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a  b  s  t  r  a  c  t

The  GEOgraphic  Object-Based  Image  Analysis  (GEOBIA)  paradigm  continues  to  prove  its efficacy  in remote
sensing  image  analysis  by providing  tools  which  emulate  human  perception  and  combine  analyst’s  expe-
rience with  meaningful  image-objects.  However,  challenges  remain  in the evolution  of  this  new  paradigm
as sophisticated  methods  attempt  to  deliver  on  the  goal  of  automated  geo-intelligence  (i.e., geospatial
content  within  context)  from  geospatial  sources.  In order  to generate  geo-intelligence  from  a  forest  scene,
this article  introduces  a GEOBIA  framework  to estimate  canopy  height,  above-ground  biomass  (AGB)  and
volume  by  combining  lidar  (light  detection  and  ranging)  transects,  Quickbird  imagery  and  machine  learn-
ing algorithms.  This  framework  is  comprised  three  main  components:  (i)  image-object  extraction,  (ii)  lidar
transect  selection,  and  (iii)  forest  parameter  generalization.  The  rational  for integrating  these  methods  is
to  provide  a semi-automatic  GEOBIA  approach  from  which  detailed  forest  information  is obtained  at  the
individual  tree  crown  or small  tree cluster  level  (i.e.,  mean  object  size  of  0.04  ha);  while  also  dramatically
reducing  airborne  lidar data  acquisition  costs.  Analysis  is performed  over  a  16,330  ha  forested  study  site  in
Quebec,  Canada.  Forest  parameter  estimation  results  derived  from  our GEOBIA  framework  demonstrate
a strong  relationship  with  those  using  the  full  lidar  cover;  where  the  highest  estimates  for  canopy  height
(R =  0.85;  RMSE  = 3.37  m),  AGB  (R =  0.85;  RMSE  =  39.48  Mg/ha)  and  volume  (R  = 0.85;  RMSE  =  52.59  m3/ha)
were  achieved  using  a lidar  transect  sample  representing  only  7.6%  of the  total  study  area.

©  2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Remote sensing techniques allow for the collection of Earth sur-
face information over a range of scales in a synoptic and timely
manner (Wulder, 1998). Today, high spatial resolution (i.e., H-
res pixels generally less than or equal to 5.0 m)  remote sensing
data are rapidly accessible from a variety of sources, such as
satellite-based optical sensors and airborne lidar (light detection
and ranging) systems. Over the last decade, the development of new
image processing techniques increasingly referred to as GEOgraphic
Object-Based Image Analysis (GEOBIA) (Hay and Castilla, 2008) have
proven effective for analyzing high resolution data by incorporating
analyst’s experience, complimentary ancillary data, sophisticated
geospatial analysis and methods that emulate the human percep-
tion of image-objects within a scene (i.e., based on size, shape,
tone, color, texture, topology and context), rather than as isolated
pixels of varying color (Hay and Castilla, 2008; Blaschke, 2010).
However, the evolution of GEOBIA faces a growing challenge to
develop semi/automated methods that bridge the gaps between
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straightforward segmentation – the extraction of image-objects –
and the generation of geo-intelligence from geospatial sources. Here
geo-intelligence refers to geospatial content within context (Hay and
Blaschke, 2010).

As a dominant terrestrial sink for atmospheric CO2, forests play
an important role in the dynamics of the carbon cycle (Eamus
and Jarvis, 1989). Similarly, precise forest management requires an
accurate estimation of carbon content with an emphasis on above-
ground biomass (AGB). To assess the commercial value of forests,
volume is widely used to measure wood quantity; and an impor-
tant parameter used to calculate AGB and volume, is canopy height.
However, monitoring large-area forest parameters such as canopy
height, AGB and volume, requires considerations of both accuracy
and budget. Previous studies have proven promising to apply opti-
cal imagery and GEOBIA to retrieve forest parameters, such as forest
height (Wulder et al., 2007; Mora et al., 2010), AGB  (Addink et al.,
2007; Kajisa et al., 2009), and volume (Mäkelä and Pekkarinen,
2001; Pekkarinen, 2002). Although it is cost effective estimating
these parameters using only optical imagery, model accuracies are
lower than those using airborne lidar data. To meet these chal-
lenges, recent research describes the combination of small-area
lidar transects and wider extent optical imagery to provide cost-
effective solutions. This is achieved by generalizing lidar-measured
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vertical canopy information from transects to the entire study
site covered by an optical image (Hudak et al., 2002; Wulder and
Seemann, 2003; Hilker et al., 2008; Stojanova et al., 2010; Chen
and Hay, 2011). Recent studies (Chen and Hay, 2011, in press)
have noted, that the ability to accurately extract this information
depends on (i) the type of forest characteristics assessed, (ii) the
ability to define appropriate lidar transects and (iii) the type of mod-
eling and generalization methods used to relate transect samples
back to the full scene.

