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There is a paucity of detailed and timely forest inventory information available for Canada's large, remote
northern boreal forests. The Canadian National Forest Inventory program has derived a limited set of attri-
butes from a Landsat-based land cover product representing circa year 2000 conditions. Of the required
inventory attributes, forest vertical structure (e.g., tree height) is critical for terrestrial biomass and carbon
modeling and to date, is unavailable for these remote areas. In this study, we develop a large-area, fine-
scale (25 m) mapping solution to estimate tree height (mean, dominant, and Lorey's height) across Canada's
northern forests by integrating lidar data (representing 0.27% of the study area), and Landsat imagery
(representing 100% of the study area), using a geometric-optical modeling technique. First, spectral mixture
analysis (SMA) was used to extract image endmembers and generate fraction images. Second, lidar data were
used to calibrate the inverted geometric-optical model by adjusting the model's three key fractional inputs:
sunlit crown, sunlit background, and shade fraction, based upon the SMA derived images. The heterogeneity
of the study area, spanning 2.16 million ha, made it challenging to directly and accurately decompose mixed
Landsat image pixels into the canopy and background fractions used for the Li–Strahler geometric-optical
model inversion. As a result we developed a novel method to use the lidar plot data to facilitate the calcula-
tion of these fractions in an accurate and automated manner. The average estimation errors for mean,
dominant, and Lorey's height were 4.9 m, 4.1 m, and 4.7 m, respectively when compared to the lidar data,
with the best result achieved using dominant tree height, where the average error was 3.5 m for over 80%
of the forested area. Using this approach of optical remotely sensed data calibrated and validated with
lidar height estimates, we generate and evaluate wall-to-wall estimates of tree height that can subsequently
be used as inputs for biomass and carbon modeling.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
1. Introduction

Boreal forests are one of the world's largest biomes, responsible for
approximately 22% of terrestrial carbon stored in the global forests
(Pan et al., 2011). Compared to tropical forests, the boreal forests
contain almost twice the amount of carbon per unit area (Potapov
et al., 2011), most of which is contained in soil organic matter. Forest
management and reporting activities require accurate, timely, and
consistent information which typically supports forest inventories.
However, much of the boreal forest ecosystem occurs at high latitudes
(45° to 65°) (Brandt, 2009)where human access is limited and industri-
al forest management is typically not practiced due to low forest
productivity, small trees, and long distances to markets (Wulder et al.,
2007). While there is some elasticity to the managed forest area con-
straints such as fuel costs, presence of roadnetworks, and timber values,
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climate and productivity remain the limiting factors in these northern
forests and the subarctic and cold continental climate is a major imped-
iment to human activities in this biome (Potapov et al., 2008). Outside
of the southern boreal where industrial activities are practiced, natural
ecosystem processes tend to dominate the northern portions of the
Canadian boreal forest (Andrew et al., 2012), with low populations and
few roads (Wulder et al., 2007). As such, forest inventory in the northern
boreal is logistically challenging, labor intensive, and expensive. For
example, Andersen et al. (2009) reported an average cost of $6,000 USD
to establish one ground plot on the Kenai Peninsula of Alaska. Similar
costs have been found in Canada, based on plot installation activities for
the National Forest Inventory (NFI). As a result, an alternate means of
collecting data and characterizing forest conditions is highly desired.

The boreal forests of Canada extend from Newfoundland across
Canada into Alaska, with its northern extent generally considered to
be at the southern limit of the tundra, and its southern extent coinci-
dent with the northern limit of temperate forests (recognizing varia-
tions at both extremes according to local topography, climate, and
edaphic conditions) (Brandt, 2009). Much of British Columbia is
ts reserved.
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considered hemi-boreal, and other areas excluded from the boreal
include eastern Maritime forests, central Canadian mixed woods,
and the agricultural zones of the west. To date, large areas of Canada's
boreal forests lack detailed and timely forest inventory information as
they are not monitored by provincial or territorial resource manage-
ment agencies. In these areas, Canada's federal NFI program has relied
on a Landsat-based land cover product generated by the Earth
Observation for Sustainable Developments of forests (EOSD) project,
representing circa 2000 conditions, to provide relevant information
for this northern portion of the Canadian boreal (Gillis et al., 2005;
Wulder et al., 2008b). While current protocols have integrated
very high spatial resolution satellite data as a surrogate for aerial
photography in the north (Falkowski et al., 2009; Mora et al., 2010),
additional information is required to provide spatially explicit forest
structural information.

