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It is estimated that Canada comprises approximately 28% of the world's wetlands (~1.5 million km2)
providing essential ecological services such as purifying water, nutrient cycling, reducing flooding, recharging
ground water supplies, and protecting shorelines. In order to better understand how wetland type and area
differ over a range of spatial and thematic scales, this paper introduces a multi-scale geographic object-based
image analysis (GEOBIA) approach that incorporates new object-based texture measures (geotex) and a
decision-tree classifier (See5), to assess wetland differences through five common spatial resolutions (5, 10,
15, 20 and 30 m) and two different thematic classification schemes. Themes are based on (i) a Ducks
Unlimited (DU: 15 class) regional classification system for wetlands in the Boreal Plain Ecosystem and (ii) the
Canadian Wetland Inventory (CWI: 5 classes). Results reveal that the highest overall accuracies (67.9% and
82.2%) were achieved at the 10 m spatial resolution for both the DU and CWI classification schemes
respectively. It was also found that the DU wetland types experienced greater area differences through scale
with the largest differences for both classification schemes occurring in classes with a large treed component.
Results further show that the inclusion of geotex channels (generated from dynamically sized and shaped
window that measures the spatial variability of the wetland components composing a scene, rather than of
individual pixels within a fixed sized window) improved wetland classification.
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1. Introduction

It is estimated that Canada comprises approximately 28% of the
world's wetlands (~1.5 million km2),which provide habitat and sustain
over 600 different species of animals, and plants, including one-third of
species at risk (Reimer, 2009). Wetlands are vital for planetary and
human health by providing essential ecological services such as
purifying water, nutrient cycling, reducing flooding, recharging ground
water supplies, and protecting shorelines. However, in Canada we do
not knowexactly howmanywetlands existwithinour borders (in terms
of area), what type they are, where they are located, or how they have
changed in response to climate change. Furthermore, of those
previously identified in developed areas, 70% have been lost through
human activities (NRC, 2010). In order to effectively identify, monitor,
model, and manage the vast expanse of Canada's wetlands, remote
sensing methods using imagery from spaceborne/airborne platforms
are necessary (Leahy, 2003).

Recognition of this imperative has recently resulted in the
development of the Canadian Wetland Inventory (CWI) Project by the
Canadian Wildlife Service of Environment Canada (Hélie et al., 2003),
whose objectives include developing new Geographic Object Based
Image Analysis (GEOBIA) methods using remote sensing imagery to
inventory and monitor Canada's wetlands (Fournier et al., 2007).
GEOBIA builds on the object-based paradigm, but makes location (i.e.,
‘geo’) a key component of its analysis (Hay & Castilla, 2008). Unlike
traditional pixel-based image processing methods, GEOBIA involves
partitioning a scene into discrete entities or ‘segments’ from which
meaningful image-objects can be generated based on their spatial and
spectral attributes and user experience (often in the form of rule-
sets). Image-objects are groups of pixels in an image that represent
meaningful objects of different size, shape and spatial distribution
within the scene (e.g., individual trees, tree clusters, stands, forests)
(Castilla & Hay, 2008). Thus, it is possible to obtain information about
image-object form and context, such as size, shape, texture and
topology, etc., over a range of scales—in addition to color (on which
pixel-based methods are primarily dependant). Numerous studies
report that multiscale information on scene context and form allows
formore accurate and useful classifications (Blaschke, 2010; Hay et al.,
2005; Johansen et al., 2010). In this study, scale is synonymous with
spatial resolution.

Though GEOBIA is recent, several studies have already successfully
employed it for wetland classification. Durieux et al. (2007) used
GEOBIA to classify bog wetlands in the boreal forest of Western and
Eastern Siberia, Russia using a combination of Multi-spectral imagery
from the MERIS sensor (300 m spatial resolution) and a GBFM JERS-1
radar mosaic (100 m spatial resolution) with an overall accuracy of
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Fig. 1. Study area.
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75%. In Quebec, Canada, Grenier et al. (2007) applied GEOBIAmethods
to RADARSAT-1 (12.5 and 30 m spatial resolution) and Landsat-7 ETM
images (15 and 30 m spatial resolution) to classify five wetland
classes (fen, bog, marsh, swamp and shallow water) for two test sites
with an overall accuracy of 76% and 67% respectively. Grenier et al.
(2008) also used GEOBIA methods to classify five wetland classes and
finer peatland classes using SPOT 4 imagery (10 and 20 m spatial
resolution) for an overall accuracy of 81% and 75% respectively.
Similarly, Frohn et al. (2009) applied GEOBIA to two Landsat-7 ETM
images (15 and 30 m spatial resolutions) acquired in January and
October to effectively classify isolated wetlands in Florida, USA.

While object-based methods applied to complex scenes often
show classification improvement when compared with more
traditional pixel based approaches, to the best of our knowledge no
studies using GEOBIA have evaluated how scale determines what
wetlands can be identified. This is critical in Alberta Canada, where
manywetlands in the Boreal Plain Ecosystem are smaller than 1.0 ha.
As a consequence, the use of medium resolution imagery (e.g., 30 m)
in this ecosystemmay not be sufficient to define all wetland types as
the smallest wetland ‘object’ that can be consistently identified using
this spatial resolution is approximately 1.0 ha or 3×3 pixels. Thus,
many small or transitional wetlands could bemisclassified ormissed.
Based on these ideas, it is apparent that (i) finer-spatial resolution
imagery (b30 m) are required to isolate physically smaller Alberta
wetlands, and (ii) that unique spatial resolutions need to be selected
for each wetland type, as a single scale may not be effective for
classifying all wetland types. Furthermore, Castilla et al. (2009) notes
that the categorical detail of a thematic map (expressed as the
number of different classes) is an inherent component of the scale at
which a scene is assessed, and that changing the class number can
change the configuration of the patch mosaic (i.e., the classified
scene) as much as changing the spatial resolution.

