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Geographically weighted regression (GWR) extends the conventional ordinary least
squares (OLS) regression technique by considering spatial nonstationarity in vari-
able relationships and allowing the use of spatially varying coefficients in linear
models. Previous forest studies have demonstrated the better performance of GWR
compared to OLS when calibrated and validated at sampled locations where field
measurements are collected. However, the use of GWR for remote-sensing appli-
cations requires generating estimates and evaluating the model performance for
the large image scene, not just for sampled locations. In this study, we introduce
GWR to estimate forest canopy height using high spatial resolution Quickbird
(QB) imagery and evaluate the influence of sampling density on GWR. We also
examine four commonly used spatial analysis techniques – OLS, inverse distance
weighting (IDW), ordinary kriging (OK) and cokriging (COK) – and compare their
performance with that using GWR. Results show that (i) GWR outperformed OLS
at all sampling densities; however, they produced similar results at low sampling
densities, suggesting that GWR may not produce significantly better results than
OLS in remote-sensing operational applications where only a small number of field
data are collected. (ii) The performance of GWR was better than those of IDW, OK
and COK at most sampling densities. Among the spatial interpolation techniques
we examined, IDW was the best to estimate the canopy height at most densities,
while COK outperformed OK only marginally and produced larger canopy height
estimation errors than both IDW and GWR. (iii) GWR had the advantage of gen-
erating canopy height estimation maps with more accurate estimates than OLS,
and it preserved patterns of geographic features better than IDW, OK or COK.

1. Introduction

Statistical regression models that predict the value of continuously varying biophys-
ical properties represent one of remote sensing’s most flexible and widely employed
family of analytical techniques (e.g. Franklin 1995, Lefsky et al. 1999, Cohen et al.
2001). However, the traditional ordinary least squares (OLS) regression assumes that
the relationship between the dependent and independent variables remains constant
across geographical space and thereby exhibits ‘stationarity’ with respect to model
parameters (Fotheringham et al. 1998). Unfortunately, this assumption is commonly
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2910 G. Chen et al.

violated in geographic applications, where the processes often display significant pat-
terns of spatial variability. For example, forest growth rate may be strongly linked to
elevation on a single mountain slope because high elevations shorten growing sea-
sons, but such a linkage can fail across a more extensive study area when other factors
(e.g. the aspect and influence of the surrounding mountain ranges) exert more impor-
tant controls on microclimatic environments (Kimsey et al. 2008). To accommodate
such ‘nonstationarity’ in spatial regression problems, Fotheringham et al. (2002) intro-
duced a technique called geographically weighted regression (GWR). In geographic
applications, GWR has a major advantage over OLS as it incorporates local spatial
relationships (Fotheringham et al. 2002).

Recognizing the potential value of GWR, the remote-sensing community has suc-
cessfully experimented with the technique in a variety of forest applications, including
species richness and composite mapping (Foody 2004, 2005), net primary production
(NPP) estimation (Wang et al. 2005), crown closure prediction (Man Shrestha 2006),
leaf area index retrieval (Propastin 2009), Douglas-fir site index analysis (Kimsey
et al. 2008) and tree diameter modelling (Salas et al. 2010). However, a few studies
have examined the performance of GWR to estimate the canopy height, an important
biophysical parameter to measure carbon sequestration in forests.

In this study, our first objective was to introduce GWR as a substitute for OLS
for retrieving the canopy height using high spatial resolution optical remote-sensing
imagery and small footprint lidar (light detection and ranging) data. The GWR mod-
els were compared with another four commonly used spatial analysis techniques –
OLS, inverse distance weighting (IDW), ordinary kriging (OK) and cokriging (COK).
Although previous works on GWR models have been promising, the technique
typically requires large amounts of calibration and validation data that may pose chal-
lenges in operational applications (Salas et al. 2010). Thus, our second objective was
to evaluate the influence of sampling density on GWR.

2. Study area and data

2.1 Study area

Our study site (49◦ 52′ N, 125◦ 20′ W) was located approximately 10 km southwest
of Campbell River on Vancouver Island, British Columbia, Canada (figure 1). The
size of the study area is 5.1 km × 5.1 km (2601 ha) and is characterized by conifer
and deciduous forests, clearcuts, roads and a river. About 65% of the study area is
covered by conifer forests, the bulk of which is dominated by Douglas-fir (Pseudotsuga
menziesii) trees, along with small proportions of western red cedar (Thuja plicata) and
western hemlock (Tsuga heterophylla) (Morgenstern et al. 2004). Another 16% of the
study area contains red alder (Alnus rubra) while the remainder of the site comprises
clearcuts, roads and a river that diagonally bisects the site from southeast to northwest.
Topographically, the area is relatively flat, with a gentle slope of 5◦–10◦. The elevations
range from 180 m (southwest) to 440 m (northeast) above sea level.