Based on this brief background, the primary objective of this
study is to present a GEOBIA framework to generate new forest geo-
intelligence by estimating canopy height, AGB and volume from
Quickbird imagery and airborne lidar transects. This framework
builds upon prior research by incorporating three main compo-
nents: (i) image-object extraction, (ii) lidar transect selection, and
(iii) forest parameter generalization. Chen and Hay (2011, in press)
first describe the use of a lidar transect selection algorithm and
a support vector regression (SVR) generalization technique applied
to a small (2601 ha) homogenous forest site (with two major tree
species) in British Columbia, Canada. In this study, we build on
this early work by presenting a more complete GEOBIA framework
composed of one additional machine learning algorithm, and exam-
ine its performance over a larger (16,330 ha) more complex mixed
forest site (with six major tree species), located in Quebec, Canada.

2. Data collection

2.1. Study area

Our 16,330 ha (14.2 km × 11.5 km)  study site (48◦30′N,
79◦22′W)  is located in the Training and Research Forest of Lake
Duparquet (TRFLD), Quebec, Canada (Fig. 1), where it is character-
ized as a South-Eastern Boreal Forest composed of an abundance of
mixed stands. The site is dominated by balsam fir (Abiesbalsamea
L. [Mill.]), along with white spruce (Piceaglauca [Moench] Voss),
black spruce (Piceamariana [Mill] B.S.P.), white birch (Betulapa-
prifera [Marsh.]), trembling aspen (Populustremuloides [Michx]),
and jack pine (Pinusbanksiana Lamb.). The remainder of the site is
composed of clearcuts, roads, rivers and lakes.

2.2. Field data

Field data were collected during the summer of 2003. A number
of forest stands were visited and 37 plots were chosen to gather
canopy height, DBH (diameter at breast height), species composi-

tion and stem density. A Panasonic SXBlue real-time differential
GPS (Geneq, Montreal) was  applied for plot positioning, with an
average accuracy of 2–3 m under canopy. Most of the field plots
were measured using a fixed size of 20 m × 20 m. However, the plot
size of 10 m × 10 m was also used in several dense and uniform
stands, where the two types of plot sizes would produce similar
results. All measured canopy heights ranged from 1.4 m to 27.1 m,
with an average height of 15.9 m and a standard deviation of 6.2 m.
To further acquire AGB and volume at the plot level, biomass and
volume equations were defined from the literature (Lambert et al.,
2005; Perron, 2003) and used to calculate values at the individ-
ual tree level. AGB and volume per plot were then estimated by
summarizing the individual values.

2.3. Lidar data

Lidar data were acquired from August 14 to 16, 2003, by a
discrete-return Optech ALTM2050 system. This mission was carried
out at a flying attitude of 1000 m,  with a pulse repetition frequency
of 50 kHz, a beam divergence of 0.2 mrad, and a maximum scale
angle of 15◦ (i.e., swath width of 540 m).  First and last returns were
recorded, with average densities of 3.0 and 0.2 hit(s)/m2, respec-
tively. A forest canopy height model (CHM) was generated at a 1.0 m
resolution. However, 1.0 m pixels do not represent the actual for-
est entities of interest – individual trees. To capture these basic
forest objects, a canopy height segmentation image (CHS) was gen-
erated (from the 1.0 m resolution CHM) to describe forests at the
individual tree crown or small tree cluster (hereafter, crown/cluster)
level. This CHS was created by applying an algorithm provided by
Chen et al. (in press),  with the basic idea of adapting a watershed
algorithm to delineate tree crowns and fill them with the average
height values within the crown extents. Visual analysis revealed a
strong spatial correlation between segmented tree crowns/clusters
and individual trees and small tree groups. The latter being the case
predominantly with deciduous trees, as their canopies appeared to
overlap, and distinct crowns could not always be confidently iso-
lated. Table 1 illustrates the proportion of each forest canopy height
class in the study area; where the height classes were adopted from
the local forest inventory height class codes.

2.4. Quickbird (QB) data

A QB scene of the study site was acquired on June 13, 2003 under
clear skies. The off-nadir view angle was 14.0◦. Four (2.44 m)  mul-
tispectral bands [i.e., blue, green, red and near infrared (NIR)] and

Fig. 1. Study area (left) located in the territory of the Training and Research Forest of Lake Duparquet (TRFLD), Quebec, Canada, with a Quickbird grayscale image (right) over
the  study site converted from a false color composite using near infrared (NIR), red and green bands.
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Table 1
Proportion of each canopy height class in the study area, derived from the lidar CHS
image and based on local forest inventory height classes.

Canopy height class (m) Forest proportion (%)

1: 0.0–2.0 20.09
2: 2.1–4.0 15.18
3:  4.1–7.0 16.77
4:  7.1–12.0 19.49
5:  12.0–17.0 15.49
6:  17.1–22.0 9.13
7:  >22.1 3.85

one (0.61 m)  panchromatic band were used in this study. To exploit
the combined multispectral and spatial content of this imagery, a
principal components spectral sharpening technique (Welch and
Ahlers, 1987) was used to fuse the multispectral and panchromatic
bands. The pan-sharpened QB image was then resampled to a 1.0 m
spatial resolution (the same as the CHS), and then geometrically co-
registered to the CHS using 60 tie points, and yielding a RMSE of
0.9 m.

