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High-spatial resolution remote sensing imagery provides unique opportunities for detailed characteriza-
tion and monitoring of landscape dynamics. To better handle such data sets, change detection using the
object-based paradigm, i.e., object-based change detection (OBCD), have demonstrated improved perfor-
mances over the classic pixel-based paradigm. However, image registration remains a critical pre-pro-
cess, with new challenges arising, because objects in OBCD are of various sizes and shapes. In this
study, we quantified the effects of misregistration on OBCD using high-spatial resolution SPOT 5 imagery
(5 m) for three types of landscapes dominated by urban, suburban and rural features, representing
diverse geographic objects. The experiments were conducted in four steps: (i) Images were purposely
shifted to simulate the misregistration effect. (ii) Image differencing change detection was employed
to generate difference images with all the image-objects projected to a feature space consisting of both
spectral and texture variables. (iii) The changes were extracted using the Mahalanobis distance and a
change ratio. (iv) The results were compared to the ‘real’ changes from the image pairs that contained
no purposely introduced registration error. A pixel-based change detection method using similar steps
was also developed for comparisons. Results indicate that misregistration had a relatively low impact
on object size and shape for most areas. When the landscape is comprised of small mean object sizes
(e.g., in urban and suburban areas), the mean size of ‘change’ objects was smaller than the mean of all
objects and their size discrepancy became larger with the decrease in object size. Compared to the results
using the pixel-based paradigm, OBCD was less sensitive to the misregistration effect, and the sensitivity
further decreased with an increase in local mean object size. However, high-spatial resolution images
typically have higher spectral variability within neighboring pixels than the relatively low resolution
datasets. As a result, accurate image registration remains crucial to change detection even if an object-
based approach is used.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Over the past decades, the global landscape has been continu-
ously reshaped by rapid environmental change (Turner et al.,
2007). Therefore, accurate global and regional measures of the
landscape state over time are important to improve models and
our understanding of the mechanisms causing this change. To date,
one of the most widely used technologies for this purpose is re-
mote sensing change detection, which takes advantage of the re-
mote sensing capacities for broad-area synoptic coverage, high
temporal frequency and relatively low-cost data acquisition, as
well as the advances in digital image processing (Chen et al., 2012).
Multitemporal image registration is an essential pre-process in
change detection for ensuring that detected changes are meaning-
ful, and not simply the product of comparing two land-surface ob-
jects at different geographic locations (Townshend et al., 1992).
Therefore, misregistration errors, if not adequately minimized,
can severely compromise the change detection accuracy
(Townshend et al., 1992; Dai and Khorram, 1998; Stow, 1999;
Roy, 2000; Farin and de With, 2005). Independent studies from
Townshend et al. (1992) and Dai and Khorram (1998) demon-
strated that a registration accuracy of at least 0.2 pixels is required
in order to achieve a change detection with less than 10% error.
However, their findings were limited to the use of relatively med-
ium- and low-spatial resolution remote sensing imagery, e.g.,
28.5 m Landsat TM and 250/500 m MODIS, and classic pixel-based
methods.
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Over the last decade, the amount and accessibility of high-
spatial resolution (hereafter referred to as h-res) remote sensing
images collected from commercial satellites and airborne plat-
forms continued to proliferate globally. While such data sets pro-
vide us with unique opportunities for detailed characterization
and monitoring of our landscape, the accuracy of change detection
algorithms using the classic pixel-based methods is usually re-
duced by numerous small spurious changes, also called the ‘‘salt
and pepper’’ effect (Desclée et al., 2006). To address this issue,
the concept of object-based image analysis (OBIA) [more recently re-
ferred to as geographic object-based image analysis (GEOBIA)] was
introduced to the change detection domain – object-based change
detection (OBCD), where image-objects (groups of pixels) are used
to model meaningful geographic objects and the task then be-
comes estimating the changes of image-objects rather than indi-
vidual pixels (Hall and Hay, 2003; Blaschke, 2010). Improved
change detection accuracies were obtained in a range of research
fields, such as monitoring forest disturbances, urban development,
and natural disasters (Water, 2004; Desclée et al., 2006; Chen and
Hutchinson, 2007; Im et al., 2008; Li et al., 2009; Chen et al., 2012).
Although OBCD appears promising, image registration remains a
critical pre-process, where new challenges are also raised. Specifi-
cally, the high spatial and spectral variability of h-res imagery
make it sensitive to geometric and radiometric corrections
(Baltsavias et al., 2001; Chen and Hay, 2011). As a result, the same
level of registration efforts may induce an even higher level of
change detection error using h-res imagery. On the other hand, im-
age-objects have proven effective in reducing small spurious
changes. An immediate question is: how much these image-objects
can compensate for the errors introduced by using the h-res data?
It should also be noted that, different from pixels, image-objects
are of various sizes and shapes, which may influence change
detection accuracy in different ways, although less consideration
was given to the quantitative analysis of this effect.