2.2 Lidar data

We acquired lidar data with an airborne terrain scanning lidar system (Terra Remote
Sensing Inc., Sidney, BC, Canada) on 8 June 2004. The system is a discrete return
laser scanner (Lightwave Model 110) with a pulse repetition frequency of 10 kHz, a
wavelength of 1047 nm, a field of view of 56◦ and a beam divergence of 3.5 mrad.
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Influence of sampling density on GWR 2911
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Figure 1. (a) Study area located southwest of Campbell River, Vancouver Island, Canada.
(b) Lidar canopy height model (CHM) of the study area. (c) Quickbird greyscale image over the
corresponding area converted from a false colour composite using near infrared (NIR), red and
green bands.

Continuous-scanning mode in a typical zigzag pattern was used during data acquisi-
tion with a footprint size of 0.19 m and an average point density of 0.7 m−2 (Hilker
et al. 2008). The point cloud was transformed by the vendor to a raster-based digital
elevation model (DEM) and a digital surface model (DSM) with 1.0 m spatial resolu-
tion. We derived a forest canopy height model (CHM) by systematically subtracting
the DEM from the DSM.

2.3 Quickbird data

A cloud-free Quickbird (QB) image of the study site was acquired on 11 August
2004. Four multispectral bands (i.e. blue, green, red and near infrared (NIR)) and
one panchromatic band were used in this study.
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2912 G. Chen et al.

We used a principal components spectral sharpening technique (Welch and Ahlers
1987) to combine the spectral information from the QB multispectral bands and the
spatial information from the QB panchromatic band. The lidar and pan-sharpened
optical data were then geometrically co-registered using the lidar CHM as the base
image. We used a second-order polynomial for spatial interpolation with a total of 118
ground control points (root mean square error (RMSE): 0.85 m). The pan-sharpened
QB image was resampled to match the spatial resolution of the lidar imagery (1.0 m)
using the nearest neighbour digital number (DN) interpolation method.

3. Methods

3.1 Synthesizing data for model evaluation

3.1.1 Data sampling. We used a systematic sampling method (McCoy 2005) to
assign sampling points to positions at equidistant intervals. There were two main
reasons for using systematic sampling: (i) one of our primary emphases was on the
influence of the sampling density – not sampling methods – on model performance;
and (ii) compared to other sampling methods, systematic sampling was easy to imple-
ment and produced consistent samples at different sampling densities. All height
measurements were extracted across consistent 20 m × 20 m sample plots.

Figure 2 shows the five different data sampling densities, using plot intervals of 460,
260, 160, 60 and 20 m, representing a density gradient from very low to very high. For
illustrative purposes, a histogram-adjusted lidar CHM was used as the base layer, with
the overlaid white dots representing sampled plots.

It should be noted that the 460 m large interval was chosen to simulate an oper-
ational remote-sensing activity of forest research or management, wherein a small

(a)

(d) (e)

(b) (c)

Figure 2. Five data sampling densities using plot intervals of (a) 460 m, (b) 260 m, (c) 160 m,
(d) 60 m and (e) 20 m. For illustrative purposes, histogram-adjusted lidar CHM was used as the
backdrop, with the overlaid white dots representing sampled plots.
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Influence of sampling density on GWR 2913

Table 1. Descriptive statistics of canopy height (from lidar data) for the five sampling densities.

Sampling
density
(plot interval) Mean (m)

Standard
deviation (m) Min (m) Max (m) Moran’s I

Spatial
heterogeneity,

SH (%)

‘1’ (460 m) 20.9 12.0 0.0 36.6 0.27 46.06
‘2’ (260 m) 20.7 12.2 0.0 44.7 0.33 53.45
‘3’ (160 m) 20.8 12.6 0.0 45.1 0.43 51.37
‘4’ (60 m) 20.8 12.7 0.0 49.7 0.56 54.27
‘5’ (20 m) 20.5 12.8 0.0 53.0 0.74 57.66

portion of the forest (i.e. 110 plots) of the 2600 ha study area was measured. The
20 m small interval possibly represents the highest sampling density on this site as our
plot size is 20 m. The intervals of 260, 160 and 60 m were selected to show the differ-
ences in estimating canopy height using various types of models. Based on our initial
evaluation, the three densities are sufficient to represent this difference. Descriptive
statistics of the canopy height for the five sampling densities are listed in table 1.