3. Data analysis

An important component of this project involves using optical
imagery to generate ‘pseudo-height’ classes, from which to guide
our selection and ‘acquisition’ of airborne lidar transects. This is
based on research which describes useful relationships between
optical imagery and canopy height (Franklin and McDermid, 1993;
Hyde et al., 2006; Donoghue and Watt, 2006; Mora et al., 2010).
Once transects are defined, forest height and species information
(from the optical and lidar data covered by the transects) can be
generalized to the entire study site covered by the optical imagery.
To achieve this, the QB scene must first be segmented to derive
image-objects at the small crown/cluster level. This is followed by
an object-based classification to define conifer, deciduous and non-
forest objects. Three types of variables are then extracted from the
conifer and deciduous classes and used to simulate pseudo-height
classes for each canopy type. By applying rules described in Chen
and Hay (2011),  optimal lidar transect locations and orientations
can then be defined based on these pseudo-height classes.

To develop models within the transect-covered areas that link
lidar-measured canopy height with the QB variables, two  machine
learning approaches mRMR  (minimal-redundancy–maximal-
relevance) and SVR (support vector regression)  were evaluated.
These provided appropriate model inputs from which transect
canopy height was generalized to the entire site. Field mea-
surements were then used to evaluate model performance by
comparing the estimated forest parameters (i.e., canopy height,
AGB and volume) with those using the full lidar scene. The
flowchart in Fig. 2 summarizes these steps; while the following
sub-sections provide greater details and explanations.

3.1. Image-object extraction

3.1.1. Image segmentation
Compared to medium- or low-resolution remote sensing

imagery, high resolution data are able to better capture individ-
ual trees and detailed canopy variability. However, there are new
challenges resulting from the enhanced spectral variability found
in canopy and crown shadows. Fortunately, geo-object based image
analysis provides suitable solutions to reduce these variations
while still capturing meaningful forest characteristics. However,
a more critical issue involves selecting an appropriate mean object
size (MOS), or scales of analysis (Hay et al., 2001; Chen et al., in
press). A large MOS  (i.e., 2–20 ha) is able to simulate forest inventory
polygons at the stand level (Wulder and Seemann, 2003); however,

Fig. 2. Flowchart of the methodology process with reference to Section 3. mRMR
is  the abbreviation of minimal-redundancy–maximal-relevance, and SVR is support
vector regression.

the merits of high resolution imagery may  not be fully exploited,
as detailed forest canopy variability tends to be ignored in large
objects (Chen and Hay, in press). Conversely, a very small MOS
may  introduce large errors due to the difference of data acquisi-
tion geometries using lidar and optical remote sensing systems,
especially in areas where large canopy height variation exists.
As a result, Definiens Developer 7.0 (Definiens Imaging GmbH,
Munich, Germany) was  applied to segment the pan-sharpened
multispectral Quickbird imagery at a relatively small MOS  using its
multiresolution segmentation algorithm. Two parameters of shape
and compactness control the characteristics of similarity and het-
erogeneity for each image-object. In this study, the software default
value of 0.1 was used for shape; while the compactness parameter
was set at 0.8 to obtain smooth forest object boundaries. All four
spectral bands were assigned the same weight during the segmen-
tation. A scale parameter of 50 was  used to derive image-objects at
the crown/cluster level, with a MOS  of 0.04 ha.

3.1.2. Object-based tree type classification
Popescu and Wynne (2004) recommend the development of

separate models for conifer and deciduous trees, due to their dis-
tinct shapes and spectral reflectance. Therefore, all image-objects
were classified into three categories: (i) conifer, (ii) deciduous and
(iii) non-forest objects. This step was  accomplished by applying the
supervised nearest neighbor classification algorithm in Definiens
Developer 7.0 using the four QB spectral bands. 50 object samples
were manually selected for each class in this classification. To assess
classification accuracy, 50 points were randomly extracted from
each class and manually interpreted as the reference data. Due to
a limitation of additional metadata (e.g., aerial images), these sam-
ples were also extracted from the Quickbird image; however, their
interpretation was guided by the location of field plot data (see
Section 2.2). Accuracy results are described in Section 4.1.

3.2. Lidar transect selection

3.2.1. Canopy-object pseudo-height classification
As its name suggests, the premise for using a lidar transect selec-

tion algorithm is to determine appropriate locations, from which
lidar transects (i.e., height samples) should be collected, rather than
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Table  2
Three types of variables derived from Quickbird imagery.

Variable type Variable
name

Description

Mean spectral bands DNi Average of DNs for the itha band
within image-objects

Image-texture TXITi Internal standard deviation for the
ith band within image-objects

GEOTEXi Neighboring standard deviation for
the ith band within neighboring
image-objects

Shadow fraction SF A quotient of the size of shadow
areas and the size of corresponding
entire image-objects

a i is the band number (i.e., 1 – blue band, 2 – green band, 3 – red band and 4 –
NIR band).

collecting wall-to-wall coverage. To facilitate this, a base ‘height’
map  needs to be created to define the canopy height variability of
the entire study site. It should be noted that this map  only needs
to be a reasonable approximation of height variability; otherwise,
it is meaningless to collect lidar data. Additionally, this approx-
imation depends on the forest structure and the final accuracy
requirements. In this step, QB imagery were used to provide a
‘pseudo-height’ base map, as previous studies have revealed that
H-res optical imagery can provide detailed forest spectral, texture
and shadow information, leading to promising results for estimat-
ing canopy height, AGB and volume (Franklin and McDermid, 1993;
Pekkarinen, 2002; Hyde et al., 2006; Donoghue and Watt, 2006;
Leboeuf et al., 2007; Chen et al., in press).