In addition, we have not seen any studies that have fully exploited
object-based image-texture for wetland analysis. Image-texture
perceptually defines the spatial relationship of scene components
ranging from smooth (e.g., a field) to coarse (e.g., a forest). Remote
sensing texture methods attempt to quantify these relationships by
evaluating a combination of both structural (i.e., complexity of shape,
edges, number of vertices) and statistical characteristics (i.e., average/
variance in size, and distance from one another's centroids) (Hay &
Niemann, 1994). When evaluated on fine-resolution imagery (≤5 m),
image-texture has the potential to yield valuable information about
the varying spatial characteristics of the objects within that scene i.e.,
vegetation density, surface roughness, canopy height/area differences,
and neighborhood (or topological) information.

Numerous studies have shown that the judicious use of image-
texture improves classification results. However, users are required to
select the size and shape of their texture ‘window’, as well as their
algorithms—of which many hundreds exist. Early attempts at object-
texture have used Delaunay triangles and Thiessen polygons to
represent scene objects (Hay et al., 1996; Hay & Niemann, 1994);
however, the world is not comprised of triangles or Thiessen
polygons. Never-the-less, it has been shown that considerable
improvements to remote sensing landcover classifications can be
achieved by incorporating such texture measures (Gong et al., 1992;
Hay et al., 1996; Ozesmi & Bauer, 2002). Current GEOBIA software is
able to quantify basic image-texture as the spectral variability or the
arithmetic mean of pixels composing an image-object; however, they
neglect to assess the spatial relationship between image-objects and
their respective neighbors at the same or different scale(s). Chen et al.
(2011), describes an object-based method capable of quantifying
these spatial relationships as geographic object-based texture analysis
(geotex).

Based on these concepts, the main objective of this study is to
evaluate how wetland type and area differ over a range of spatial and
thematic scales. To achieve this goal, we (i) apply a multi-scale
GEOBIA approach; (ii) incorporated geotex measures; (iii) generated
and compared classification results from 5 different spatial scales (5,
10, 15, 20, and 30 m), and (iv) evaluated differences based on
aggregating different thematic classes (i.e., from 15 classes to 5).

2. Study area

The study area (Fig. 1) is located in the Alberta tar sands region
near FortMcMurray, Alberta, Canada, which is (~435 km) northeast of
Edmonton and west of the Saskatchewan border. The (60×60 km)
site is situated within the Boreal Plains Ecozone, and its geographic
extent is defined by a single SPOT 5 image at N57° 7′56″ to N56° 26′
32″ and W111° 30′46″ to W111° 53′49″. Most oil extraction activity
(e.g., tailing ponds) is located in the northwest; however, seismic lines
and oil- and gas-well sites are present throughout. The City of Fort
McMurray is situated in the southwest portion of the study area.
Topographically, this area is relatively flat at 370 m above sea level,
with two rivers, one running south to north (Athabasca River) and the
other east to west (Clearwater River). Prominent native tree species
include Trembling Aspen [Populus tremuloides Michx.], Balsam Poplar
[Populus sect. tacamahaca], White Spruce [Picea glauca (Moench)
Voss.], and White Birch [Betula pubescens Ehrh.], Black Spruce [Picea
mariana (Mill.) Britton, Stems & Poggenburg] and Tamarack [Larix
laricina (Du Roi) K. Koch], with the later two species located in poorly
drained wetland areas.

3. Data

3.1. Optical Imagery

This study used SPOT 5 imagery (60×60 km) that was acquired
June 29, 2006. It consists of four 10 mmultispectral bands (i.e., visible
green, visible red, near infrared, and short—wave infrared) and one
2.5 m panchromatic band. This cloud-free image has an 8-bit
radiometric resolution and was obtained at a low angle of incidence
(6.8°). The imagery was geometrically corrected using a first order
affine polynomial and a nearest-neighbor resampling method for a
RMSE of 0.5. The Gram–Schmidt Spectral Sharpening image fusion
technique (Laben et al., 2000) was then applied to the multispectral
and panchromatic bands to produce a 2.5 m pan-sharpened image.
This technique was selected because it (i) preserves the original
spectral information in the sharpened image and (ii) is not restricted
in the number of spectral bands that can be processed at a single time
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(Laben et al., 2000). The pan-sharpened image was then resampled to
5 different spatial resolutions using an averaging method that
aggregated pixels to 5, 10, 15, 20, and 30 m; which are consistent
with the spatial resolutions of commonly available satellite imagery.

3.2. Reference data

Ducks Unlimited (DU) Canada Western Boreal office provided the
reference data used for classification training and testing. All reference
samples (i.e., polygons) were collected in accordance with their field
guide classification scheme and methodology (Smith et al., 2007).
While their regional classification systemwas developed for wetlands
in the Boreal Plain ecosystem, it is compatible with existing
classification systems such as the national CWI and the Alberta
Wetland Inventory. The regional classification system was developed
using a multi-scale sampling approach, where ecological processes
observed at fine scales (i.e., ground and stand level) are linked to the
spatial and spectral characteristics of a corresponding Landsat TM
scene (30 m spatial resolution), that in-turn is associated with
ecological determinates (e.g., vegetation, soil and hydrology) of
wetland types (Smith et al., 2007). For our study, the location of the
reference field sites was determined using a stratified random
sampling strategy from the 2002 regional classification of a Landsat
TM scene. These locations were visited and verified in the field
20 days prior to the acquisition date of the SPOT 5 image (June 9,
2006) via helicopter (Bell Jet Ranger) by a five-person crew consisting
of a pilot, biologist, recorder, navigator and alternate. Ground and
stand level characteristics of each field site were verified by the
biologist who (i) described the site and its wetland type at 300 m
above ground level, (ii) estimated the percentage of species, slope and
drainage for the site at 100 m above ground, and (iii) identified a
complete list of observed vegetation species at a height of 5–10 m
above the vegetation. In addition, each site was documented with an
overhead (stand level) and oblique (ground level) photograph. Once
the field collection was complete and its consistency and accuracy
verified, the field sites were then digitized (235 polygons in total).
Two thirds (157) of these polygons were used to train the
classification and the remaining (78)were used to assess classification
accuracy. The average polygon size was 2.3 ha, with a minimum and
maximum size of 0.05 and 9.8 ha respectively.
Fig. 2. Methods
4. Methods