It appears that the canopy height mean and standard deviation values remain sim-
ilar for different plot intervals (table 1). This confirms that the systematic sampling
method works in this area. However, plots with smaller intervals have higher chances
to cover few tall canopies. To quantify the spatial autocorrelation of the sampled plots,
we calculated Moran’s I by following Goodchild (1986). The positive Moran’s I means
that all samples within the distance tend to be similar. This value is negative when
samples are dissimilar. The value close to zero indicates the independence between the
samples. The feature of heterogeneity – spatial heterogeneity (SH) – was calculated
by following Li and Reynolds (1995), using semivariograms. Large SH values indicate
high levels of heterogeneity or low levels of spatial randomness (Zhang et al. 2009)
and vice versa. Table 1 shows that the samples of canopy height using small plot inter-
vals have stronger spatial autocorrelations and higher SH than those using large ones,
although we note that plots with the smallest interval (i.e. 460 m) still exhibit relatively
strong spatial autocorrelation (Moran’s I = 0.27) and high (46.06%).

3.1.2 Extraction of variables. Previous studies have demonstrated the potential of
using high spatial resolution (<5.0 m) optical imagery to estimate the forest canopy
height (Franklin and McDermid 1993, Donoghue and Watt 2006, Hyde et al. 2006,
Chen et al. 2011). In this research, we extracted two types of QB-derived independent
variables: (i) spectral mean – the mean of the DNs within the plots for each spectral
band (i.e. blue, red, green and NIR); and (ii) image texture – the measure of the stan-
dard deviation of DNs within a plot for each spectral band. Since small footprint lidar
provides highly accurate estimates of a forest’s vertical structure (Means et al. 1999,
Lim et al. 2003, Zhao and Popescu 2009), the spatially explicit layer of lidar-derived
canopy height was treated as ‘pseudo’ ground-truth data (Zhao et al. 2009).

This also facilitated the field measurement with high sampling densities, for exam-
ple, 65 536 plots at the 20 m interval. We extracted the canopy height – the dependent
variable – for each plot from the lidar CHM by the following two steps. First, all
tree tops were extracted through local-maximum (LM) filtering within a fixed 3 × 3
pixel window. Previous work by Wulder et al. (2000) has shown that this approach is
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2914 G. Chen et al.

effective when applied to a 1.0 m resolution image over a similar study area. Second,
we took a mean of the height values of all tree tops within each plot.

The minimal-redundancy-maximal-relevance (mRMR) variable selection approach
was used to build models that minimized multicollinearity amongst the independent
variables. mRMR is a machine-learning technique that selects variables with the mini-
mal similarity between each other and the maximal relevance with the target class (i.e.
canopy height in our case) and has proven to be effective when evaluated with differ-
ent classifiers (e.g. Bayes and support vector machines) and a variety of data sets (e.g.
handwritten digits and cancer cell data) (Peng et al. 2005). The mRMR implementa-
tion was obtained from open-source code; more technical details can be found in Peng
et al. (2005). Each of the final models was composed of the top three QB independent
variables. We assessed separately for each of the five sampling densities, but they all
produced the same variable subset, including the spectral means for the red and NIR
bands and the image-texture measure for the NIR band.

3.2 Models

3.2.1 Ordinary least squares. In remote-sensing studies, the OLS has been widely
used as a standard linear regression procedure. Consider the training samples as
(xi, yi), i = 1, . . . , n, where xi is an independent p-dimensional vector [xi1, . . . , xip],
yi is a scalar dependent variable and n is the number of training samples. The
relationship between xi and yi is formulated as

yi = β0 +
p∑

j=1

xijβj + εi, (1)

where β0 is the intercept, β j is the slope for xij and εi is an error term. The estimated
model coefficients are calculated using the least-squares method:

β̂ = (xTx)−1xTY , (2)

where β̂ denotes the estimate of a (p + 1) × 1 vector of model coefficients (β0,
β1, . . . , βp), Y denotes an n × 1 vector of dependent variables, x is an n × (p + 1)
matrix of independent variables and xT denotes the transpose of matrix x. Apparently,
such OLS models assume that the relationships between variables are spatially sta-
tionary. The model parameters β estimated using the training samples are considered
globally equivalent and suitable to other parts of the study area.