Specifically, Chen et al. (in press) described three types of
QB-derived object-based variables (Table 2) which have proven
beneficial for estimating canopy height. They are described as fol-
lows: (i) mean spectral bands (i.e., the average DN value within
segments for each spectral band – blue, red, green and NIR); (ii)
image-texture for spectral bands, which includes internal-object
texture – a measure of the spatial variability of DNs within a seg-
mented object, and geographic object-based texture (GEOTEX) – a
measure of the spatial variability within neighboring objects; and
(iii) shadow fraction – a quotient of the size of shaded areas and
the size of the corresponding forest objects based on the DNs of the
NIR band. In this study, these variables were extracted with custom
IDL code (ITT Visual Information Solutions, Colorado, USA); and the
pseudo-height classification was implemented in ENVI (ITT Visual
Information Solutions, Colorado, USA) using ISODATA, an unsuper-
vised classification algorithm. 14 height classes were generated,
based on seven forest inventory height classes and the two tree
types (i.e., conifer and deciduous) that occupy the site.

3.2.2. Transect feature decision
In this study, lidar transect selection requires the decision of

four ‘optimal’ features: (i) sample size, (ii) orientation, (iii) loca-
tion, and (iv) representative canopy height sampling. To best
determine these features, the canopy-object pseudo-height clas-
sification image (derived from Section 3.2.1) was  used as a proxy
for forest height variability.

Based on the acquired airborne lidar data (Section 2.3), a swath
width of 540 m was used to represent the minimum lidar extent
for a single transect. Since fewer transects represent lower acqui-
sition costs, four different sizes of transect samples were evaluated
– based on differences in their total area resulting from one, two,
three and four transects.

To evaluate if a directional bias existed in our rectangular
study area (14.2 km × 11.5 km), two acquisition directions were
also assessed. This resulted in four lidar transects evaluated in the
N–S direction (representing 3.8%, 7.6%, 11.4% and 15.2% of the total

study area), and four evaluated in the W–E  direction (4.7%, 9.4%,
14.1% and 18.8%), thus, eight in total. The decision to test only four
transects per direction was guided by results from Chen and Hay
(2011) which revealed minimal model improvements with addi-
tional transects, though increasing lidar acquisition and processing
costs.

With sample size and direction defined, the ‘best’ transect loca-
tion(s), were determined from three main rules developed (in IDL
code) from previous research (Chen and Hay, 2011). Specifically:
(i) transects must contain no overlap with other transects; (ii)
the transect-covered area must sample all canopy-object pseudo-
height classes (with the non-vegetated objects masked out prior
to analysis); and (iii) the canopy pseudo-height histogram derived
from the transect-covered objects must have the highest correla-
tion with the pseudo-height histogram derived from all objects for
the entire site. Consequently, the best transect will use the small-
est sample size to model the ‘natural’ height variability of the full
scene. However, we  note that this represents only one of many
different rule scenarios. Conceptually, lidar collection could also
be biased to maximize/minimize sample collection of one or more
specific ‘pseudo-height’ classes, i.e., for the tallest/smallest height
class, specific tree types, distance from roads, etc.

In practice, once the best transect sample size, location and
direction have been defined from the pseudo-height image, this
transect would be physically flown, and the acquired lidar data
(referred hereafter as lidar-measured canopy height)  would be used
for modeling as described in the following sections. However, we
note that in this research, a full lidar scene was  already available
from which the ‘best’ transects were extracted and evaluated.

3.3. Forest parameter generalization

3.3.1. Minimal-redundancy–maximal-relevance (mRMR)
variable selection

Three types of QB-derived variables (Table 2) were used to link
QB data with lidar-measured canopy height within the transect-
covered area. As these variables have proven promising for canopy
height estimation in eastern Canada (Chen and Hay, in press), our
objective here is to evaluate their efficacy for predicting canopy
height in complex western Canadian forests. To ensure that, high
correlation (i.e., redundancy) is minimized between these vari-
ables to avoid model over-fitting, potentially decreasing model
performance (Pal and Foody, 2010). Variable selection was used
before the modeling step. Typically, variable selection (also know
as feature selection) focuses on constructing and selecting an appro-
priate variable subset from all input variables to improve the
model prediction performance (Guyon and Elisseeff, 2003). In this
study, a machine learning technique named the mRMR  (minimal-
redundancy–maximal-relevance) approach (Peng et al., 2005) was
applied to select the best variable subset, with which to separately
model the canopy height for conifer and deciduous trees. Originally
developed for gene selection, this algorithm has consistently shown
promising results when evaluated with several commonly used
classification methods (e.g., support vector machines and naive
Bayes) and different types of data sets (e.g., handwritten digits and
cancer cell lines) (Peng et al., 2005). mRMR  has also shown a com-
parable performance with other feature selection methods (e.g.,
Random Forest and Correlation-Based algorithm) for remote sens-
ing hyperspectral data (Pal and Foody, 2010). Additionally, mRMR
is available as free open source software, is easy to use, and is
computationally efficient.