Forest vertical structural information is critical for forest monitor-
ing and inventory. While optical imagery has been shown to be able
to effectively capture forest area (Haapanen et al., 2004), cover
types (Wulder et al., 2008b), and change in area (Stehman, 2009),
knowledge of forest presence/absence is only part of the information
required bymonitoring and inventory programs. Forest vertical struc-
ture provides information on “how much”, to complement the more
readily produced “where is” information. Knowledge of tree height,
for instance, provides information on volume, biomass, and—in con-
junction with modeling—age. As such, forest vertical structure (espe-
cially tree height) is a critical NFI attribute. Tree height is known to
correlate strongly with biomass and carbon in forest ecosystems
(Flanagan & Johnsen, 1995; Lefsky et al., 2002; Ni-Meister et al.,
2010). Although the term “tree height” is used, apart from dedicated
single tree applications (e.g., Forzieri et al., 2009; Gougeon & Leckie,
2006), it is typically an areal generalization of height that is generat-
ed, either stand height portrayed within an inventory polygon, or an
average height attributed to a particular image pixel. In this research
(as typical elsewhere) we refer to tree height as related to the areal
generalization of height over a pixel. Further, from an inventory
perspective, stand height is defined as the height of the leading
species (i.e., the species with the greatest proportion of basal area in
the stand) in the tallest horizontal stratum in the stand, with the
goal of capturing the characteristics of the larger trees in a stand,
indicative of the merchantable volume present. Pixel based approaches
typically do not partition height by strata.

In recent years, lidar (light detection and ranging) technology flown
on airborne platforms has become increasingly standardized and
established for measuring forest vertical structure with a high degree
of accuracy (Lim et al., 2003; Zhao et al., 2011), with notable relevance
to forestmanagement (Wulder et al., 2008a). Compared to fieldmensu-
ration, lidar provides a relatively cost-efficient solution to estimate tree
height; however, wall-to-wall airborne lidar surveys over large areas
remain expensive (Chen & Hay, 2011a). In terms of accuracy, Næsset
and Okland (2002) found multiple lidar measures of the same trees to
have less variance than from multiple, manual, field measures. To
reduce data acquisition costs while collecting useful estimates of forest
vertical structure, recent efforts have focused on the development of
integrated models using samples of lidar data to represent large areas
(for a review, see Wulder et al., 2012), often using wall-to-wall optical
remotely sensed data to create strata to support the spatial extension
of estimates (e.g., Boudreau et al., 2008). Successful applications of
lidar to sample and represent a population require sufficient sampling
density and appropriate placement of samples, among other issues.
However, the accuracy of lidar measures for predicting forest structure
offers unique opportunities to also consider using the lidar attributes
(calibrated against ground data) as calibration and validation data in
empirical approaches to generate structural attributes from optical
imagery. Further, a sample density that is too sparse for robust population
level estimatesmaybe sufficiently large andhave value in conferring local
structural conditions.
Following on the ideas above, lidar data can be viewed as providing
plot-like information, enabling model calibration and validation. As
such, models can be developed to spatially extend lidar-measured
attributes over larger extents using image analysis. This type of approach
has been applied by others with the research divided into two groups:
those that apply parametric approaches (Chen et al., 2011; Hilker et al.,
2008; Hudak et al., 2002; Hyde et al., 2006; Wulder & Seemann, 2003),
and those that do not (Chen et al., 2012; McInerney et al., 2010;
Stojanova et al., 2010). A typical parametric approach uses multiple
regression which defines relationships between image spectral metrics
and lidar-measured tree height. Although widely used and easy to inter-
pret, this empirical approach often lacks the ability to characterize forest
complexity, especially at fine spatial scales (Chen & Hay, 2011b), and
most of these approaches were undertaken at the stand level, where
internal stand forest structural variability has been reduced (Hilker et
al., 2008; Wulder & Seemann, 2003). Alternatively, non-parametric ma-
chine learning techniques, such as support vectormachines, have demon-
strated superior performances over classic regression analysis for
estimating tree height (Chen & Hay, 2011b; Zhao et al., 2011). However,
most of these tools, as used in remote sensing studies of forests, have a
black-box nature that can prohibit users from defining (or understand-
ing) the relationship between model inputs and outputs.

While the integration of lidar and optical data through these para-
metric and non-parametric approaches to generating and extending
forest vertical attributes over large areas has been well established,
geometric-optical (GO) approaches provide an alternative which
has proved useful for estimation of vegetation biophysical parameters
(Chen et al., 2000; Chopping et al., 2006; Franklin & Turner, 1992;
Liang, 2007; Peddle et al., 2003; Zeng et al., 2008) from canopy reflec-
tance. The advantage of a geometric-optical (hereafter, GO model)
approach over the aforementioned approaches is that these kinds of
models are typically based on physical principles of the geometric
structures of discontinuous canopies which, in theory, allow these
approaches to be used in a more generic fashion and across ecosys-
tems. As the most widely used GO model, the Li–Strahler model esti-
mates the fractions of four forest components (sunlit canopy, sunlit
background, shaded canopy, and shaded background) as a function
of tree size (e.g., height, crown dimensions) and tree density (Li &
Strahler, 1985, 1992). The premise of the approach is that, if the
fractions of these components (sunlit and shaded crown and back-
ground) can be accurately extracted from the remotely sensed imag-
ery, it is possible to predict tree height through inversion of the
model.