3.2.2 Geographically weighted regression. Built upon the OLS regression technique,
the GWR model is formulated as

yi = β0(ui) +
p∑

j=1

xijβj(ui) + εi, (3)

where ui represents the location of the ith sample; the other variables and parameters
are the same as in equation (1). Apparently, the major difference between GWR and
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Influence of sampling density on GWR 2915

OLS lies in the calculation of the model coefficients β, which are spatially varying in
GWR. The estimation of β at each location ui is derived from

β̂(ui) = [
xTw(ui)x

]−1
xTw(ui)Y, (4)

where w(ui) is an n × n matrix that represents the geographical weighting of the ith
sample with its diagonal elements. The calculation of w(ui) is dependent on the kernel
chosen and the bandwidth for that kernel. There are typically two types of kernels:
fixed and adaptive. A fixed kernel, centred at each regression point, applies a constant
bandwidth across the entire study area. Due to its simplicity, the fixed kernel was used
in this study. Readers may refer to Fotheringham et al. (2002) for details of GWR
principles.

3.2.3 Inverse distance weighting, ordinary kriging and cokriging. Spatial interpola-
tion is a procedure that typically applies mathematical functions to estimate the values
at unsampled/unmeasured locations by using the existing observations from sam-
pled areas. In this study, three commonly used spatial interpolation techniques were
evaluated, that is, IDW, OK and COK.

IDW determines each unknown value by using a linearly weighted combination of
values at sampled locations. The equation is typically formulated as

ẑ(u∗) =

n∑
i=1

z(ui)w
p
i

n∑
i=1

w p
i

, (5)

where ẑ(u∗) is the value to be estimated at the location u∗, z(ui) is the measured value
for the ith sample point at an observed location ui, n is the total number of samples,
the ith weight wi is the inverse of distance from ui to u∗ and p is the weighting power.
A commonly used value of 2 was used for p in this study. For details of IDW, refer to
Watson and Philip (1985).

Kriging is a statistically strict spatial regression approach that explicitly considers
spatial autocorrelation within data sets by constructing semivariograms from sample
points. The estimation of an unknown value is typically formulated as

ẑ(u∗) =
n∑

i=1

z(ui)wi. (6)

Calculation of the weight parameter wi is based on a semivariogram, which represents
the semivariance between samples as a function of distance:

γ (h) = 1
2n(h)

n(h)∑

i=1

[z(ui + h) − z(ui)]2, (7)

where γ (h) is the semivariance and n(h) is the number of paired samples at a separation
distance of h. Because the jagged semivariogram derived from samples is not suitable
for the real application, a mathematical model is often used instead to parameterize
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2916 G. Chen et al.

the semivariogram. In this study, the exponential model was found to perform better
than others. As a widely used kriging model, OK assumes the data set has a constant
but unknown mean. For details, refer to Oliver and Webster (1990).

COK is often used to improve the prediction for the entire surface by taking into
account not only the primary variable but also one or more secondary variables. The
estimation of an unknown value is formulated as

ẑ(u∗) =
n∑

i=1

z(ui)wi +
p∑

k=1

m∑

j=1

vjk(ujk)wjk, (8)

where vjk(ujk) is the kth secondary variable for the jth sample point at the location
ujk, wjk is the weight assigned to the secondary variable vjk(ujk), p is the number
of secondary variables at each location and m is the total number of locations for
the secondary variables. To determine all the weight parameters, a total number of
(p + 1)(p + 2)/2 semivariograms and cross-semivariograms have to be calculated. A
cross-semivariogram is defined as

γef (h) = 1
2n(h)

n(h)∑

i=1

[ze(ui + h) − ze(ui)][zf (ui + h) − zf (ui)], (9)

where γ ef(h) is the cross-semivariance between the variables e and f and ze and zf

represent the measured values for the variables e and f . Please refer to McBratney and
Webster (1983) for details. To limit the calculation intensity in practice, the number
of secondary variables is often less than four. In this study, the three most significant
QB-derived variables, which have been selected using the mRMR feature selection
algorithm (see §3.1.2), were used as the secondary variables in COK. They are the
spectral means for the red and NIR bands and the image-texture measure for the NIR
band.