The basic idea of using mRMR was  to select variables with the
minimal similarity between each other, and the maximal relevance
with the target classes. In our evaluation, the result is a list of vari-
ables in order of predicting power, where the first variable or the
combination of variables in the top of the list is more statistically
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relevant to canopy height than those in the bottom. To define the
best variable subset, we further conducted an extensive evalua-
tion using different numbers and combination of variables (i.e., 1,
2, 3, . . . 13) from the mRMR  resulting list for conifer and decidu-
ous trees, separately. The resulting model (see details in Section
3.3.2) estimation errors (i.e., RMSE) were compared using train-
ing data with in the eight lidar transect extents (see Section 3.2.2).
The best number of variables for this study was selected based on
two considerations: (i) if the errors continue decreasing with the
addition of variables, the best number should represent a thresh-
old where the use of more variables is less able to considerably
increase model performance. This criterion facilitates computa-
tional efficiency in model development. (ii) If the errors decrease
first and then increase significantly after reaching a peak value (Pal
and Foody, 2010), the number of variables corresponding to this
peak value is selected as the best.

3.3.2. Support vector regression (SVR) modeling
Support vector regression (SVR), also known as support vector

machines (SVM) for regression,  is an extended application of SVM
used to solve complex nonlinear regression problems (Vapnik,
1998). SVR essentially transforms the nonlinear regression problem
into a linear one using kernel functions to map  the original input
space into a new feature space with higher dimensions, while hav-
ing two major advantages: (i) robustness in generalization, even
when the training data are noisy; and (ii) it guarantees a unique
global solution, which is not trapped in multiple local minima
(Cristianini and Shawe-Taylor, 2000). Compared to the typically
used multiple regression, SVR has demonstrated its robustness
in several remote sensing applications including the estimation
of evapotranspiration, ocean chlorophyll concentration, moisture
transport over marine atmospheres and forest canopy height
(Camps-Valls et al., 2006; Yang et al., 2006; Xie et al., 2008; Chen
and Hay, in press).

In this study, SVR was applied to model forest height by
developing nonlinear models linking segmented QB data with lidar-
measured canopy height for both conifers and deciduous trees
within the transect-covered area. The SVM open source software
of LIBSVM was used for modeling (Chang and Lin, 2001). Specif-
ically, (i) we used the model type �-SVR, based on its wide use
and good results; and (ii) we selected the radial basis function (RBF)
as the kernel function, as it typically has better performance and
requires fewer input parameters than other types of kernels (Chang
and Lin, 2001). To determine the optimal SVR model parameters
(i.e., C: penalty parameter, ε: precision parameter, and �: kernel
parameter), we have followed a two-step grid-search technique
(Hsu et al., 2009) using training samples within the lidar tran-
sect extents. This technique is comprised (i) a coarse search using
relatively large grid intervals, followed by (ii) a fine search using
relatively small grid intervals within the selected large interval
(that was defined from the coarse search). In this study, the best
parameter combination was found at C = 8.0, ε = 0.5 and � = 1.0. For
more details about SVR basics, please refer to Gunn (1998),  and
Smola and Schölkopf (2004).  After applying the SVM model, lidar-
measured canopy height was generalized from the ‘best’ transect
area to estimate canopy height for the entire study site.

3.3.3. Estimation of canopy height, AGB and volume
Nonlinear models with a natural logarithm form have been

widely used with lidar data to estimate forest biophysical parame-
ters (Næsset, 1997; Means et al., 1999; Lim et al., 2003). As a result,
Eq. (1) was used to build the relationship between the estimated
canopy height and our field measurements:

Mf = ˇ0hˇ1
E (1)

where Mf are the field measurements (canopy height, AGB or vol-
ume), hE is the estimated lidar-measured canopy height (from
Section 3.3.2); and ˇ0 and ˇ1 are coefficients. As our study area is
covered by abundant mixed forest stands, and many field plots con-
tain both conifers and deciduous trees, three types of models were
developed for estimating forest canopy height, AGB and volume,
without distinguishing forest type. To compare the field estimation
results derived from our GEOBIA framework (i.e., the combination
of segmentation, QB imagery, lidar transects and machine learning
models) with those from the full lidar scene, Eq. (1) was further used
to directly build relationships between the field measurements and
the lidar canopy height segmentation image (CHS) for the entire
site. The relationship between these two  types of estimation results
was then evaluated using a correlation coefficient (R) and RMSE.

