4.2. Evaluation of MOS and models

In order to further evaluate the change of model performance at
various MOS, Fig. 9 provides a comparison of the canopy height
estimation errors when models were applied to three transect extents
(17.6%, 35.2% and 70.4%). We note that the two trend lines in Fig. 9(a)
Fig. 8. Correlation between transects and full-scene lidar canopy heights derived from 15 MOS using 11 different combinations of lidar transects (N–S direction only).
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Table 3
Regression models for estimating canopy height of (a) conifer and (b) deciduous trees
derived from a lidar transect extent of 17.6% and a MOS of 0.04 ha.

Coefficient Value Standard error P value

(a) Con_CH=exp (a0+a1▪DN2+a2▪TXIT3+a3▪TXIT4+a4▪GEOTEX1+a5▪SF+
a6▪DN2

2+a7▪TXIT3
2+a8▪TXIT4

2+a9▪GEOTEX1
2+a10▪SF

2)
a0 −0.86721 0.46168 b0.05
a1 0.05227 0.00501 b0.001
a2 −0.04972 0.00771 b0.001
a3 0.00505 0.00133 b0.001
a4 −0.03926 0.00285 b0.001
a5 2.64657 0.15483 b0.001
a6 −0.00019 0.00001 b0.001
a7 0.00160 0.00019 b0.001
a8 −0.00003 0.00001 b0.001
a9 0.00098 0.00008 b0.001
a10 −2.29009 0.12849 b0.001

(b) Dec_CH=exp (b0+b1▪DN2+b2▪TXIT4+b3▪GEOTEX1+b4▪GEOTEX4+b5▪SF+
b6▪DN2

2+b7▪TXIT4
2+b8▪GEOTEX1

2+b9▪GEOTEX4
2+b10▪SF

2)
b0 0.09573 0.00225 b0.001
b1 0.01312 0.00391 b0.001
b2 0.01777 0.00318 b0.001
b3 −0.09401 0.01321 b0.001
b4 0.02462 0.00220 b0.001
b5 1.98815 0.93306 b0.05
b6 −0.00005 0.00001 b0.001
b7 −0.00008 0.00001 b0.001
b8 0.00246 0.00055 b0.001
b9 −0.00012 0.00001 b0.001
b10 −2.42943 1.10310 b0.05

Con_CH = canopy height for conifers; Dec_CH = canopy height for deciduous trees;
DN2 = green band; TXIT3 = red band internal-object texture measure; TXIT4 = NIR
band internal-object texture measure; GEOTEX1= blue band GEOTEX; GEOTEX4=NIR
band GEOTEX; SF = shadow fraction.

Fig. 10. Error image derived from a lidar transect extent of 17.6% and a MOS o

1540 G. Chen, G.J. Hay / Remote Sensing of Environment 115 (2011) 1532–1542
have a weak relationship (i.e., R=0.30); however, with the increase of
transect extent, the relationship tends to be stronger (Fig. 9(b) and (c)).

As noted in Section 4.1.3, two lidar extent thresholds of 17.6% and
35.2% (and a MOS of 0.04 ha) lead to canopy height estimation errors
of 6.20 m and 6.10 m respectively, for the entire study area. Though
the smaller lidar extent of 17.6% (Fig. 9(a)) can dramatically reduce
lidar data acquisition and processing costs, determining the best MOS
is difficult when the correlation is so low (R=0.30). For example, In
Fig. 9(a), the MOS of 2.5 ha produces a RMSE of 6.8 m for the transect-
covered area; while a larger RMSE of 8.8 m is introduced by using the
same MOS for the entire study site. Consequently, there exists a risk
when arbitrarily selecting a small lidar transect, as the canopy height
estimation errors may be different for the sampled area compared to
the entire study area. This further indicates that the best MOSmay not
be appropriately selected. However, in our case, the extent of 17.6%
was chosen as the best transect size (and location), because it
generates a relatively low error using a small amount of lidar data, and
it has low within-object variability, thus enhancing discrimination
between different height classes (Fig. 4).