The primary objective of this study was to assess the impacts of
misregistration on OBCD using multitemporal h-res imagery. To do
so, three types of landscapes dominated by urban, suburban and
rural features, were chosen to represent geographic objects of dif-
ferent sizes (small to large) and shapes (simple to complex). Mul-
titemporal images were intentionally misregistered at different
errors. Two change detection algorithms based on image-objects
and individual pixels were applied to the study areas. Their change
detection accuracies were compared and the relationships be-
tween object (size and shape) and misregistration were
investigated.
2. Methods

2.1. Study areas

Three study areas, located in three counties of North Carolina,
USA, were chosen to represent local major land-use/land-cover
types, including (i) an urban area (4500 ha) in Mecklenburg
County, (ii) a suburban area (4500 ha) in Gaston County, and (iii)
an agricultural area (4500 ha) in Lincoln County (Fig. 1). These
areas also signified different styles of geographic objects: (i) the
urban area (City center of Charlotte and its neighbor) was charac-
terized by high-density anthropogenic features (e.g., large com-
mercial buildings), most of which were compact and had
relatively simple roof boundaries as synoptically viewed from the
sensor. The changes were mainly caused by converting old build-
ings/open lands into new multi-story buildings. (ii) The suburban
area (south of the City of Gastonia) was dominated by low-density
residential communities. High spatial interaction between
anthropogenic and natural features was evident by the recent
development of urban forests into single-family homes. Conse-
quently, geographic objects, when visualized synoptically, tended
to be mixed and the placement of their boundaries was more com-
plex. (iii) The agricultural area was characterized by large farm-
land, where the size of each land was large and its boundary
could be drawn with simple and near-linear lines. The changes
were mainly attributed to phenological dynamics of local crops.

2.2. Data and preprocessing

Since all three study areas were within the extent of one SPOT
image scene, this research used two dates of SPOT 5 images that
were acquired on March 5, 2006 and August 2, 2011. Both images
were cloud-free with similar incidence angles of 16.4� and 16.5�,
and each one consisted of four 10 m multispectral bands (i.e.,
green, red, near infrared, and short-wave infrared) and one 5 m
panchromatic band.

To retain both the image spectral values and its high-spatial res-
olution, a Gram–Schmidt algorithm was used to effectively fuse the
multispectral channels with the panchromatic band (Laben et al.,
2000; Powers et al., 2012). Although a level 2A preprocessing of
radiometric and geometric corrections was applied to the individ-
ual scenes by the data vendor, minimizing spatial and spectral dif-
ferences between images taken at different dates was also critical
to accurate change detection. In this study, three subsets of the
SPOT imagery were extracted to cover the three study areas, with
each area covering 4500 ha. Each of these subsets (hereafter image
pairs) was processed separately using the following steps. The reg-
istration was conducted using a second-order affine polynomial
and a nearest-neighbor resampling method for RMSEs of 0.28,
0.25 and 0.24 pixels. Although errors still existed, they were com-
paratively small. In the relative radiometric normalization, linear
regression was applied to match the spectral responses of the
two-date images based on the digital numbers of unchanged train-
ing pixels, located mainly in the regions covered by pavements,
buildings and water. This method has proven effective at correct-
ing SPOT 5 time series, with results comparable to those using
more rigorous methods, such as the classic 6S model, although
fewer parameters are required in the linear regression (El Hajj
et al., 2008).

2.3. Simulation of image misregistration

Geometrically, multitemporal images may contain scaling, rota-
tion, translation, and skewing differences (Dai and Khorram, 1998),
which are typically caused by one or more factors during data
acquisition, such as the differences between sensor’s altitudes
and attitudes, other than actual landscape changes. In this re-
search, we simplified the misregistration effect by assuming that
the errors are equally distributed over the study areas. For each
of the three image pairs, the simulation was conducted by inten-
tionally shifting one image against the other at 45� with 30 differ-
ent errors of

ffiffiffi
2
p

i pixels (i = 1,2, . . .,30) in distance. For example, a
pixel at the location of (x, y) was shifted to new locations of
(x + i, y + i) after misregistration. This method followed a similar
strategy employed by Townshend et al. (1992) and Dai and Khor-
ram (1998). Subpixel misregistration was not performed, as the
comparison of two images technically requires their basic sam-
pling units (i.e., pixels) to spatially correspond. Thus, the shifted
image will need to be resampled in a subpixel test, and altered pix-
el spectral values will introduce additional change detection error.