3.3 Model evaluation

The aforementioned models were evaluated in three ways. (i) OLS versus GWR: the
two types of models were assessed and compared at the five sampling densities in
terms of adjusted R2 (coefficient of determination), Akaike’s information criterion
(AIC) (Akaike 1974), RMSE and spatial autocorrelation (Moran’s I) and SH in model
residuals. (ii) GWR versus the other three spatial interpolation techniques (i.e. IDW,
OK and COK): comparisons were made at the five sampling densities in terms of
mean error, mean (absolute) error (i.e. average of errors’ absolute values), RMSE and
standard deviation of errors. (iii) Comparison of the canopy height estimation maps
for all the five types of models at the five sampling densities. All plot data over the
entire study area were used for our model evaluation.

4. Results and discussion

4.1 Comparison of GWR and OLS

Separate OLS models were developed for the five sampling densities (table 2). The
three independent variables used were those selected from the mRMR feature selec-
tion algorithm, including the mean spectral values for the red and NIR bands and
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Influence of sampling density on GWR 2917

Table 2. OLS models for the five sampling densities.

Sampling density (plot interval) Model

‘1’ (460 m) CH = 47.345 – 0.066(DN3) – 0.049(DN4) + 0.077(TXIT4)
‘2’ (260 m) CH = 46.935 – 0.103(DN3) – 0.035(DN4) + 0.102(TXIT4)
‘3’ (160 m) CH = 53.796 – 0.137(DN3) – 0.028(DN4) + 0.066(TXIT4)
‘4’ (60 m) CH = 50.588 – 0.128(DN3) – 0.029(DN4) + 0.088(TXIT4)
‘5’ (20 m) CH = 53.636 – 0.135(DN3) – 0.030(DN4) + 0.076(TXIT4)

Note: CH is the estimated canopy height; DN3 is the mean spectral value for the red band; DN4
is the mean spectral value for the NIR band; and TXIT4 is the image-texture value for the NIR
band.

the image-texture value extracted from the NIR band. They proved more significant
than the other QB-derived variables estimating the forest canopy height in this study.
Specifically, the mean spectral values for the red and NIR bands have a negative cor-
relation with the canopy height, whereas a positive correlation can be found using the
image-texture value extracted from the NIR band. Table 3 shows five GWR models
developed for the five sampling densities. Different from OLS models, the model coef-
ficients derived from GWR are spatially nonstationary, that is, varying with locations.
The minimum, median and maximum values for each parameter, as well as the selected
optimal bandwidths, are presented in table 3. Apparently, the variability of each coef-
ficient varies with the increase in the sampling density. When the sampled plots are
far from each other, the optimal bandwidth for GWR is large. With the increase in
the sampling density, the parameters tend to reveal more spatial details, that is, higher
variability (table 3).

Table 4 is the comparison of the canopy height estimation performance using GWR
and OLS. When a very low sampling density is used (i.e. plot interval of 460 m), GWR

Table 3. GWR models for the five sampling densities.

Sampling
density
(plot interval)

Intercept
(min/median/

max)

DN3
(min/median/

max)

DN4
(min/median/

max)

TXIT4
(min/median/

max)
Selected

bandwidth (m)

‘1’ (460 m) 39.543 −0.188 −0.064 −0.015 3420
57.508 −0.087 −0.050 0.075
71.168 −0.007 −0.028 0.118

‘2’ (260 m) 21.147 −0.328 −0.071 −0.093 2180
50.645 −0.122 −0.019 0.071
80.160 0.045 0.026 0.206

‘3’ (160 m) −0.901 −0.751 −0.099 −0.236 770
54.928 −0.169 −0.012 0.014

143.301 0.097 0.152 0.272
‘4’ (60 m) 7.800 −0.491 −0.091 −0.144 640

50.193 −0.154 −0.011 0.044
106.604 0.102 0.121 0.210

‘5’ (20 m) 11.794 −0.533 −0.079 −0.068 200
51.862 −0.156 −0.009 0.042

103.128 0.107 0.130 0.158

Note: Canopy height is the model estimate; DN3 is the mean spectral value for the red band;
DN4 is the mean spectral value for the NIR band; and TXIT4 is the image-texture value for the
NIR band.
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2918 G. Chen et al.

Table 4. Comparison of the canopy height estimation performance using GWR and OLS for
the five sampling densities.