The method illustrated in Fig. 2 was applied to all five resampled
images. In simple terms, the images were first segmented, then image-
objects were defined based on spectral and spatial characteristics; and
their spectral and geotex information were extracted. Following this, a
decision-tree classification was performed using the Ducks Unlimited
thematic classification scheme (15 classes), and classified maps were
generated for each scale (5–30 m). These classified maps were then
generalized into 5 CWI wetland classes based on functional types, and
changedetectionwas applied between the 10 classifiedmaps (5DUand
5 CWI).

4.1. Multi-scale Segmentation

Segmentation was conducted using Sized-Constrained Region
Merging (SCRM) (Castilla, et al., 2008), a segmentation software,
developed with Interactive Data Language (IDL) [ITT Visual Informa-
tion Solutions, Boulder, CO, version 7.0]. SCRM is able to partition an
image to derivemeaningful image-objects where each image-object is
internally distinct and coherent with respect to its neighboring image-
objects. It was selected over other segmentation methods because (a)
it is based on conceptually sound object-based principles, (b) the
results produced are similar to those of a human interpreter without a
priori knowledge, (c) it does not require extensive user input, (d) user
defined segmentation parameters are not unitless and (e) errors can
easily be corrected (Castilla et al., 2008). SCRM requires three user
defined parameters (in hectares) to control the size of the generated
image-objects: (i) mean object size, (ii) minimum object size, or
minimum mapping unit size, and (iii) maximum object size. This
segmentation method was applied to each of the five resampled
images where the minimum object size was set to 3×3 pixels (e.g.,
0.0225 ha for the 5 m image, and ~1.0 ha for the 30 m image). Mean
and maximum object sizes were adjusted until the resultant image-
objects visually represented features of interest (i.e., wetland classes).

4.2. Generating geotex (geographic object-based image-texture)

Two sets of variables were used for the multi-scale classifications
that were derived from: (i) the spectral and NDVI bands, and (ii) the
flow chart.

image of Fig.�2


Table 1
Spectral, NDVI and 0, 1st and 2nd order geotex bands.

Band type Description # Band type Description

1 Spectral
(green)

Mean_000_band1 14 1st order
geotex

STDV_1st_band1

2 Spectral (red) Mean_000_band2 15 1st order
geotex

STDV_1st_band2

3 Spectral (NIR) Mean_000_band3 16 1st order
geotex

STDV_1st_band3

4 Spectral
(SWIR)

Mean_000_band4 17 1st order
geotex

STDV_1st_band4

5 NDVI band
ratio

NDVI_000 18 1st order
geotex

NDVI_1st

6 0 order texture STDV_000_band1 19 2nd order
geotex

Mean_2nd_band1

7 0 order texture STDV_000_band2 20 2nd order
geotex

Mean_2nd_band2

8 0 order texture STDV_000_band3 21 2nd order
geotex

Mean_2nd_band3

9 0 order texture STDV_000_band4 22 2nd order
geotex

Mean_2nd_band4

10 1st order
geotex

Mean_1st_band1 23 2nd order
geotex

STDV_2nd_band1

11 1st order
geotex

Mean_1st_band2 24 2nd order
geotex

STDV_2nd_band2

12 1st order
geotex

Mean_1st_band3 25 2nd order
geotex

STDV_2nd_band3

13 1st order
geotex

Mean_1st_band4 26 2nd order
geotex

STDV_2nd_band4

27 2nd order
geotex

NDVI_2nd

Fig. 3. Image-objects measured using 0, 1st, and 2nd-order texture.
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Fig. 4. Decision-tree with 5 resultant classes, where xi represents attributes and A, B, C,
D, and E are thresholds.
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geotex bands. Here, spectral bands (#1–4, Table 1) refer to the original
SPOT 5 multispectral bands. A Normalized Difference Vegetation
Index (NDVI) band (#5, Table 1) was made to assess photosynthetic
activity of vegetation. NDVI was calculated as the difference between
the near-infrared and red wavelengths divided by the sum of the
near-infrared and red wavelengths (Curran, 1983 and Sellers, 1985).

Geotex channels (Table 1, #6-26) were generated with a recently
developed algorithm (Chen et al., 2011), that measures the spatial
variability of the entities composing a scene, not of individual pixels
within a fixed sized window. These texture channels provide
additional spatial information for classifying the different wetland
image–objects (e.g., Bog, Fen, Treed Bog etc.). Geotex can be adapted
to a variety of images and spatial scales, and it addresses current
object-based texture limitations by dynamically adapting and
evaluating the spatial variability within objects, as well between
neighboring image-objects. Adapted from early work by Hay and
Niemann (1994), this texture method was modified to work with
image-objects to define 0, 1st and 2nd order geotex measures (Fig. 3).
0 order geotex is calculated as the variability (i.e., standard deviation)
of the digital numbers (DNs) composing each image-object. 1st order
geotex is the variability of the neighboring image-objects surrounding
each image-object; while 2nd order geotexmeasures the variability of
their neighbors. In total, 22 geotex information bands were created in
addition to the four multispectral and one NDVI band. We note that
2nd order geotex measures were newly developed for this project.