Implementation of the Li–Strahler model in a northern boreal
environment presents unique considerations. First, northern boreal
forest stands are distributed on less productive sites with relatively
low tree densities, resulting in background components that typically
exhibit high spectral heterogeneity, as they are typically character-
ized by bare soils and/or low vegetation. This heterogeneity causes
difficulties in the accurate extraction of the four forest fractions
used for GO models. Second, there are typically few field plots avail-
able in these areas, confounding model calibration and validation.
Third, previous studies have found that the Li–Strahler model gives
more reliable estimates of forest cover than height, and that the
non-linearity of the model inversion process may introduce errors
into height estimates (Woodcock et al., 1994, 1997); however, these
studies were limited by the amount of data available for independent
calibration. Lidar data provide a potential means to address these
issues, providing a large number of detailed forest structural
measurements with which to calibrate the inverted Li–Strahler GO
model by adjusting the input fractions, thereby enabling a more accurate
estimation of tree height.

The primary objective of this study is therefore to develop a large-
area, fine-scale (25 m) mapping approach for estimation of tree
height in the Canada's northern forest environment. To do so, we
propose to integrate samples of airborne lidar and Landsat data,
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within the Li–Strahler GO model. Here, lidar plots refer to a defined,
spatially discrete areas similar in size to a ground plot from which
tree characteristics (i.e., tree height, crown dimensions), as well as
metrics generalizing the plot-wide vertical structural conditions, are
extracted from lidar data.

2. Materials

2.1. Study area

While the focus of our study is the northern boreal we develop
and demonstrate the approach at a study site in western Manitoba
(centered at: 55°54′N, 99°30′W), Canada, covering an area of approx-
imately 2.16 million ha (Fig. 1). As a typical region in the Boreal
Shield, the largest of Canada's ecozones (Environment Canada,
2000), the area is characterized by forest, wetlands, and lakes, with
wildfire the dominant agent of disturbance (Stocks et al., 2003). The
forest is dominated by conifers, including black spruce (Picea
mariana), white spruce (Picea glauca), balsam fir (Abies balsamea),
jack pine (Pinus banksiana), as well as a small proportion of deciduous
trees, such as paper birch (Betula papyrifera), trembling aspen
(Populus tremuloides), and balsam poplar (Populus balsamifera).
Mean annual temperatures range between −15 °C in January and
17 °C in July, and mean annual precipitation is around 400 mm
(Environment Canada, 2000). Topographically, the site has an average
elevation of 273 m above sea level, ranging from 45 m to 494 m with
a mean slope of 4°.

2.2. Lidar plots

Lidar data were collected from a national-scale forest lidar acqui-
sition campaign performed during the summer of 2010, when a series
of 34 individual transects with a total length of more than 25,000 km
were flown across eight ecozones and 13 Universal Transverse Mercator
(UTM) zones of Canada. A segment of one lidar transect (approximately
145 km long) was used to acquire forest structure variability for the
study site (Fig. 1). Lidar data were acquired using a discrete return
lidar system (Optech ALTM 3100). The survey specifications included
a flying height of 1,200 m above ground level, a pulse repetition
frequency of 70 kHz, scan angles of ±15°, and a nominal pulse
density of ~3 returns/m2. Following the data acquisition, lidar metrics
(e.g., percentile values) and CHM (canopy height model) were calcu-
lated for 625 m2 (25-by-25 m) plots that fell within the approximately
400 m lidar swath using FUSION (McGaughey, 2010). Only non-ground
returns greater than 2 m in height were used for metric calculation.
There were 92,800 25-by-25 m lidar plots representing approximately
0.27% of the study area.
Fig. 1. Study area (left) located in western Manitoba, a part of the Boreal Shield ecozone of
near-infrared, and red bands, and is partially covered by lidar plots (0.27% coverage).
With plot-level lidar metrics (e.g., percentile values) and field
data, Bater et al. (2011) developed multiple linear regression models
to estimate three plot-level height attributes: mean height, dominant
height, and Lorey's height, resulting in low RMSEs (root mean square
errors) of approximately 1.5 m. Mean height is calculated as the
arithmetic mean height of all trees in the plot, and dominant height
is calculated as the arithmetic mean height of the four tallest trees
in the plot. Lorey's height is calculated by multiplying, for each tree
in the plot, the tree height by its basal area, then summing these
values and dividing the total by the total basal area of the plot. Each
of these height measures has importance to forest inventory and
management, hence our interest in their estimation.