2.4. Change detection

One of the most widely used change detection methods is im-
age differencing, where a predefined threshold is used to separate



Fig. 1. Three study areas (4500 ha of each) located in three counties of North Carolina, USA, representing urban, suburban and agricultural lands. The SPOT 5 images are color
composites using red, near infrared, and short-wave infrared bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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changed (i.e., higher than a threshold) and non-changed areas (i.e.,
lower than the threshold) in a difference image. This method was
also employed in our research by applying it to all 93 image pairs
over three study areas containing and not containing the purposely
introduced misregistration errors of

ffiffiffi
2
p

i pixels (i = 0,1,2, . . .,30). As
previously mentioned, the major distinction between pixel-based
change detection and OBCD is the basic study units (i.e., pixels ver-
sus objects). Image differencing change detection was modified to
accommodate this difference, with more details discussed in the
following sections.

2.4.1. Object-based method
To perform OBCD, the first step was to generate image-objects

using segmentation. A recent review by Chen et al. (2012) divided
OBCD algorithms into three types: image-object, class-object and
multitemporal-object change detections. For the first two types,
multidate images need to be segmented separately. However, it
is difficult to produce consistent segmentation results, because
images taken at different times tend to contain spectral differences
due to variations in Sun angle, sensor look angle and atmospheric
transmission. These spectral differences will likely result in dis-
crepancies between image-object geometries (e.g., boundaries),
making it challenging to detect true landscape changes (Chen
et al., 2012). In this study, we employed a third type of multitem-
poral-object change detection method, where the two-date images
were combined and segmented together in eCognition (Definiens
Imaging GmbH, Munich, Germany). Consequently, image-objects
from the same geographic locations were spatially corresponding
to each other and a direct comparison without considering the ob-
ject geometry differences was made possible. For all the three
study areas, the same set of parameters were used to ensure con-
sistency (i.e., scale parameter: 30, shape: 0.1, and compactness:
0.5).

Image differencing change detection involved the creation of
difference images, where an eight-band object-based feature space
was created, including (i) four-band spectral responses (DSG, DSR,
DSNIR, DSSWIR) by subtracting the 2006 segmented images from
the 2011 segmented images using the corresponding spectral
bands of green (G), red (R), near infrared (NIR), and short-wave
infrared (SWIR); and (ii) four-band texture features (DTG, DTR,
DTNIR, DTSWIR) by calculating standard deviations within individual
image-objects and then subtracting the 2006 texture images from
the 2011 texture images using G, R, NIR and SWIR bands.

Scatter plots were used to investigate the relationships among
the eight bands, where the sample plots representing DSSWIR versus
DSG are displayed in Fig. 2a–c for urban, suburban and agricultural
study areas, respectively. The image-objects in the plots were col-
ored using a rainbow gradient to highlight object densities from
high (in red) to low (in purple). Obviously, an object far from the
mean shows a large multitemporal spectral difference, which
should be classified as a change. However, a simple Euclidean dis-
tance may not be suitable for defining how far an image-object is
from the mean because the density distributions are in ellipsoid
shapes indicating a normal distribution of the data in difference
images (Fig. 2). As such, we employed the Mahalanobis distance
that also took into account the covariance between variables in
the feature space. Similar ideas have proven effective at monitoring
urban development, forest disturbance and agricultural land con-
version (Dai and Khorram, 1998; Ridd and Liu, 1998; Desclée
et al., 2006). The Mahalanobis distance was define as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX �mÞT S�1ðX �mÞ

q
ð1Þ

where D is the Mahalanobis distance vector containing all image-
objects, X is the two dimensional vector including all image-objects
and each object has eight features (DSG, DSR, DSNIR, DSSWIR, DTG, DTR,
DTNIR, DTSWIR); m is the mean vector of these features; and S is the
covariance matrix.

To facilitate the analysis of the misregistration effects on change
detection, we assumed that ‘real’ changes are detected from the
image pair that contains no purposely introduced registration er-
ror, where a change ratio (i.e., percentage of change) was extracted
and considered as the ground-truth. Then, this ratio was applied to
all the other image pairs with registration errors of

ffiffiffi
2
p

i pixels
(i = 1,2, . . .,30).