4.3. Multiscale classification

Wetlands were initially classified into 15 different thematic
wetland classes [i.e., Marsh (Emergent and Meadow), Bog (Shrubby
and Treed), Fen (Graminoid Poor, Graminoid Rich, Shrubby Poor,
Shrubby Rich, Treed Poor, and Treed Rich), Swamp (Conifer,
Hardwood, Mixedwood, and Shrub) and Open Water (aquatic bed)]
at 5 different spatial resolutions, based on the Ducks Unlimited (DU)
Canadian Western Boreal office classification scheme. These classes
were then aggregated (based on functional types) to fit within 5 more
generalized thematic classes based on the CWI classification scheme
[i.e., Bog, Fen, Marsh, Swamp and Open Water (aquatic bed)]. Details
of this classification are presented in the following sections.
4.3.1. Decision-tree classification
The See5 or C 5.0 (Quinlan, 1996) decision-tree software was used

to classify each image-object into one of the 15 DU wetland classes.
Decision-tree classifiers (Fig. 4) are a non-parametric classification
technique, meaning it does not assume the population fits any
particular distribution. Rather, it uses a series of sequential steps or
tests to assign labels instead of a single complicated decision, such as
thosemade using traditional classifiers (e.g., maximum likelihood). At
each step, a decision or rule is applied (a node) that leads to two
outcomes (branches). Terminal nodes (leaves) represent the class
labels and have their own uniquely defined rule-set. The rules are
formulated using values from variables/attributes within the provided
modeling data set (i.e., training samples) where they recursively split
the data set into subsets until the decision-tree algorithm determines
that (i) no gain can be achieved by additional splitting in terms of an
error measure or (ii) if a user defined condition set is met.

The advantages to using decision-trees over traditional classifiers
are that they can (i) incorporate a variety of data sources (e.g., GIS
layers, digital elevation models, multispectral imagery etc.), (ii)
handle both continuous and categorical information, (iii) automati-
cally select the most important variables among those provided for
the classification and (iv) studies by Lawrence and Labus (2003) and
Pal and Mather (2003) have shown that decision-tree classifies can
outperform other land cover classification methods (Lawrence et al.,
2004).

image of Fig.�4
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For this study, a univariate decision-tree algorithm within See5.0
software was used to perform the multi-scale classifications. This
algorithm differs from those used for creating multivariate decision-
trees, such the Quest algorithm (Loh & Shih, 1997), in that it applies
tests to single attributes instead of a linear combination of attributes.
As such, each node contains a single attribute (e.g., red band, blue
band, NDVI band etc.) that is used to recursively split the dataset.
Splitting continues until a terminal node (leaf) is reached. The
attributes used to split the dataset are determined using a method
known as the information gain ratio (Quinlan, 1993), where attributes
that exhibit the highest normalized information gain are selected. A
more detailed description of this algorithm can be found in Quinlan
(1993).

Using See5.0 for the image classification involved (i) preparing the
training dataset into a compatible format, (ii) constructing the tree
classifier and (iii) evaluating the classification. Preparing the training
dataset for See5.0 required creating two files: a name file and a data
file. The name file was used to describe the attributes and classes,
which in this case included (i) 15 wetland classes, (ii) a forest class,
(iii) a null class, and (iv) 27 bands (e.g., multispectral, NDVI and
geotex bands) as attributes. The data file contained the information on
the training cases (e.g., samples from bogs, fens and marsh etc.)
needed to extract patterns for classification. For each scale, area
weighted training samples were extracted from image-objects based
on their proportion within 157 DU reference polygons. Our objective
was to create the ‘best’ classifiedmap possible for each scale, based on
training data selected at the same scale, rather than biased by a single
scale.

Global pruning, the process of reducing the size of the decision-tree
by excluding less important branches, was set to 25%with a minimum
of at least 2 cases. This prevented “overfitting” the decision-tree (i.e.,
over calibration). Furthermore, the decision-trees were converted to
rule-sets, a series of simple and unordered if-then statements. This
simplified the classifier and made it more adaptable for creating a
classified image in IDL. IDL was used as it is the language that SCRM
and ENVI [ITT Visual Information Solutions, Boulder, CO, version 4.5] –
our image processing software are developed with, thus providing
seamless integration for segmentation, programming and visualiza-
tion. After each classification, See5.0 outputs a table showing the
influence of each attribute (e.g., band) within the classification;
similar to Factor Scores in Principle Component Analysis. This
information was then used to evaluate the usefulness of the spectral
and geotex bands.

4.3.2. Spatial representation of the classified maps
The predictions or ‘rule-sets’ constructed by See5.0 cannot be used

to produce a classified map in itself; thus, additional programming
was necessary. The programming languageMATLAB [MathWorks Inc.,
Natick, MA]was first used to reconfigure the See5.0 generated rule-set
into a format compatible with IDL. Next, a programwas written in IDL
that used the rule-sets to evaluate the 27 bands and assign wetland
and upland class labels (e.g., 3=emergent marsh). It is important to
be aware that when the 27 bands are evaluated, areas (e.g., pixel
locations) can meet the conditions of several rules. That is, since the
evaluated pixels have 27 attribute values, or a single value for each
band (i.e., 27 dimensions), it is likely that several of the rules are
applicable where the combined conditions of their unique if-then
statements are satisfied. To avoid assigning multiple “class labels” to
the same location (i.e., overlapping classes), precedence was given to
the class with the highest aggregated confidence value.

In See5.0, each rule is assigned a confidence value from 0 to 1 that
summarizes its performance. This is estimated using the Laplace ratio
as shown in Eq. (1):

Conf idenceValue = n−m + 1ð Þ= n + 2ð Þ ð1Þ
where n is the number of training samples that are covered by the rule
and m is the number of samples that do not belong to the same class
the rule is trying to predict. Once these confidence values were
aggregated for each class, they were used to create a classified map. In
this way, each pixel in the classified map was given a single class
value. This was then applied for each scale of imagery. The DU
classified image for each scale was then produced, and thematically
aggregated (reclassified) into the broader CWI wetland types using
ArcGIS software [Environmental Systems Research Institute (ESRI),
Redlands, CA, version 9.3]. In total, 10 classified maps were generated
from both classification schemes. The area of each DU and CWI
wetland type was then calculated for each of the 5 scales.