After excluding non-treed areas from the sample, 81,045 lidar
plots remained for use as reference data. Summary statistics for
these plots are provided in Table 1. We extracted 10% of the lidar
plots for calibration, and another 10% from the remainder for valida-
tion. We used a stratified random selection strategy (Husch et al.,
2003), where the 10% samples were taken from each 1.0 m height
interval from the minimum to the maximum height. Compared to a
simple random sampling, this method considered all tree height
strata, ensuring a more reasonable representation of the population.
Fig. 2 shows a comparison of three dominant tree height histograms
derived from all lidar data, and the selected calibration and validation
data. All three histograms are highly correlated with each other
(R>0.95).
2.3. Landsat imagery

A Landsat-5 Thematic Mapper (TM) scene (Path 34, Row 21) of the
study site was acquired on June 5, 2010 from the USGS archive in L1T
format (orthocorrected). The cloud-free area of the image was used
to determine the extent of the study area. Compared to low spatial
resolution (e.g., 250/500/1000 m MODIS) and high spatial resolution
optical satellites (e.g., 0.6/2.4 m QuickBird), Landsat (30 m) provides
an appropriate resolution for balancing the need to collect fine-scale
forest information with the requirements for reducing data acquisition
and processing costs for large-area forest inventory and management.
Compared to satellites with similar resolutions (e.g., 23 m IRS-LISS III),
Landsat offers free and open access to data (Wulder et al., 2011). In
this study, Landsat TM bands 1–5 and 7were converted to at-sensor ra-
diances, which were then converted to top-of-atmosphere (TOA) re-
flectance (Chander et al., 2009). To facilitate the comparison between
Landsat imagery and lidar plots, the Landsat scene was resampled
from the original 30 m to 25 m (consistent with the lidar plot size)
using the nearest neighbor method. The image was acquired with the
solar zenith angle of 35.5° and a solar azimuth angle of 152.9°.
Canada. The Landsat image (right) is from a color composite using shortwave-infrared,
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Table 1
Summary statistics for estimates of mean, dominant, and Lorey's height in 81,045
forested lidar plots.

Tree height
type

Minimum
(m)

Maximum
(m)

Mean
(m)

Median
(m)

Standard deviation
(m)

Mean height 5.3 18.5 10.2 10.0 2.1
Dominant height 3.4 27.2 12.5 12.2 4.1
Lorey's height 3.6 23.6 10.3 10.0 3.1

Fig. 2. Comparison of three dominant tree height histograms derived using all available
lidar plots, and using a randomly selected set of calibration and validation plots.
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2.4. ASTER elevation data

The elevation data utilized in this study was collected by ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiometer)
as part of the GDEM (Global Digital Elevation Model) project (version
1). The accuracy of GDEM version 1 at the 95% confidence level is
21.31 m (RMSE 10.87 m) (ASTER GDEM Validation Team, 2009),
although a lower error is expected in our study area due to the flat
topography with a mean slope of 4.02 degrees. The DEM (30 m
resolution) was resampled to the resolution of 25 m using the nearest
neighbor method to be consistent with the resolution of Landsat
image and the size of lidar plots. Aspect and slope images were also
generated to represent the study area.

3. Methods

In this section, we first summarize the overall methodological
flow, with dedicated subsections below providing required detail.
Forested areas within the study site were delineated using a super-
vised classification of the Landsat imagery. Tree height information
from lidar plots was used to aid in the collection of training data,
by distinguishing various ground features, such as trees from non-
treed low vegetation. We then calculated the forest fractional com-
ponents (sunlit crown, sunlit background, and shade fractions),
which are critical inputs of the inverted Li–Strahler GO model. This
was completed by using spectral mixture analysis (SMA) and lidar
plots. To do so, the first step was to collect spectral endmembers—
the reflectance spectra of the ‘pure’ pixels (Keshava & Mustard,
2002). This was followed by the calculation of fraction images,
corresponding to the abundance of all endmembers. However, due
to the high spectral variability resulting from the aforementioned
heterogeneity of these forests, these SMA fractions may not accu-
rately represent the inputs of the inverted Li–Strahler model. For
example, two or more SMA endmembers may correspond to the same
fractional component (e.g., a sunlit background may be represented
by exposed soils, low vegetation, or the mixture thereof). Tree heights
derived from lidar plots were used to calibrate the inverted Li–Strahler
GO model by fine-tuning the three fractional components, with results
validated by independent lidar plots. Theflowchart in Fig. 3 summarizes
these steps; while the following sub-sections provide greater detail and
explanation.