4. Results and discussion

4.1. Image-objects

Fig. 3(a) represents a sample area in our study site, covered by
deciduous trees, conifers, roads and forest gaps. Fig. 3(b) shows the
corresponding area overlaid by image-object boundaries, derived
from the segmentation procedure. Fig. 3(c) represents an object-
based image, where the spectral values within each image-object
are averaged. We note that most image-objects in this figure
have jagged boundaries, which are distinctly different from the
boundary delineation results from many other larger geographic
features, such as roads and clear-cuts. This strongly suggests that
the image-objects were particularly influenced by the high spec-
tral variability within the canopy. Over small areas, manual tree
crown delineation still produces better crown-objects than cur-
rent automated segmentation tools (Castilla et al., 2008). However,
image-objects increasingly provide improved results for vegeta-
tion parameter estimation, classification and change detection than
traditional pixel-based approaches (Addink et al., 2007; Yu et al.,
2008; Johansen et al., 2010; Chen et al., in press). Fig. 3(d) shows
the classification result in the sample area, where white repre-
sents deciduous canopies, grey represents conifer canopies, and
black represents non-forest areas. As our study area is characterized
by mixed forests, deciduous and conifer stands are often mingled
with each other in small groups. Consequently, a small MOS  well
captures the complex crown structure of this site. The overall clas-
sification accuracy for conifer’s versus deciduous is 80.5%, with an
overall kappa statistic of 0.78.

4.2. Spatial distribution of selected transects

By applying the transect selection algorithm (Section 3.2), Fig. 4
illustrates the four ‘best’ (N–S oriented) lidar transect combina-
tions and their canopy height histograms; which represent (1) 3.8%,
(2) 7.6%, (3) 11.4%, and (4) 15.2% of the total study area. To facili-
tate a comparison between the histograms derived from the best
transects [i.e., Fig. 4(1b)–(4b)] and from the full-cover lidar data
Fig. 4(5a), correlation coefficients were calculated based on canopy
height frequency. High correlations were found with R values rang-
ing from 0.95 to 0.98. Similarly, Fig. 5 illustrates the locations of the
four (W–E oriented) lidar transect combinations using lidar sam-
ples of (1) 4.7%, (2) 9.4%, (3) 14.1%, and (4) 18.8%, and compares
their histograms [i.e., Fig. 5(1b)–(4b)] with the full-area lidar data
[i.e., Fig. 5(5b)]. A similar trend (to the N–S) exists in all histograms,
although correlations are slightly lower, with R values ranging from
0.90 to 0.95. This may  be caused by more masked areas in this orien-
tation, resulting in smaller height class sample sizes, even though
the areas of W–E  transects were 23% larger than the N–S (due to
the rectangular shape of the study area).
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Fig. 3. (a) A sample area in the study site, (b) overlaid by image-object boundaries (grey lines) using a scale parameter of 50 (MOS: 0.04 ha), and (c) each object is filled
with  the average spectral values within the object extent. (d) The object-based classification result, where light grey represents deciduous canopies, the dark grey represents
conifer  canopies, and the black represents non-forest areas.

4.3. Selected modeling variables

Fig. 6 shows canopy height estimation errors derived from
evaluating different numbers of variables for conifers and decid-
uous trees based on training data within the eight lidar transects.
Results reveal that errors continue decreasing with the addition
of variables for both tree types using all types of transect combi-
nations. However, there exists a variable number threshold of six,
with which the canopy height estimation performance increases
by 12.2% and 12.0% (averaged from the results from all transect
combinations) for conifers and deciduous trees, respectively. The
addition of the remaining seven variables can only increase the

estimation accuracy by 4.9% and 7.4% (averaged from the results
from all transect combinations). Based on our predefined selec-
tion criterion [see (i) in Section 3.3.1] that considers both model
accuracy and computational efficiency, the top six variables within
the mRMR-derived resulting lists were chosen as the best variable
subsets.

The subset variable names for eight different transect combina-
tions as well as the full-cover lidar data are illustrated in Table 3.
Specifically, for deciduous trees, all three types of variables (i.e.,
spectral, texture and shadow fraction) proved to be effective for
linking Quickbird imagery with lidar data. However, we  did not
expect that the variable of shadow fraction to have such a low

Fig. 4. (1a)–(4a) Illustrate the four lidar transect combinations (i.e., location and sample area in the N–S direction) derived from the lidar transect selection algorithm (Section
3.2),  and the full lidar cover (5a), which represent various transect numbers and their (%) extents: (1) 3.8%, (2) 7.6%, (3) 11.4%, (4) 15.2% and (5) 100.0%. For illustrative purposes,
the  QB image was used as the base layer with lidar transects overlaid. (1b)–(5b) Illustrate the canopy height histograms derived from the corresponding lidar transect data
in  (1a)–(5a) and their correlation (R) with the height histogram of the full scene (5b).
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Fig. 5. (1a)–(5a) Illustrate the four lidar transect combinations (i.e., location and sample area in the W–E  direction) derived from the lidar transect selection algorithm (Section
3.2)  and the full-cover lidar data, which represent various transect numbers and their (%) extents: (1) 4.7%, (2) 9.4%, (3) 14.1%, (4) 18.8% and (5) 100.0%. For illustrative purposes,
the  QB image was  used as the base layer with lidar transects overlaid. (1b)–(5b) Illustrate the canopy height histograms derived from the corresponding lidar transect data
in  (1a)–(5a) and their correlation (R) with the height histogram of the full scene (5b).