2.4.2. Pixel-based method
The pixel-based image differencing change detection was per-

formed in a similar way to the previous OBCD. However, since pix-
el-based methods work directly on individual pixels, two changes
were made: (i) no segmentation was conducted, with all image-
objects replaced by pixels during the calculation; and (ii) the
four-band texture features (DTG, DTR, DTNIR, DTSWIR) were derived
by applying a 3-by-3 pixel kernel to extract neighborhood standard
deviations for all pixels and then subtracting the 2006 texture
images from the 2011 texture images using G, R, NIR and SWIR
bands. For comparison purposes, scatter plots representing DSSWIR

versus DSG were created using pixels for urban, suburban and agri-
cultural study areas (Fig. 2d–f), respectively. Similar to the Fig. 2a–
c representing image-objects, the pixel-based plots also showed a
normal distribution.

2.4.3. Accuracy assessment
The impacts of misregistration on OBCD were assessed and

compared among urban, suburban and agricultural lands.
Specifically, we first investigated the relationship between



Fig. 2. Scatter plots representing DSSWIR versus DSG using image-objects (a–c) and pixels (d–f) for the urban (a and d), suburban (b and e) and agricultural (c and f) study areas.
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misregistration error and the number and shape of changed ob-
jects. The shape was characterized and calculated as a shape index
(SI), which measures the complexity of object shape compared to a
standard shape (square) of the same size and alleviates the size
dependency by using a perimeter (pi) and area (ai) for each im-
age-object i (Forman and Godron, 1986):

SI ¼ 0:25pi=
ffiffiffiffi
ai
p

ð2Þ

which equals 1 if the shape is a square. A more complex shape has a
higher shape index value. As previously mentioned, we have as-
sumed that the ‘real’ changes are the detected image-objects or pix-
els from the image pair that contains no purposely introduced
registration error, with the change locations stored in an array Creal.
The locations of the detected changes from a misregistered image
pair were defined as Cmisreg. Therefore, the true changes were pre-
sented in the overlapped areas Ctrue (Creal \ Cmisreg). Consequently,
the change detection error percentage (Err) can be defined as

Err ¼ 1� Area of Ctrue

Area of Cmisreg

� �
� 100% ð3Þ

On the basis that change ratio remains the same, if Creal and Cmis-

reg are perfectly overlapped, Ctrue is equal to Cmisreg, resulting in a
change detection error of zero. If there is no overlap, the error is
100% as Ctrue contains no pixels/image-objects. In this research,
three change ratio values were used to specify the actual changes
in the three study areas respectively. To determine the ratio abso-
lute values, 50 points were randomly extracted from each study
area, with each point corresponding to a ground area (i.e., 25 m2)
covered by one SPOT image pixel. One-meter NAIP (National Agri-
culture Imagery Program) aerial photographs collected in 2006 and
2011 were used as ground truth data to help determine whether
actual changes occurred at these points. A ‘change point’ was de-
fined as a ground point in which more than 50% of the 25 m2 area
has changed. The change ratio was then calculated via a simple
operation – a ratio between the number of change points and the
total number of points (i.e., 50). By following this method, three
change ratio values of 8%, 8% and 10% were derived for the urban,
suburban and agriculture study areas respectively. The same ratio
values were used in both the pixel-based and object-based
approaches to calculate Ctrue and Cmisreg (Eq. (3)) because the ratio
values were directly derived from NAIP image interpretation and
should remain constant no matter which image pairs (with differ-
ent registration errors) are used. Although a slight change in the ra-
tio absolute value may have a considerable impact on the areas
detected as change, our experiments indicated that changing the
ratio absolute value had little impact on the calculation of change
detection error percentage (Err) when misregistration was smaller
than two pixels. We note that misregistration in most remote sens-
ing projects is typically within this error range.
3. Results and discussion

3.1. Impacts of misregistration on object size and shape

Fig. 3 shows three image subsets of the same spatial scale rep-
resenting (a1) urban, (b1) suburban and (c1) agricultural areas, and
a2, b2 and c2 are sample segmentation results from the image
pairs that contain no intentionally introduced registration error.
As expected, the mean object size (MOS) for the agricultural area
was the largest of the three (i.e., 1.25 ha), as large croplands tend
to be internally homogenous due to similar planting and cropping
patterns. Individual buildings and other facilities extracted from
the urban center have the smallest MOS (i.e., 0.75 ha), while the
MOS of suburban residential area is in the between (i.e., 1.10 ha).
Theoretically, the anthropegenic features from the urban center
are typically larger than the individual homes in the suburban res-
idential area. However, the low-density suburban also contains rel-
atively large forest stands, parks and barren lands (e.g., an
underdevelopment area with bright tones close to the right side
of Fig. 3b1). We also recognize that blending with the surrounding
vegetation made it challenging to extract individual homes from
5 m spatial resolution imagery (Fig. 3b2).