3.1. Forest extraction

In this study, we applied a supervised maximum likelihood classi-
fication algorithm (Richards, 1999) to Landsat multispectral bands 3,
4, 5, and 7 to generate four major classes: forest, water, exposed land,
and low vegetation (including shrubs, herbs and bryoids), as per
Canada's EOSD circa 2000 land cover product (Wulder et al., 2008b).
To reduce the impact of haze present when the image was acquired,
bands 1 and 2were excluded fromour analysis (Chavez, 1988). Training
data for each of the classes were selected manually. The forest and low
vegetation classes were difficult to distinguish due to their spectral
similarity and the lack of field measurements. To address this issue,
we used a 1 m CHM derived from the lidar data to guide the selection
of appropriate training samples by verifying the structural differences
between trees and low vegetation (Fig. 4).
3.2. Fraction calculation

Spectral mixture analysis (SMA) is one of the most popular tech-
niques used to address the spectral heterogeneity present in remote
sensing pixels, and it has been widely used in forestry applications
(e.g., Peddle et al., 1999; Zeng et al., 2008). SMA estimates the propor-
tions of pure components within each mixed pixel, which typically
contains more than one ground cover type (Somers et al., 2011). In
this study, SMA was applied to generate sub-pixel fraction images
for the pixels in the forest class (as identified in the previous section).

One prerequisite to successful pixel unmixing using SMA is the
selection of representative endmembers (Somers et al., 2011; Tompkins
et al., 1997). In this study, endmembers were derived from the Landsat
multispectral image (bands 3, 4, 5 and 7), rather than a spectral library,
enabling ease of association with image features (Franke et al., 2009;
Rashed et al., 2003). In this study, endmembers were selected using the
Sequential Maximum Angle Convex Cone (SMACC) algorithm, which
finds extreme vectors (i.e., endmembers) that cannot be represented by
a positive linear combination of other vectors (Gruninger et al., 2004),
similar to principal components analysis. A key benefit of the SMACC
algorithm is that it is fast, has no requirement of a priori knowledge of
the study area, and exhibits reliable performance, which is desirable for
large-area applications. The number of endmembers was determined
based on two criteria: (i) the SMACC relative error tolerance was 0.01,
and (ii) the SMACC relative error began to converge markedly when
additional endmembers were used. Fig. 5 shows a relative error plot,
where five endmembers were finally selected, as the addition of more
endmembers only marginally increased the SMACC performance, al-
though greatly increasing the computational expense. The corresponding
fraction (i.e., abundance) images were simultaneously generated based
upon the assumption that the spectrum of a mixed pixel is a linear com-
bination of the endmember spectra weighted by their area fractions, and
the fractions of each pixel are constrained to sum to one (Gruninger et al.,
2004):

Hi; j ¼
XN
n

Si;nF
N
n; j þ RN

i; j: ð1Þ

Where, Hi,j is the reflectance in the i-th channel of the j-th pixel,
n is the endmember indices from 1 to the expansion length N, S is a
matrix that contains the endmember spectra, F is a matrix that
contains the fractional contribution (between 0 and 1) of each basis
endmember spectrum to each pixel, and R is an error term.
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Fig. 3. A flowchart of the overall approach for estimating tree height using remotely sensed data and a geometric-optical model.
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3.3. Geometric-optical model inversion

The Li–Strahler GO model simulates the complex relationship
between sunlit and shaded canopy and background, and tree density
and canopy geometric structure (h—the height from the ground to
mid-crown, b—the half crown height, and r—the half crown width)
(Li & Strahler, 1992). In the forward mode, the inputs are tree density
and canopy geometric structure, producing outputs of the fractions of
the four image components. By inverting the model, the data inputs
and outputs are switched and we are able to predict canopy vertical
structure (e.g., tree height: h+b) from the four fractions. Typically,
shaded canopy and shaded background fractions are grouped for
assessing forest canopy structure under an assumption that both
components have the same reflectance (Peddle et al., 1999). It is
therefore critical to obtain accurate fractions of the three components
of sunlit canopy, sunlit background, and shade.

While unsupervised SMA methods such as SMACC are more practi-
cal to apply over large areas, one of the disadvantages is that the
endmembers are not assigned to one of the three inputs of the inverted
Li–Strahler model. Additionally, more SMA derived endmembers may
represent the sameGOmodel required image component. For example,
the two types of backgrounds covered by bare soils and low vegetation
have distinct reflectance, possibly leading to the definition of two
endmembers. This issue can potentially be mitigated by using lidar-
measured tree height to calibrate the inverted Li–Strahler model by
Fig. 4. An example of using lidar CHM (canopy height model) in 3D view to distin-
guish (a) two Landsat pixels representing regions dominated by (b) trees and (c) low
vegetation.
tuning the model's input fractions. In this study, tree height was
estimated in the following four main steps:

(1) We assigned the SMACC generated five endmembers to the
three image components (i.e., sunlit crown, sunlit background
and shade). Consequently, the corresponding five SMACC
fraction images were combined to simulate the three inputs of
the inverted Li–Strahler model. Since SMACC is an unsupervised
method, it remains unclear which endmember should belong to
which image component. To solve this issue,we evaluated all the
possible assignment combinations—a total number of 150.