Fig. 6. Canopy height estimation errors derived from evaluating different numbers of variables (i.e., 1, 2, 3, . . . 13) for (1) conifers and (2) deciduous trees based on training
data  within eight lidar transect extents.

contribution for estimating conifer canopy height. In contrast with
Pacific Rim forests, where conifers tend to be tall and dominate the
landscape (Chen et al., in press), our Eastern study area is comprised
mixed stands, where numerous tall broad crown deciduous trees
dominate. As a result, the shadow information for relatively small

conifers was affected by the neighboring larger deciduous trees;
which may  explain why  shadow fraction was  not as effective for
conifers as the other variables. Another phenomenon, which can be
found in Table 3, is that most variables maintain the same impor-
tance when a different lidar sample size was  used. This suggests

Table 3
Variables selected for different lidar transect combinations, and ranked in the order of their predicting power from highest (left) to lowest (right).

Transect direction Transect extent mRMR  selected variables for conifers (C) and deciduous trees (D)

N–S 3.8% C: GEOTEX4, TXIT3, DN4, TXIT4, DN3, TXIT1
D: DN3, TXIT2, GEOTEX1, TXIT4, SF, GEOTEX4

7.6%  C: DN3, TXIT3, GEOTEX3, TXIT4, DN4, TXIT1
D: DN3, TXIT3, GEOTEX4, TXIT4, GEOTEX3, SF

11.4%  C: DN3, TXIT2, GEOTEX3, TXIT3, DN4, TXIT4
D: DN3, TXIT3, GEOTEX3, TXIT4, GEOTEX4, SF

15.2%  C: DN3, TXIT2, GEOTEX3, TXIT3, DN4, TXIT4
D: DN3, TXIT3, GEOTEX3, GEOTEX4, TXIT4, SF

W–E  4.7% C: TXIT3, GEOTEX3, DN3, TXIT4, DN4, TXIT1
D: TXIT3, DN4, GEOTEX3, TXIT4, GEOTEX4, DN3

9.4%  C: DN3, GEOTEX3, TXIT3, TXIT4, DN4, TXIT1
D: DN3, TXIT3, GEOTEX3, TXIT4, GEOTEX4, SF

14.1%  C: DN3, GEOTEX3, TXIT2, TXIT3, DN4, TXIT4
D: DN3, TXIT3, GEOTEX3, GEOTEX4, TXIT4, SF

18.8%  C: DN3, TXIT2, GEOTEX3, TXIT3, DN4, TXIT4
D: DN3, TXIT3, GEOTEX3, TXIT4, GEOTEX4, SF

Full-cover lidar data 100.0% C: DN3, TXIT2, GEOTEX3, TXIT3, DN4, TXIT4
D: DN3, TXIT3, GEOTEX4, TXIT4, GEOTEX3, SF

DNi = mean spectral value for the ith band; TXITi = internal-object texture value for the ith band; GEOTEXi = geographic object-based texture (GEOTEX) value for the ith band;
SF  = shadow fraction; and i is the band number (i.e., 1 – blue band, 2 – green band, 3 – red band and 4 – NIR band).
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Fig. 7. Scatterplots of estimated canopy height (using lidar transects and Quickbird data) versus lidar-estimated canopy height (using full-cover lidar data). (1)–(4) Represent
lidar  transect extents in the N–S direction: (1) 3.8%, (2) 7.6%, (3) 11.4% and (4) 15.2%; while (5)–(8) represent lidar transect extents in the W–E  direction: (5) 4.7%, (6) 9.4%,
(7)  14.1% and (8) 18.8%.

that the mRMR variable selection approach can provide consistent
inputs for our models which is robust to different transects sizes.

4.4. Comparison of model performance

In order to compare the model performance of our GEOBIA
framework with that using all lidar data, Fig. 7 shows the scat-
terplots of our estimated canopy height (from lidar transects and
Quickbird data) versus lidar-estimated canopy height (using the
full lidar coverage). As the estimation of AGB and volume were
both based on forest canopy height [see Eq. (1)], the correlation
between the GEOBIA framework- and lidar-estimated AGB/volume
was almost the same as the relationship of canopy height in Fig. 7.
Therefore, only the canopy height scatterplots are presented in this
paper. However, the estimation performance of AGB and volume
are presented in Table 4.

Fig. 7 reveals that the smallest lidar transect sample has the low-
est model performance, and largest height error. Specifically, both
Fig. 7(1) and (5) illustrate canopy height estimation results from
a single transect representing lidar samples of 3.8% and 4.7% (of
the total site area) in N–S and W–E  direction, where the relatively
low correlation (R = 0.75, 0.81) and high errors (RMSE = 4.16 m,
3.95 m)  were located. With an increase in transect sampled area
the model performance for estimating forest canopy height also
increases. However, the correlation only changes in a small range

(i.e., between 0.83 and 0.85). This could be explained in two  ways:
(i) the selected transects and their related training samples are
sufficient to develop robust models. For example, two  transects
(in N–S direction) include over 20,000 image-objects (i.e., train-
ing samples). If these samples can represent the height and species
variability of the entire area, it is possible for the model to work
well. This also indicates the importance of selecting appropriate
lidar transects, as arbitrarily defined transects may not represent
this variability. However, we  note that it is difficult to determine
how many training samples are ‘sufficient’, only from this study,
as this number depends on several conditions, such as landscape
complexity and accuracy requirement. (ii) Another reason is that
the machine learning SVR approach has a strong generalization
ability, which facilitates the collection of lidar data over a relatively
small-area in order to estimate canopy height over a relatively large
area.