Table 3 defines two models for both canopy-types, i.e., conifer and
deciduous. These models represent an example of using a 17.6% lidar
extent and a MOS of 0.04 ha. The RMSE are 6.0 m and 6.8 m for
conifers and deciduous trees respectively, for the entire study area.
Compared to deciduous trees, the canopy heights of conifers were
better estimated. This can be explained by their relatively uniform
shapes that facilitate canopy height estimation. In terms of the
variables used in our models, all spectral, image-texture (i.e., both
internal-object texture and GEOTEX) and shadow fraction variables
proved beneficial to estimate forest canopy height for both models at
this MOS. Spatial interpolation techniques (e.g., Kriging), were not
f 0.04 ha showing an error class interval of 5 m for the entire study area.
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Table 4
Confusion matrix for analyzing the prediction errors of five height classes.

Estimated height
(pixels)

Reference lidar height (pixels) Row
total

User's
accuracy

Errors of
commission

HTC1a HTC2b HTC3c HTC4d HTC5e

HTC1 2381 0 0 0 0 2381 2381/2381 0/2381
HTC2 893 2183 0 0 0 3076 2183/3076 893/3076
HTC3 235 2775 8904 143 0 12,057 8904/12,057 3153/12,057
HTC4 1 24 926 1256 0 2207 1256/2207 951/2207
HTC5 1 3 78 456 0 538 0/538 538/538
Column total 3511 4985 9908 1855 0 20,259
Producer's accuracy 2381/3511 2183/4985 8904/9908 1256/1855 0/0 Overall accuracy=72.68%
Errors of omission 1130/3511 2802/4985 1004/9908 599/1855 0/0 Kappa coefficient=0.58

a HTC1: height class 1 (2–10.4 m).
b HTC2: height class 2 (10.5–19.4 m).
c HTC3: height class 3 (19.5–28.4 m).
d HTC4: height class 4 (28.5–37.4 m).
e HTC5: height class 5 (37.5–46.4 m).
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used in this research, as these techniques have shown the potential to
produce lower canopy height estimation accuracies than those
applying multiple regression while using ‘small’ lidar transect extents
(Hudak et al., 2002).

Fig. 10 illustrates a spatial distribution of height error derived from
a lidar extent of 17.6% and a MOS of 0.04 ha. An error class interval of
5.0 mwas used to show error detail. By comparing this figure with the
lidar and QB images (Fig. 1), we can see that large homogeneous areas
tend to exhibit lower error (b5.0 m). This suggests that these models
are suitable for areas of relatively homogenous forest structure.
However, errors (N5.0 m) were found among the mixed areas,
containing both deciduous and conifer canopies, and the edge areas
(beside clearcuts and river), where elevation, slope and aspect change
abruptly and where trees typically exhibit variable growth. However,
in total, approximately 91% of the forest canopies within this site
contain errors less than one British Columbia (BC) forest inventory
height class interval (i.e., ≈9.0 m). A confusion matrix (Table 4) was
also constructed to analyze the prediction errors of five height classes
(Table 1). A stratified random sampling method was used to extract
validation points (0.1% of each height class) from the forested area in
lidar CHS, with a total sample size of 20,259. Table 4 shows an overall
accuracy of 72.68% with a kappa coefficient of 0.58. We notice that the
height class 5 was entirely misclassified. There are two potential
reasons: first, this class accounted for a very small portion of the study
area (i.e., 0.07%) and our model was biased to the canopies with large
portions. Second, the discretization of the continuous variable (i.e.,
canopy height) into five classes may introduce extra errors in
confusion matrix. If a height value is on the boundary of two adjacent
classes, the predicted height and the lidar heightmay be classified into
different classes. For example, a lidar height of 18.0 m belongs to the
height class 2; however, the corresponding predicted height of 20.0 m
will be classified into the height class 3, although they only have 2.0 m
difference.