(2) For each assignment combination, we performed the Li–Strahler
model inversion using the combined fractions, topographic
data (aspect and slope images), and solar and viewing angles.
Mathematically, the inversion of the Li–Strahler model is a non-
linearminimization problem that can be solved through iterative
adjustment of estimated a-priori inputs (Verstraete et al., 1996).
The inversion problem can be defined as the minimum of a cost
function C:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

Fi Rð Þ−Fi Tð Þ½ �2
vuut ð2Þ

where, F(R) are the fractions extracted from the spectral reflec-
tance (i.e., combined SMA fractions), F(T) represents the frac-
tions calculated using the Li–Strahler model in forward mode
with tree structure parameters (including tree height) as inputs,
and n is the number of pixels. Different optimization algorithms
Fig. 5. SMACC model relative errors calculated using different numbers of endmembers.
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Fig. 6. Endmember spectra derived from Landsat shortwave-infrared, near-infrared,
and red bands. Endmember #1 belongs to the sunlit crown, endmembers #2 and #3
belong to the sunlit background, and endmembers #4 and #5 belong to the shade
fraction.
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are available; in this study, we selected a trust-region-reflective
algorithm based on the interior-reflective Newton method to
determine the “best” tree height (Coleman & Li, 1996; Coleman
et al., 2002). Lidar measured tree structure information was
also used to constrain the algorithm and avoid unrealistic results.
For example, the lidarmeasured tree heights (Table 1)were used
as a priori knowledge to force the model inversion to generate
height estimates within the same range.

(3) The tree height estimates from all the possible fraction combi-
nations were evaluated using lidar training plots, where the
“best” combination was considered to result in the lowest
average estimation error for height.

(4) The corresponding estimated tree heights were further validated
using independently selected lidar validation plots.

The use of lidar plots provided an accurate way for calibrating the
inverted Li–Strahler model through an automatic adjustment of the
three fractional inputs. As indicated in Section 2.2, the lidar calibra-
tion data included estimates of mean height, dominant height, and
Lorey's height for each lidar plot. These three different measures of
tree height were estimated individually from the GO model by
running the process described above three times.

4. Results and discussion

4.1. Endmember spectra and fraction images

In Fig. 6 we present the spectral reflectance of the five SMA
extracted endmembers (E1, E2, E3, E4, and E5). By following
Fig. 7. Fraction images of the three forest components of sunlit crown, sunlit backgroun
the methods in Section 3.3, we found the best combination of these
fraction images: sunlit crown—(E1), sunlit background—(E2+E3),
and shade—(E4+E5), which were all used for estimating mean
height, dominant height, and Lorey's height. Fig. 6 shows that
the spectra of E1, E4 and E5 have a major difference in the NIR
(near-infrared: 760–900 nm) band, where, as expected, the sunlit
crown has a higher reflectivity contribution than the shade. E4 is
different from E5 with a slightly higher reflectance in the NIR band.
One possible reason could be that E5 was closer to the ground and
it was therefore mixed with a higher percentage of low vegetation
(e.g., shrub and grass) and/or soils, which typically have a higher
water content than tree leaves, enabling a stronger absorption of NIR.
Compared to the sunlit crown and shade endmembers, it is more appar-
ent that E2 and E3 belong to the sunlit background, especially in the
shortwave-infrared (band 5, SWIR-1: 1550–1750 nm and band 7,
SWIR-2: 2080–2350 nm) bands, as they have higher spectral reflectance
than those from trees and shade. The difference between E2 and E3 may
be due to the distinctions in soil properties (e.g., moisture content).

The fraction images (of the full study site) corresponding to the
three components of sunlit crown, sunlit background, and shade are
shown in Fig. 7. Sparse forest stands tended to have lower sunlit
crown and shade fractions and higher sunlit background fractions,
primarily as a result of having fewer trees than dense forests. A typical
example of the sparse forests in Fig. 7 is a large patch close to the
center of the study area. For a viewing of the site, please refer to Fig. 1,
where the patch is in light green tone representing a group of forest
stands regenerating after wildfire. Fig. 7 illustrates that the findings
from these fraction images are consistent with this assumption, as the
regenerated forest stands have low sunlit crown and shade fractions
and are dominated by a large portion of sunlit background.