4.4. Accuracy assessment

A classification accuracy assessment was performed for each of the
10 classified maps. There were a total of 320 reference points used for
each map with a minimum of 20 points defined for each of the 15 DU
wetland types. 224 of these points were randomly selected from
within 78 DU reference polygons (field verified June 9, 2006). A expert
interpretation of the remaining 96 stratified random sample points,
was verified using the same SPOT 5 2.5 m pan-sharpened image
(acquired June 29, 2006) used in this study to derive our coarser
resolution scenes.

Since we use a multi-scale classification approach, using image-
object samples at a single scale to evaluate accuracy for all scales
would bias all other scales. Therefore, we used the same set of 320
sample points to evaluate the classified image-objects at each scale (5,
10, 15, 20 and 30 m). This way, the sample point location and type
remains constant, even though image-object size, shape and cover-
type may differ through scale. Once classified, each of the resulting
(10) confusion matrices was converted into a population matrix
(Pontius & Millones, 2011) and calculated for the overall, user's and
producer's accuracy (Congalton & Green, 1999). An estimated
population matrix better represents the entire study area than a
typical confusion matrix, and the summary statistics derived from it
are less biased, particularly if a sampling strategy is implemented to
obtain reference data (Pontius & Millones, 2011).

4.5. Scale-based change detection

Change detection is a family of methods used to detect differences
between two or more images (Chen et al., in press), that typically
represent instances of the same location at different times, or spatial
resolutions. Here, image-differencing of the classified images was
applied to evaluate the class-to-class difference over scale (5 – 30 m).
To accomplish this, the change detection statistics tool, available in
the ENVI remote sensing software, was used. This tool produces a
matrix that identifies those areas that change classes between scales,
and was able to report these differences as pixel counts, areas and
percentages. To apply the change detection tool, it was first necessary
to resample all scales to a common spatial resolution (5 m). Change
detection was performed for both the CWI and DU classified maps
between each scale.

5. Results

5.1. Accuracy assessment comparisons

The overall accuracy (Table 2) for the DU wetland classifications
varied from 55.6% to 67.9% over the 5 scales, with user and producers
accuracies ranging from 20% to 100% for the 15 wetland types. The
10 m classification produced the highest overall accuracy, with many
classes having high user (U) and producers (P) accuracies [e.g.,
MeadowMarsh (U:93%, P:56%) Shrubby Rich Fen (U:65%, P:89%), and
Conifer Swamp (U:74%, P:84%)].



Table 2
DU and CWI overall accuracy.

Scale DU CWI

Overall accuracy Overall accuracy

5 m 59.81 77.22
10 m 67.92 82.23
15 m 55.64 72.40
20 m 60.15 77.44
30 m 56.14 75.80
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In contrast, the overall accuracies for the CWI wetland classifica-
tions were higher than those for the DU classifications and ranged
from 72.4% to 82.2% between scales (Table 2). This was not
unexpected since there were fewer distinct classes (5 vs. 15) and no
within-class differences. User and producer accuracies ranged
between 56% and 94% for the 5 CWI wetland types. Again, the highest
classification accuracy occurred for the 10 m classification with the
Fen wetland type, each showing a user and producer accuracy of 85%
and 87% respectively.
5.2. Geotex evaluation

See5.0 summarizes the degree to which each attribute (band) was
used for the construction of the classifier. Specifically, it details what
percentage of training samples used which attributes (i.e., bands) for
the construction of the classifier. Fig. 5 summarizes the attribute usage
across all five scales for the top 10 variables/bands that most
influenced the DU classification.

In general, all of the 0, 1st and 2nd order geotex bands and five
non-geotex (spectral) bands were used to some degree for each
classification scale. In this sense, the relatively large usage of the
geotex bands, particularly 0 and 1st order, implied that the additional
spatial information they supplied were useful for class separation.
Overall, the non-geotex bands were the most widely used, followed
by the 1st order mean and NDVI bands, 0 order standard deviation
bands, and the 2nd order mean, NDVI and standard deviation bands
(Fig. 5).

However, at certain scales, some geotex bands were used more
than non-geotex bands. For instance, at the 20 m scale the 1st order
geotex band (STDV_1st_band3) was used 88%, 6% higher than the
Fig. 5. Top 10 used spectr
next most used non-geotex band. Similarly, at the 5 m scale the 1st
order mean geotex band was used at 100% or 37% more than the next
most used non-geotex band. At the 30 m scale, another 1st order
geotex band was used 24% more than the next most used non-geotex
band. It is also important to note that there was a large band usage
difference observed between the 1st and 2nd order geotex bands,
where the 2nd order geotex bands were not as useful, especially as
scale increased. Specifically, as spatial resolution increased, differ-
ences between the larger image-objects decreased, thus information
about their structural relationships were less practical for distinguish-
ing between geographical entities.
5.3. Differences in wetland type and area through scale

5.3.1. Visual evaluation
Fig. 6 provides an example that illustrates how the classified DU

wetland types differ through scale. To emphasize these differences,
two areas were selected as examples. Fig. 6(A) illustrates differences
for the scales 1–5 that cover the same geographic extent. In this
example, there were considerable differences in class distribution and
area observed through scale, with wetland classes becoming more
generalized (fewer) and objects sizes becoming larger with increasing
scale. There were eight classes identified at 5 m and 10 m spatial
resolutions, and four at 15, 20 and 30 m spatial resolutions. For
instance, Mixedwood Swamp, which was present at all scales,
increased in area between 5 m and 20 m, and decreased between
20 m and 30 m, where much of its area was replaced with Hardwood
Swamp. The Treed Poor Fen wetland class was also shown to decrease
between 5 and 10 m, and was absent from the remaining coarser
spatial resolutions. The areas it used to occupy were replaced largely
with Treed Rich Fen and/or Treed Bog.