Sampling
density (plot
interval) Model Adjusted R2 RMSE (m)

Akaike’s
information

criterion Moran’s I

Spatial
heterogeneity,

SH (%)

‘1’ (460 m) OLS 0.42 9.31 882.77 0.64 40.69
GWR 0.50 8.89 876.06 0.61 34.56

‘2’ (260 m) OLS 0.51 8.96 2318.60 0.60 38.44
GWR 0.65 8.16 2248.59 0.53 28.35

‘3’ (160 m) OLS 0.51 8.85 4867.46 0.60 39.74
GWR 0.75 8.13 4661.02 0.47 22.58

‘4’ (60 m) OLS 0.53 8.83 19388.45 0.61 38.38
GWR 0.74 6.93 18077.57 0.50 29.17

‘5’ (20 m) OLS 0.53 8.83 117706.86 0.61 38.50
GWR 0.72 5.81 109796.69 0.29 ∗

Note: ∗SH value was not available, as no semivariogram could be calculated.

and OLS models have a similar performance in terms of adjusted R2, RMSE, AIC,
Moran’s I and SH. As for AIC, a decrease of 3.0 is typically considered a signifi-
cant improvement of model performance (Fotheringham et al. 2002); however, the
value of AIC gets higher with the increase in the sample size. With the increase in the
sampling density, GWR models performed consistently better than the correspond-
ing OLS models, that is, with lower RMSE, higher adjusted R2, smaller AIC, smaller
Moran’s I and smaller SH. Our result that GWR outperformed OLS is consistent with
the findings of many previous studies (Foody 2003, 2004, Wang et al. 2005, Kimsey
et al. 2008, Propastin 2009). Furthermore, as the sampling density gets higher (i.e.
smaller plot interval), GWR has a higher ability to improve the canopy height estima-
tion accuracy than OLS (table 4). For example, there are relatively small differences
between GWR and OLS at the sampling density ‘1’, with �(adjusted R2) = 0.08,
�(RMSE) = 0.42 m, �(AIC) = 6.71, �(Moran’s I) = 0.13 and �(SH) = 6.13%. Here,
‘�’ represents the difference between two values. However, large differences are found
at a higher sampling density ‘5’, with �(adjusted R2) = 0.19, �(RMSE) = 3.02 m,
�(AIC) = 7910.17 and �(Moran’s I) = 0.32. This phenomenon can be explained by
the fact that GWR considers the local spatial relationships. When samples get denser
in a specific area, the neighbouring plots can describe better the spatial variability and
define more reliable weights for each centre plot. Unlike GWR, OLS is a global regres-
sion technique and, thus, the increase in the sampling density only helps to increase
the OLS model performance to some extent. For example, table 4 shows a relatively
large change in adjusted R2, RMSE, Moran’s I and SH for OLS models when the plot
interval decreases from 460 to 260 m, but the model performance is barely influenced
by the increase in the sampling density if the plot interval is smaller than 260 m.

We further evaluated the significance of the spatial variability in GWR parameter
estimates using a Monte Carlo test (table 5). At low sampling densities (e.g. 460 m plot
interval), the nonstationary relationship between the QB variables/intercept and the
canopy height tends to be insignificant. With the increase in the sampling densities,
the relationship moves to statistically significant. This is consistent with the results in
table 4 that GWR only slightly outperforms OLS using the large plot interval of 460 m.
However, GWR can fit the data better than OLS when there exists a high degree of
nonstationarity in parameter estimates.
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Influence of sampling density on GWR 2919

Table 5. Comparison of the significance of the spatial variability
in GWR parameter estimates using Monte Carlo test for the five

sampling densities.

Sampling density (plot interval) Parameter p-Value

‘1’ (460 m) Intercept n/s
DN3 n/s
DN4 n/s
TXIT4 n/s

‘2’ (260 m) Intercept n/s
DN3 <0.001
DN4 n/s
TXIT4 <0.01

‘3’ (160 m) Intercept <0.05
DN3 <0.001
DN4 <0.001
TXIT4 <0.01

‘4’ (60 m) Intercept <0.001
DN3 <0.001
DN4 <0.001
TXIT4 <0.001

‘5’ (20 m) Intercept <0.001
DN3 <0.001
DN4 <0.001
TXIT4 <0.001

Note: n/s, not significant.