4.2. Tree height

Fig. 8 presents both the estimation errors (grey bars) and the area
percentages (lines) of different tree height classes for (a) mean
height, (b) dominant height, and (c) Lorey's height. The height classes
(with 3-m interval) are: HT1 (2–5 m), HT2 (5–8 m), HT3 (8–11 m),
HT4 (11–14 m), HT5 (14–17 m), HT6 (17–20 m), HT7 (20–23 m),
HT8 (13–27 m), and HT9 (27–30 m). The 3-m interval was selected
to aid in the interpretation of the estimation errors. The average esti-
mation errors (RMSEs) are 4.9 m, 4.1, and 4.7 m for each of mean,
dominant, and Lorey's height, respectively. The best model perfor-
mance (i.e., lowest RMSE) was achieved for dominant tree height,
which could be caused by two factors: (i) the signals received
by Landsat were biased to the upper level of forest canopies; and
(ii) the dominant trees have a greater likelihood of intercepting the
laser pulses as noted by Popescu et al. (2002). Model performance
for Lorey's height, which is mean tree height weighted by the basal
areas of all trees, was better than for simply averaged mean height
and worse than for dominant height.
d and shade, where grey tones represent values from low (black) to high (bright).

image of Fig.�6
image of Fig.�7


Fig. 8. Estimation errors (grey bars) and area percentages (lines) of different tree
height classes for (a) mean height, (b) dominant height, and (c) Lorey's height. The
height classes (with 3 m interval) are: HT1 (2–5 m), HT2 (5–8 m), HT3 (8–11 m),
HT4 (11–14 m), HT5 (14–17 m), HT6 (17–20 m), HT7 (20–23 m), HT8 (23–27 m),
and HT9 (27–30 m).
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Errors were not uniform across all height classes. In particular,
relatively small (i.e., HT1-2) and tall trees (HT7-9) have errors great-
er than 6.0 m for all the three height measures (Fig. 8). A potential
reason could be that small trees are typically located within sparse
forest stands and the background in these stands is a major contributor
to the spectral reflectance. Additionally, forest background is rarely only
covered by bare soils, but rather is often a mixture of soils and low
vegetation. The heterogeneous background tends to exhibit strong
reflectance anisotropy, causing difficulties for the Li–Strahler GO
model to estimate tree height with nadir data (Chopping et al., 2006;
Gemmell, 2000). For tall trees, which are often mature, the sunlit
crown tends to show a darker tone than other trees. This may have
introduced errors in the fraction extraction using SMA. However, we
noted that these five height classes accounted for only a small portion
of the site, i.e., 2.9%, 15.4% and 8.1% for mean height, dominant height,
and Lorey's height. The majority of the trees (more than 80% by area)
in the forested area ranged from 8 to 20 m (classes HT3-6), where the
tree vertical structurewas reasonablywell estimated (Fig. 8). Especially
for the three classes of HT4, HT5 and HT6, the height estimation errors
were between 2.1 m and 3.9 m. In the case of estimating dominant
tree height, the mean error was 3.5 m for 81.2% of the forested area,
which shows comparable performancewith other studies in the similar
forest environment at the stand level. For example, Wulder and
Seemann (2003) reported a height estimation error of 3.3 m using
Landsat imagery to estimate lidar-measured canopy height in Saskatch-
ewan, Canada. The average stand size used in their study was 14.2 ha.
Similarly, Hilker et al. (2008) updated forest inventory attributes
using high-spatial-resolution QuickBird imagery and a lidar transect in
British Columbia, Canada. Their height prediction resulted in an error
of 3.5 m using inventory polygons, which were typically larger than
2.0 ha in that area. More recently, Chen et al. (2012) applied similar
data types of QuickBird imagery and lidar transects to estimate tree
height in a Quebec study site. By incorporating machine learning tech-
niques, they obtained an error of 3.4 m at the plot level of 0.04 ha. Com-
pared to the estimates at the large forest stand level, height variability in
our study was better retained using small plots (25-by-25 m), with the
wall-to-wall estimates of tree height presented in Fig. 9. Wildfire
boundaries have been overlaid on the height output to aid in illustrating
the capacity of the wall-to-wall estimates to inform on stand vertical
structure. Inset A in Fig. 9 shows an undisturbed forest and wetland
area, where tree heights (right) typically increase with increasing dis-
tance from wetland features (as seen in the RGB Landsat image using
a composite of bands 5, 4 and 3 on the left; shorter trees are clustered
around wetland features). Inset B illustrates an area that was burned
by wildfire in 1995. Outside the area of the fire, the natural variation
in vertical structure as a function of site and topography is observed.
Inside thefire perimeter, the spatial variability in fire impacts is evident,
where areas of moderately tall trees that were not consumed by fire
remain, along with areas of regenerating forests. Fig. 9 indicates that
the height estimates from this study can be further linked with other
landscape ecology research (e.g., wetlands and wildfire) as an important
environmental variable.