Fig. 6(B) shows the wetland type and distribution differences for a
second sample area. In general, there were fewer larger wetland types
identified at coarser spatial resolutions. In this case, the Hardwood
Swamp, Shrubby Rich Fen and Treed Bog wetland types completely
disappear after 10 m and were replaced primarily with Shrub Swamp,
Treed Rich Fen and Conifer Swamp. Through scale there was also
confusion between the Treed Rich Fen, Conifer Swamp and Treed Rich
Fen. Small pockets of Emergent Marsh were distributed throughout
the sample area at 5 m and 10 m, but were largely absent between
al and geotex bands.



Fig. 6. A visual evaluation of DU wetland area and distribution change through scale for example areas (A) and (B).
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15 m and 20. At 30 m, Emergent Marsh is identified as a large single
region.
5.3.2. Evaluating DU wetland types (15 classes) through scale
Table 3 and Fig. 7 further illustrate how the DU wetland

classification scheme and their associated areas differ through scale. In
general, through scale there were many observed changes in class area,
with only a third of the 15 wetland types remaining constant: Shrubby
Rich Fen, Shrubby Poor Fen, Shrub Swamp,MeadowMarsh and Shrubby
Bog. The largest difference among theDUwetland typesoccurredwithin
the Treed Poor Fen [Fig. 7(A)], which began at 70,836 ha at 5 m, then
rapidly decreasedby26,251 haor 37%until it leveledoff at 20 m.Most of
this areal decrease was attributed to this class changing into Conifer
Swamp (8837 ha), Treed Bog (5053 ha), Treed Rich Fen (5007 ha),
Mixedwood Swamp (2303 ha) and Emergent Marsh (2287 ha). It is
important tonote thatmostof thesedifferencesoccurred inwetland types
with a large treed component.
Table 3
Area through scale for DU wetland types (ha).

Scale Fen

Poor Fen Rich Fen

Graminoid Shrubby Treed Graminoi

5 m 2360 2552 70,836 11,890
10 m 3991 3650 62,149 6579
15 m 8342 3871 51,591 8657
20 m 2611 4377 44,585 16,892
30 m 2494 5458 45,553 20,179
Ave. 3960 3982 54,943 12,839
STD. 2536 1060 11,304 5654

Scale Swamp

Conifer Hardwood Mixedw

5 m 41,912 24,161 20,523
10 m 41,035 10,915 24,967
15 m 54,692 18,989 29,653
20 m 51,220 16,679 27,761
30 m 41,021 35,386 10,858
Ave. 45,976 21,226 22,752
STD. 6499 9234 7484
Other notable examples of area difference are present in the
Mixedwood and Hardwood Swamp, Treed Bog and Emergent Marsh
wetland types. Specifically, from 20 m to 30 m the Hardwood Swamp
increased by 18,707 ha (112%) and the Mixedwood Swamp deceased
by 16,903 ha (61%) [Fig. 7(B)]. Here, most of the area increase for
Hardwood Swamp came from a change in Forest (3457 ha), Conifer
Swamp (1828 ha), Mixedwood Swamp (4301 ha), Shrub Swamp
(2837 ha), Emergent Marsh (2313 ha), Treed Bog (2115 ha), Treed
Poor Fen (877 ha) and Graminoid Rich Fen (728 ha). For the Mixwood
Swamp, its decrease in area was attributed to these areas being
partially classified as Hardwood Swamp (4031 ha), Treed Poor Fen
(2401 ha), Conifer Swamp (1404 ha), Emergent Marsh (1218 ha),
Forest (1723 ha), Graminoid Rich Fen (1369 ha), Shrub Swamp
(603 ha) and Treed Rich Fen (819 ha).

Both EmergentMarsh [Fig. 7(C)] and Treed Bog [Fig. 7(D)] increase
in areawith a change in scale from 5 m to 15 m and from 15 m to 20 m
respectively. From 5 to 15 m, Emergent Marsh increased by 10,604 ha
or 33% due to changes in Conifer Swamp (2289 ha), Forest (1501),
Marsh

Emergent Meadow
d Shrubby Treed

24,876 14,034 32,053 32,053
18,649 23,742 34,786 34,786
18,974 16,362 42,657 42,657
16,766 25,271 36,701 36,701
15,051 31,074 33,758 33,758
18,863 22,097 35,991 35,991
3713 6915 4089 4089

Bog

ood Shrub Shrubby Treed

10,634 1523 28,977
9589 1232 31,514
16,984 3619 25,116
17,599 212 36,524
17,209 2528 30,292
14,403 1823 30,485
3941 1299 4143

image of Fig.�6


Fig. 7. DU wetland areas through scale for (A) Fen; (B) Swamp; (C) Marsh and (D) Bog.
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Treed Poor Fen (2452 ha), Shrubby Rich Fen (1460 ha) and Treed Bog
(1489 ha). At 15–20 m, a large amount the Treed Bog's area gain came
from changes in Treed Poor Fen (1946 ha), Conifer Swamp (2487 ha),
Mixedwood Swamp (1309), Forest (1021 ha), Hardwood Swamp
(858 ha), Shrub Swamp (1431 ha) and Shrubby Bog (1274 ha), nearly
all of which had a large treed component.
5.3.3. Evaluating CWI wetland types (5 classes) through scale
As indicated in Table 4 and Fig. 8, the areas classified as Marsh, Bog

and Aquatic Bed remained fairly constant through scale. However, it is
important to note that the standard deviation of area for the Aquatic
Bed was considerably large compared to its average area through
scale. It experienced a 28% change in standard deviation compared to
the 7.4% and 9.3% shown in the Marsh and Bog wetland types
respectively. This indicates that Aquatic Bed is proportionally more
Table 4
Area through scale for CWI wetland types (ha).