4.2 Comparison of GWR, IDW, OK and COK

Table 6 is the comparison of canopy height estimation performance over the entire
study area using the five types of models – GWR, IDW, OK, COK and OLS – for the
five sampling densities. It appears that (i) all models’ mean errors are close to zero;
(ii) the mean (absolute) errors that represent the error magnitude have a similar trend
as RMSE and error standard deviation; and (iii) RMSE and error standard devia-
tion representing the error variance are very similar (table 6). Clearly, the performance
of the three spatial interpolation techniques depends critically on the sampling den-
sity. Higher densities result in lower errors. Although they have a similar performance
using relatively low density samples (i.e. plot intervals of 460 and 260 m), the errors of
IDW decrease dramatically at higher densities (i.e. plot intervals of 160, 60 and 20 m).
It is beyond our expectation that the COK, which used both primary height vari-
able and three secondary QB variables, only slightly outperformed OK and produced
larger canopy height estimation errors than both IDW and GWR at high densities. A
possible reason for this is the difficulties associated with the reliable estimation of a
relatively large number of semivariograms.

Compared to the spatial interpolation methods, GWR outperforms IDW, OK and
COK at most sampling densities (table 6). An exception occurs at the smallest plot
interval of 20 m, where IDW seems more suitable to estimate the canopy height than
GWR. In contrast to those models considering spatial dependence, aspatial OLS pro-
duced relatively consistent results. Apparently, OLS fits better in the condition when
the sample spatial autocorrelation is very low. Overall, table 6 suggests that the regres-
sion models (including GWR and OLS) are much better than the spatial interpolation
techniques at relatively low sampling densities, while the performance of GWR and
spatial interpolation tends to be similar with the increase in the sample numbers.
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2920 G. Chen et al.

Table 6. Comparison of the model performance using OLS, GWR, IDW, OK and COK for the
five sampling densities.

Sampling density
(plot interval) Model Mean (m)

Mean
(absolute) (m)∗ RMSE (m)

Standard
deviation (m)

‘1’ (460 m) OLS −0.17 7.36 9.31 9.15
GWR 0.37 6.85 8.89 8.89
IDW 0.27 7.89 10.69 10.73
OK 0.35 8.32 10.53 10.52
COK 0.34 8.09 10.30 10.30

‘2’ (260 m) OLS 0.18 6.74 8.96 8.80
GWR 0.30 5.92 8.16 8.15
IDW 0.01 7.33 10.07 10.13
OK 0.04 7.84 10.11 10.11
COK 0.05 7.72 9.94 9.94

‘3’ (160 m) OLS −0.09 6.67 8.85 8.77
GWR −0.31 5.45 8.13 8.13
IDW 0.11 6.19 8.81 8.84
OK 0.13 7.14 9.31 9.31
COK 0.13 6.84 9.00 9.00

‘4’ (60 m) OLS 0.08 6.62 8.83 8.76
GWR 0.05 4.75 6.93 6.93
IDW 0.20 4.79 7.24 7.22
OK 0.19 6.11 8.23 8.22
COK 0.19 5.88 7.95 7.95

‘5’ (20 m) OLS 0.21 6.59 8.83 8.76
GWR −0.05 3.83 5.81 5.89
IDW −0.08 3.15 5.15 5.15
OK −0.08 4.50 6.52 6.52
COK −0.08 4.37 6.36 6.36

Note: ∗This mean error was calculated using model errors’ absolute values.

4.3 Mapping of model estimates

Figure 3 is the comparison of the estimated canopy height maps of the entire study
area using OLS, IDW, OK, COK and GWR for the five sampling densities. On
visual examination, the maps derived from OLS and GWR provide sharp boundaries
among non-vegetation features (e.g. cutblocks, river and roads in black colour). This
is because QB-derived variables were used in the regression models and the original
shapes of those features are, therefore, well maintained as shown in the QB image
(figure 1). However, the maps derived from OLS and GWR have different abilities to
describe the canopy height details. As GWR also considered the spatial dependence
between the neighbouring samples and the centre plots, the canopy height estimate at
each location is more accurate than that using OLS. As to the spatial interpolation
techniques, the maps derived from IDW, OK and COK reveal distinct interpolation
characteristics: IDW maps show a bull’s eye pattern, while OK and COK maps have
a smoothing effect. Compared to GWR and OLS maps, all the maps derived from
IDW, OK and COK appear blurry at the boundaries of non-vegetation features, and
this is due to their limitation in estimating abrupt changes of geographic features. At
high sampling densities (e.g. plot intervals of 160, 60 and 20 m), however, large forest
stands were better delineated using spatial interpolation than OLS.
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(a)

(i)

(ii)

(iii)

(iv)

(v)

(b) (c) (d) (e)

Figure 3. Comparison of the estimated canopy height maps of the entire study area using the
five types of models, that is, OLS (a), IDW (b), OK (c), COK (d) and GWR (e), for the five
sampling densities, that is, 460 m (i), 260 m (ii), 160 m (iii), 60 m (iv) and 20 m (v).