As previously noted, several studies, such as Wulder and Seemann
(2003) and Hilker et al. (2008), have combined lidar transects and
optical data to estimate canopy height at the object level. However,
their results were evaluated using only one type of MOS, which were
much larger object sizes than defined in this research. The MOS in
Wulder and Seemann (2003) was larger than 14 ha. Although noMOS
information was reported in Hilker et al. (2008), it is estimated that
most objects were larger than 2 ha, as this size typically represents the
minimum BC forest inventory unit. Compared to these studies, our
estimates were evaluated at multiscales (i.e., different mean object
sizes) with the best canopy height estimation result derived at the
much smaller canopy level (i.e., tree/cluster of 0.04 ha). Though our
overall error is larger [i.e., 6.2 m versus 3.2 m inWulder and Seemann
(2003) and 3.5 m in Hilker et al. (2008)], we suggest that canopy
height variability is better retained with smaller object sizes, which is
important for fine-scale forest management (e.g., precision forestry).
Additionally, the lidar transect locations in previous studies were
heuristically defined without considering the canopy height spatial
distribution.

5. Conclusion

In this study, we have developed a novel airborne lidar sampling
strategy to determine three important lidar transect features (i.e.,
location, direction and extent). We further applied multiple regres-
sion models to investigate the amount of canopy height variability
explained out of the full-scene variance by using high-resolution
Quickbird imagery and (sampled) lidar transects within a GEOBIA
(Geographic Object-Based Image Analysis) framework. Based on the
results of this study, the following conclusions can be made:

▪ A pseudo-height map was generated using only QB imagery as
the basis to determine appropriate locations to acquire lidar
transects. Compared to the canopy height variability directly
measured from lidar, the optical pseudo-height variability
contains larger errors. However, it is important to have a good
understanding of how and where canopy height is distributed in
a study area before acquiring expensive lidar transects. As
demonstrated in this study, QB data provide an effective way to
generate a full-scene pseudo-height map based on high-
resolution optical characteristics (e.g., texture and shadow).

▪ The lidar transect selection algorithm was based on the pseudo-
height map, and three main rules. However, they are not fixed
rules, but instead, can be tailored to meet different landscape
conditions and project requirements, e.g., biased to small-cover or
large-height classes for selective logging, or specific forest-types,
(i.e., only deciduous). Inour case, these rulesweredefined to assess
all height classes for both forest types as per our research goals.

▪ The canopy height estimation models for this site have similar
performance in north–south andwest–east directions. Thus, lidar
acquisition could take place in either direction.

▪ Byusingameanobject size (MOS)of 0.04 ha, aminimumlidar extent
of 17.6%was found to achieve a similar result as thosemodeled from
the full lidar scene. Specifically, the corresponding conifer and
deciduous canopy height estimate errors were 6.0 m and 6.8 m,
with a combined area-weighted error of 6.2 m. Furthermore,
approximately 91% of all canopy heights in this site contain errors
less than one British Columbia forest inventory height class interval
(i.e., ≈9 m). It should be noted that, compared to the standard
deviation (i.e., 8.0 m) of lidar-measured forest height, our estima-
tion error still remains large. This requires further considerations
using more robust generalization approaches, such as machine
learning, instead of multiple regression.

▪ GEOBIA requires critical considerations regarding the selection of
an appropriate (i.e., optimal) MOS. This research shows that the
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best MOS (i.e., that leading to the lowest RMSE) derived from a
lidar transect-covered area, may not guarantee the best result for
the entire study area.

▪ This study shows that different lidar transect data (based on size
and sample location) generate very different estimates (as well as
errors) of canopy height. Thus, judicious decisions regarding the
selection of lidar transect features are critical to develop robust
integrated models. In addition to canopy height estimation
accuracy, the selection of the ‘best’ lidar transects may also rely
on other factors, such as site accessibility and budget.

6. Future work

This pilot study provides an initial framework for determining
appropriate lidar transect features from optical imagery over a
relatively small study area (i.e., 2600 ha). Ironically, it was the high
initial acquisition costs for this relatively small area, which prompted
this study. However, operational potential requires this framework to
be calibrated and validated using geographically larger datasets. This
is currently underway on two different sites, based on lessons learned
here.
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