Marsh Fen Swamp Bog Aquatic Bed

Scale 5 m 37,805 126,551 97,232 30,500 13,160
Scale 10 m 39,924 118,763 86,508 32,747 11,344
Scale 15 m 45,179 107,799 120,319 28,735 9825
Scale 20 m 40,201 110,505 113,261 36,737 12,065
Scale 30 m 37,930 119,812 104,475 32,820 5593
Average 40,208 116,686 104,359 32,308 10,398
Standard Deviation 2989 7559 13,261 3004 2945
confused with other CWI wetland types. The greatest difference in
area for Aquatic Bed occurred between 20 m and 30 m, where it went
from 12,065 ha to 5593 ha, a decrease of 46%. The majority of this
6472 ha decrease was attributed to it changing into Fen (3278 ha),
Swamp (529 ha), Bog (669 ha) and Marsh (1132 ha). The greatest
areal difference for the Swamp wetland type occurred between 10 m
and 15 m, where it increased from 86,508 ha to 120,319 ha, a
Fig. 8. CWI wetland areas through scale.
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difference of 33,811 ha or 39% of its total class size. Most of this gain
came from a change in the Forest class (18,679 ha) and the Fen
(10,060 ha) and Bog (2661 ha) wetland classes. From 20 m to 30 m,
the Fen wetland class increased by approximately 9307 ha or 8.4% of
its total class area, most of which came from the Swampwetland type
being classified as Fen (8418 ha). Thus, the majority of area increases
and decreases observed in the Fen and Swamp classes at 20 m to 30 m
were inversely proportional to each other.

6. Discussion

Both the qualitative (i.e., visual) and quantitative results indicate
that there were many differences in class distribution and area
between different scales, contrary to what was implied by the
accuracy assessment (confusion matrix). Similar findings were also
noted in studies done by Pontius and Cheuk (2006), Kuzera and
Pontius (2008), and Pontius and Connors (2009), which investigate
how information in categorical maps is altered as resolution coarsens.
Here we suggest that much of the observed differences through scale
were attributed to (i) classification accuracies, (ii) discrepancies
between image-object size and shape, and (iii) the use of DU and CWI
classification schemes. These reasons as they relate to the overall
patterns observed through scale are described in the following
sections.

6.1. Classification accuracy considerations

In general, the CWI overall accuracy was comparable to other
wetland classifications that had roughly the same number of classes
and similar wetland types (Grenier et al., 2007 and Grenier et al.,
2008). Since the overall accuracies for the DU wetland types were
around 56%–68%, more of the observed area differences in wetland
type could have been a result of class error. As such, differences
observed between two (or more) classified images (at different
scales) could have been attributed to error in either image. For
example, there were instances at different scales where even very
similarly sized and shaped image-objects of the same class [Fig. 9(A)
and (B)] were not classified the same. In this example of the DU
classification scheme, it appears that the inclusion of a small section of
forested area (i.e., Treed Poor Fen) caused the decision-tree algorithm
to misclassify the image-object at 20 m as Treed Bog [Fig. 9(D)] when
it should have been classified as Shrubby Bog [Fig. 9(C)]. Examples
such as these imply that at 20 m, the decision-tree algorithm had
difficulty separating Shrubby Bog from other spectrally and/or
texturally similar wetland types, particularly Treed Bog, Treed Poor
Fen, and Shrubby Rich Fen. However, it is important to keep in mind
that it might not be entirely the fault of the classifier. If we consider
that the DU training samples are accurate, then for a classifier to
Fig. 9. A comparison of two similarly shaped and sized image-objects for 15 m (A) and
20 m (B) and their respective DU classifications (C) and (D) for the same area.
function properly there first needs to be some observable difference
between the spectral and geotex profiles (i.e., classes need to be
distinct). If there are very few, or no spectral and geotex differences
between wetland types, it is unlikely that any another similar
classifier could improve the situation.

Classification error is but one explanation for the differences in
area and wetland type observed through scale. For instance, the DU
Conifer Swamp wetland type exhibited a consistently high user and
producer accuracy (76% on average). However, its difference(s) in
area through scale [Fig. 7(B)] are quite high, despite its reputable
classification accuracies. This implies that something other than
classification error is responsible for the observed area differences.

6.2. Why were there observed area differences for DU and CWI wetland
types through scale?

It is clear from Figs. 7 and 8 that the wetland types with a large
treed component undergo the largest area differences through scale.
Specifically, the areas of CWI wetland types remain fairly constant
through scale with the exception of the Swamp wetland class
(comprised of up to 80% treed), which dramatically increases between
15 m and 20 m resolutions. Similarly, DU Swamp and Treed Fen
wetland types also experience large area differences through scale.

6.2.1. Differences in image-object size and shape
In Remote Sensing, spatial resolution plays an important role in

how the landscape is perceived or observed. This is because—at least
in part—at different (spatial) scales, different patterns emerge or
‘appear’ as the aggregation of smaller units (i.e., leaves, tree crowns,
tree clusters, stands, forests, etc.)—though at a specific scale we
seldom see the smaller constituent units, only the new larger whole
they ‘create’ through aggregation. The effect or sensitivity of data
aggregation on landscape analysis results was first described in the
geographical literature as the Modifiable Areal Unit Problem (MAUP)
(Openshaw, 1984; Openshaw & Taylor, 1979) where it consists of two
interrelated problems: (i) the scale problem and (ii) the zoning
problem. The zoning problem relates to the variation in results caused
by differences in the areal units that are recombined as areas of the
same size, but with a different configuration (i.e., variation in results
caused by boundary differences between similarly sized areal units).
In contrast, the scale problem refers to variations in results caused
when areal data are aggregated into successively larger areal units. In
both cases, these variations in results can lead to different inferences
simply because the scene has physically and thus perceptually
changed. Marceau et al., first recognized that remote sensing imagery
represented a specific case of the MAUP (Marceau & Hay, 1999).