Given the results of previous research by Woodcock et al. (1994,
1997) we hadmodest expectations for the capacity of a GOmodel driv-
en approach to estimate tree heights, as these previous studies indicate
that the GO model's estimates of forest cover are more reliable than
its estimates of tree size. The iterative approach we have applied in
this current research, using a large sample of plot-like data (from the
lidar) to calibrate, validate, and re-calibrate as required, may have
enabled the improved estimates of height achieved in this study.
Furthermore, of the studies indicated above [e.g., Hilker et al. (2008)
and Chen et al. (2012)], the prediction errors on height estimates are
lower (i.e., 3.5 m and 3.4 m) than those reported herein, but these
studies used high spatial resolution imagery. While difficult to compare
across studies (e.g., the spatial precision of the estimateswill differ), it is
worth noting that the mapping effort per unit area is less for Landsat
with the larger imaging footprint (185×185 km) in contrast to the
high spatial resolution imagery, with typical extents of 10×10 km.

The intention is that for areas of Canada where spatially explicit
forest inventory information is lacking, image derived estimates could
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Fig. 9. Wall-to-wall estimates of tree height generated from inversion of the Li–Strahler geometric-optical model, overlaid by wildfire boundaries. Insets A and B illustrate the level
of detail afforded by the fine-resolution (25 m) forest height estimates. Inset A is a forest and wetland area where variability in height is a function of distance to wetland features.
Inset B illustrates variability inside and outside a>15-year old fire perimeter.
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fulfill this information need. For instance, the carbon budgetmodel used
by the Government of Canada to represent the forest sector—the Carbon
BudgetModel of the Canadian Forest Sector (CBM-CFS3)—operates using
stand-based inventory data (Natural Resources Canada, 2012). The gen-
eration of pixel-based structural attributes corresponding to the required
model inputs, generalized using image segmentation to replicate forest
stands, may form a basis for using CBM-CFS3 for these remote locations.
Currently, Canada meets national and international carbon reporting ob-
jectives by focusing on the managed forest using CBM-CFS3. Additional
Earth-system science questions that encompass the entire forested area
of Canada in a consistent and transparent manner follow the generation
of remotely sensed inputs to aid in model parameterization.

5. Conclusions

Outside of Canada's managed forest area, such as the more northern
forests, there can be a lack of detailed and timely forest inventory infor-
mation. To reduce data costs while collecting large-area, fine-scale
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(25 m) grid-based tree height estimates over Canada's northern forests,
we have developed a novel mapping solution integrating lidar
plots, representing 0.27% of the study area, Landsat imagery, and the
Li–Strahler geometric-optical model. As it is challenging to accurately
identify the image endmembers required by the Li–Strahler model,
lidar data were used to calibrate the three critical model inputs of sunlit
crown, sunlit background, and shade fractions. We have evaluated the
model performance for estimating three measures of plot-level tree
height: mean, dominant, and Lorey's height. Based upon the results of
this study, we found that the three forest components (i.e., sunlit
crown, sunlit background, and shade) were spectrally heterogeneous.
By applying the spectral mixture analysis to the Landsat imagery, we
found five endmembers, rather than three, which best represented
the conditions present in this boreal study site. The best result
(lowest tree height estimation error) shows that these endmembers
corresponded to one type of sunlit crown, two types of sunlit back-
grounds, and two types of shade. Here, lidar plots were used as calibra-
tion data, which helped assign the endmembers to individual forest
components in an accurate and automated manner. This also reduces
the possibility of introducing errors caused by an inaccurate human
interpretation of the endmembers.We also found that the average esti-
mation errors were 4.9 m, 4.1, and 4.7 m for mean height, dominant
height, and Lorey's height, respectively. The best result was achieved
for characterizing the dominant tree height, where the average error
was 3.5 m for 81.2% of the forested area. It should be noted that the
non-linear GO model inversion process may have introduced errors,
which can be reduced by using more accurate a priori knowledge to
better constrain tree parameters. The coregistration between lidar
data and Landsat image at the pixel level was another likely source of
error due to their different data acquisition geometries. Future research
will evaluate object-based approaches using polygons as basic units
in tree height estimation to reduce this error. However, learning
from and augmenting other studies in similar forest environments,
our approach presents an advancement towards the characterization
of wall-to-wall forest vertical structure over large areas using Landsat
imagery and airborne (or perhaps satellite) lidar sample datasets in a
time- and cost-efficient manner.
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