The best performance (i.e., highest correlation and lowest error)
of our model to estimate canopy height (R = 0.85; RMSE = 3.37 m)
was found in Fig. 7(2), where two lidar transects (in N–S ori-
entation) represent lidar cover of 7.6%. Correspondingly, the
best AGB (R = 0.85; RMSE = 39.48 Mg/ha) and volume (R = 0.85;
RMSE = 52.59 m3/ha) estimation results were also found using the
same transect features. Fig. 7 also reveals that our models tend
to overestimate the (lidar-estimated) forest parameters for tree
canopies that are lower than 5.0 m,  or taller than 20 m.  However,

Table 4
Estimation performance [R (correlation coefficient) and RMSE (root mean squared error)] of above ground biomass (AGB) and volume for eight different lidar transect
combinations in two different directions.

Transect direction Transect extent R RMSE of AGB (Mg/ha) RMSE of volume (m3/ha)

N–S 3.8% 0.75 46.86 71.93
7.6%  0.85 39.48 52.59

11.4%  0.84 44.71 66.91
15.2%  0.83 41.92 53.28

W–E  4.7% 0.81 42.24 76.24
9.4%  0.85 39.04 78.76

14.1%  0.84 40.25 54.29
18.8%  0.84 45.62 65.45
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Fig. 8. The error image derived from the ‘best’ lidar transect sample, that repre-
sents 7.6% of the entire study area. Black represents non-forest areas, while the
other colors represent different errors in height estimation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web  version
of  this article.)

we note that most field plots contain canopies within 5–20 m.  Addi-
tionally, the average error (RMSE = 3.37 m)  is lower than the ≈5.0 m
forest inventory height class interval for this area.

To better understand the spatial distribution of the canopy
height error derived from our framework, an error image (Fig. 8)
was created (using the 7.6% lidar sample) by illustrating the dif-
ference between our canopy height estimates and the lidar CHS.
Fig. 8 shows that our framework produced errors that are lower
than 5.0 m over 50.1% of the forest-covered area. However, it has
difficulties with some forest stands covered by low density decidu-
ous trees lower than 8.0 m,  such as those illustrated in the red color
region close to the lower right corner of our study area. This may
be caused by misclassification, as the vegetated ground patches
appear as trees. However, errors that are larger than 15.0 m only
account for 2.7% of the forests, and typically appear near roads,
water boundaries and cut blocks, where these types of landscape
edge features are complex. We  also note that the lidar data contain
errors (i.e., 1.30 m)  when compared to the field measurements.

5. Conclusions

In this study, we have generated geo-intelligence from a forest
scene by reducing airborne lidar data acquisition costs, providing
meaningful geospatial information related to the size, orientation
and location to best acquire lidar transects, and have applied novel
machine learning algorithms to model important forest parameters
over a large area. A semi-automatic GEOBIA framework is presented
to extract forest information (i.e., canopy height, AGB and volume)
at the small crown/cluster level (i.e., MOS: 0.04 ha). This framework
is comprised three main components: (i) image-object extraction,
(ii) lidar transect selection, and (iii) forest parameter generaliza-
tion. Although our study area is dominated by complex mixed
forest stands composed of six major species, the integration of the
object-based paradigm with a lidar transect selection algorithm
and machine learning mRMR  and SVR techniques has produced
promising results. In particular, the GEOBIA framework derived
estimates of forest parameters show a strong relationship with
those generated from lidar data covering the full (16,330 ha) study
site. The highest correlation and lowest error for canopy height
(R = 0.85; RMSE = 3.37 m),  AGB (R = 0.85; RMSE = 39.48 Mg/ha) and
volume (R = 0.85; RMSE = 52.59 m3/ha) were obtained using a N–S
direction lidar sample representing 7.6% (1240 ha) of the entire

study area. Due to the difficulties in field logistics and budget limita-
tions, we  note that the field plots were derived with a bias to forest
stands accessible from roads, as well as to tree heights between 10
and 25 m (Fig. 7). However, these field data sample a wide range
of canopy heights from 1.4 m to 27.1 m,  which represent all study
site height classes. In this research, the selection of a small mean
object size (0.04 ha) ensured that forest variability was  well repre-
sented, as large image-objects would have resulted in information
loss, and an inability to exploit the information potential inherent to
high resolution remotely sensed imagery. Additionally, the mRMR
variable selection approach has proven to provide consistent inputs
for our models which is robust to different transects sizes. Future
work will consider improving the performance of this framework
by modeling dominant tree species individually and incorporating
additional variables/features.
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