In this study, differences between image-object size and their non-
nested boundaries (through scale) contributed to variations in image-
object DNs for the ‘same’ landscape feature through scale. These
variations were often enough to result in wetlands being missed
through spatial aggregation (i.e., small wetlandswere not identified at
coarser spatial resolutions) and/or classified differently (e.g., Treed
Rich Fen vs. Treed Poor Fen). Furthermore, since many of the wetland
types were spectrally and texturally similar, their classifications were
sensitive to slight differences in these spatially aggregated values. This
exacerbated the discrepancies observed between the wetland types
through scale, which can be attributed to MAUP.

In addition, the smooth or gradual transitions between wetland
types (e.g., Treed Rich Fen to Treed Poor Fen) make placing a discrete
boundary between them problematic—especially at coarser scales.
This increased the likelihood of introducing error by including
discrete parts of different (spatially adjacent) geographic entities
(i.e., treed wetland types) within a single class. As Bian (2007) notes,
not all environmental phenomena are amiable to object-based
representations. We suggest that at fine spatial resolutions, transition
zones should be classified as separate mixed classes. However,

image of Fig.�9
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defining what this range of scales should be is not trivial, and will
change with different scene conditions—though a clear example can
be found in Fig. 7(A), where a critical difference occurs for the DU Fen
wetlands types between the 15 and 20 m resolutions.

6.2.2. DU and CWI classification scheme
The classification scheme developed by DUwas created through a

process where the spatial and spectral characteristics in Landsat TM
imagery (30 m spatial resolution) associated with ecological de-
terminates of wetland types were linked to ecological processes
observed at fine scales (Smith et al., 2007). However, it is possible
that the relationship(s) between the radiometric and semantic
(classification scheme) similarities established by DU for this sensor
may not hold true at other spatial and spectral resolutions using a
different sensor (e.g., SPOT 5). For example, SPOT 5 wavelengths are
centered at different locations than TMdata, and, the SPOT sensor has
no blue channel, whereas TM does. As such, there could be instances
where, at certain scales, some of the DU wetland classes are less
distinguishable from each other. If this were the case, it could have
lead to some image-objects being misclassified through scale, thus
introducing error.

As Castilla et al. (2009) notes, changes to the thematic scheme, can
dramatically change the classified results. Pontius and Malizia (2004)
have also noted that the influence of the categorical aggregation on
class categories can greatly affect confusion matrixes used to report
map accuracy—this is illustrated in our results, where the reduction of
15 DUwetland types to 5 CWIwetland types improved the accuracy of
our classified maps. Consequently, another concern is whether the DU
classification scheme is appropriate. Specifically, to what degree are
these wetland types functionally and spectrally different (e.g., treed
bog vs. treed poor fen vs. conifer swamp etc.)? If wetland type groups
(e.g., Treed Poor Fen or Treed Rich Fen) are functionally similar, does it
make sense to have them as distinct classes? Here the severity of the
confusion/error occurring between these classes is quite slight.
Instead, it seems more prudent to consider wetlands in a broader
context where wetland groups (Bog, Fen, Swamp etc.), such as those
found in the CWI classification scheme, represent more distinct
landscape features. In this case, any confusion/error made between
these classes would be more severe and visually apparent.

7. Conclusion

Current GEOBIA approaches used for Canadian wetland inventory-
ing and monitoring typically use medium spatial resolution imagery
(30 m) and employ image-processing texture methods that do not
take full advantage of the spatial interaction of scene objects. As such,
if the area being inventoried contains many small wetlands (as is the
case in the Boreal Plan Ecosystem) or wetlands that are spectrally
similar, there is a potential for them to be misclassified or completely
missed.

In this study we have evaluated how wetland type and area differ
through scale using two wetland classification schemes and the
incorporation of geotex information. Geotex quantifies the spatial
interaction of image-objects and their neighbors using their shape
characteristics as a dynamically sized moving window. A quantitative
assessment of our results shows that the overall classification
accuracy based on the Canadian Wetland Inventory (CWI) scheme
through a range of scales was comparable to other similar wetland
classifications (ranging from 72.4 to 82.2%); whereas the overall
accuracy based on the Ducks Unlimited (DU) classification scheme
(55.64–67.92) had confusion between the additional (finer detailed)
10 thematic classes. We found that the highest overall accuracy for
both classification schemes was achieved at the 10 m scale. We also
observed that there was a greater area difference for the DU wetland
types through scale than CWI wetland types, particularly within
functional class types. Furthermore, the largest area differences in
both classification schemes occurred for those wetland types with a
large treed component, suggesting that spectrally and/or texturally
similar classes are more sensitive to changes in scale. Results further
show that the inclusion of geotex information was useful for wetland
classifications; and that at specific scales, geotex bands were used
more than spectral bands for the construction of the See5 classifier.
For example, at 5 m resolution, 100% of the 1st order mean geotex
band was used (this is 37% more than the next most used spectral
band). However, spectral bands were the most used overall and
should be included in any wetland classification. It was also observed
that 2nd order geotex bands were not as useful as 0 and 1st order
geotex bands, particularly as scale increased.

In summary, we have demonstrated the importance of scale and
how it affects wetland classification in terms of (i) what wetlands
types are identified and (ii) their change in associated areas by
applying a multi-scale GEOBIA approach to 5 resampled images. Users
will find this research useful for increasing their understanding of
spatial resolution and how it plays a role in wetland classifications
that employ GEOBIA approaches. Potential extensions to this study
will examine how the selection of segmentation parameters (i.e.,
mean object size) affects multi-scale classification results and if such
object parameterization can reduce the influence of MAUP.
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