5. Conclusion

The major advantage of GWR over OLS is the explicit consideration of spatial non-
stationarity in modelling. By using neighbouring samples to calibrate the model
coefficients associated with a focal point, GWR models can yield a better fit dur-
ing model calibration than OLS models. However, it should be noted that, although
remotely sensed data have the capacity to monitor geographic features in large extents,
samples from field measurements can only cover a small portion. The operational use
of the GWR technique (especially in forest management) requires generating all esti-
mates for the entire study site, including the large areas where field data are absent. In
this study, GWR was introduced to estimate the forest canopy height, with the influ-
ence of using five sampling densities. These densities represent plot intervals from very
large to very small: 460, 260, 160, 60 and 20 m. GWR and another four commonly
used analytical techniques – OLS, IDW, OK and COK – were also compared. As a
high sampling density requires a large number of ground-truth data (e.g. 65 536 plots
at the 20 m interval), the lidar-derived CHM was used to simulate those data, as it has
a full cover of the study area with a relatively high accuracy in capturing tree vertical
structures. The following conclusions can be drawn:
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2922 G. Chen et al.

• For model calibration that assesses model goodness of fit (i.e. R2 and AIC)
based on training samples, and validation that evaluates model performance
(i.e. RMSE, Moran’s I and SH) based on the data over the entire study area,
GWR outperformed OLS, especially at high sampling densities. Typically, GWR
benefits more from the increase of measurements than OLS.

• Compared to the three spatial interpolation techniques – IDW, OK and COK –
GWR has a better performance, especially at low sampling densities. However,
their canopy height estimation results tend to become more similar as more
samples are collected. Using a very small plot interval of 20 m, IDW even outper-
formed GWR. Although COK is a favoured geostatistical technique with strong
generalization ability by considering both primary and secondary variables, it
only outperformed OK marginally and produced larger errors than GWR at
most sampling densities.

• Due to the limitation of estimating abrupt changes of geographic features, the
three spatial interpolation techniques tend to predict more blurry surfaces than
those using regression techniques. At high sampling densities (i.e. plot intervals
of 160, 60 and 20 m), however, large forest stands were more accurately delineated
using IDW, OK or COK, than OLS. Compared to the other techniques tested in
this study, GWR has advantages in producing maps with more accurate estimates
of the canopy height and it also maintained better the shapes of geographic fea-
tures. However, it should be noted that the above conclusions were made based
on the reality that our study area is relatively flat with a gentle slope of 5◦–10◦.

• Many remote-sensing studies require field measurements to accurately calibrate
models. However, compared to the large image scene, field data typically cover
just a small portion (i.e. a low sampling density). In our study, GWR and OLS
produced similar results at the large plot interval of 460 m. Therefore, we sug-
gest that the use of GWR in remote-sensing operational applications should be
carefully considered, as GWR may not necessarily produce significantly better
results than the simple OLS when a small portion of field data is used.

• Similar to GWR, another regression approach based on spatially varying model
coefficients is the expansion method (Cassetti 1972). However, the model coef-
ficients in the expansion method are redefined by other equations of variables
(e.g. latitude) (Cassetti 1972, Fitch et al. 2010). For GWR, the coefficients are
calculated based on the spatial correlations between the independent and depen-
dent variables within certain spatial extents (i.e. bandwidths). Compared to the
expansion method, GWR lacks the flexibility to incorporate extra variables in
modelling; however, it has the advantage of improving the model performance by
directly considering the local spatial relationship – the nonstationarity – between
the variables.

• As pointed out by Jetz et al. (2005), we should also be aware that the spatial
nonstationarity relationships between variables discovered in GWR models may
be ‘in fact global’, but ‘appear to vary locally due to missing variables or inter-
actions terms’. However, it is difficult to thoroughly test all potential variables.
Jetz et al. (2005) also argued that an arbitrary variable used in GWR may still
increase the model prediction performance more than using OLS does. To verify
that the variables used in our study are more effective to predict forest height
than an arbitrarily selected one, we performed a simple test by using the QB
panchromatic band as a ‘randomly selected’ variable in GWR modelling. The
model’s RMSE increased by 19% compared to the results using the red and NIR
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Influence of sampling density on GWR 2923

bands, which supports our decisions for variable selection made in this research.
Although there remain limitations, GWR has been widely acknowledged as a
very useful tool to identify the relationships between variables (Jetz et al. 2005).
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