Fig. 3. Three image subsets of the same spatial scale representing (a1) urban, (b1) suburban and (c1) agricutural areas, and a1, b2 and c2 are sample segmentation results
from the image pairs that contain no purposely introduced registration error.

Fig. 4. The relationships between misregistration error and the size of (i) all image-
objects and (ii) only the changes for urban, suburban and agricultural areas.
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When a misregistration error was introduced, higher spectral
variability was also introduced to the multitemporal images. Even
if a geographic object remained the same over time, misregistra-
tion caused a shift in the boundary. Consequently, more boundary
regions were generated. With the same set of segmentation param-
eters (i.e., scale, shape and compactness), more and smaller image-
objects were expected. However, the findings from the three study
areas showed slightly different trends. Specifically, Fig. 4 illustrates
the relationships between misregistration error and the size of two
types of image-objects: all objects (light colors) and only the
changes (dark colors), for urban (red1), suburban (blue) and agricul-
tural (purple) lands. When considering the size change for all image-
objects (light colors), the three areas exhibit similar trends, which
can be divided into three phases: (i) slight increase when the misreg-
istration error is relatively small (e.g., lower than 3 pixels), (ii)
decrease when the misregistration error increases (e.g., between
3 pixels and 10 pixels), and (iii) no change when the misregistration
error is large (e.g., larger than 10 pixels). This could be explained in
three steps: (i) since an object boundary in h-res imagery often spans
one or more pixels, the slight shift between the multidate images
probably has increased the boundary width. Small objects or the ob-
jects with a linear shape (e.g., roads) merged into the neighboring
image-objects. (ii) With the increase in misregistration error, small
objects were detected and meanwhile, large objects were divided
into smaller pieces by the fake ‘new boundaries’. (iii) No noticeable
change occurred when the misregistration error was too large, as the
high spectral variability spread over the entire area. We further
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
noticed that the trend line for the urban area (light red in Fig. 4) is
relatively flat compared to the trends of suburban and agricultural
areas. This may be explained by the fact that urban areas contain
more compact objects (Fig. 3a2), where the shift in boundaries dur-
ing the first two misregistration phases has a reduced impact.

Fig. 4 also shows the relationships between misregistration
error and the size of image-objects detected as the change using
the aforementioned OBCD method (Section 2.4.1) for urban (light
red), suburban (light blue) and agricultural (light purple) lands.
Overall, the trend lines representing the change (light colors in
Fig. 4) are similar to those derived from all image-objects (dark col-
ors in Fig. 4). However, the differences still remain: (i) the ‘change’
lines fluctuate at a higher rate, which is correlated with the MOS.



Fig. 5. The relationships between misregistration error and the shape index of
image-objects detected as changes for urban, suburban and agricultural areas.
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This makes sense, as a specific change ratio (i.e., percentage) was
used to extract changes in this research. If the MOS is large (e.g.,
1.25 ha in the agricultural area), the object sizes tend to have a
greater dynamic range. The addition or removal of image-objects
would highly affect the average object size. On the other hand, rel-
atively small MOS tend to produce similarly sized image objects
and, subsequently, a smooth trend line (e.g., dark red in Fig. 4 rep-
resenting the urban area with MOS of 0.75 ha). An extreme case is
where individual image-objects contain only a single pixel (i.e.,
pixel-based change detection), the average object size would re-
main the same, regardless of the introduced misregistration errors.
(ii) We also determined that in the urban area, the size of ‘change’
image-objects is always below the average size of all image-objects
(light red versus dark red in Fig. 4). With the increase in MOS, the
two trend lines are getting closer (light blue versus dark blue in
Fig. 4). For large agricultural lands, the two lines are interacting
with each other (light purple versus dark purple in Fig. 4). This
trend could be explained by the reality that the urban area con-
tained a higher spectral variability – which accounts for why smal-
ler image-objects were generated – that resulted in the
misregistration induced change showing a greater ‘salt-and-pep-
per’ effect. However, this ‘salt-and-pepper’ effect was more sever
using the pixel-based approach.

Similar to what was observed with object size, the object shape
was also affected by misregistration. Fig. 5 represents the relation-
ships between misregistration error and the shape index of image-
objects detected as the change for urban, suburban and agricultural
areas. When the multidate images contain no registration error
(i.e., misregistration equals 0), the detected urban image-objects
are more similar to squares with the lowest index value of 1.22,
while the index values for suburban and agricultural image-objects
are higher, i.e., 1.25 and 1.37, respectively. The agricultural lands
have the largest average shape index value, because most of the
image-objects have a strip shape resulting in a larger perimeter
for a certain object size (Fig. 3c2). With the increase in misregistra-
tion error, the shape index values slightly increase for the urban
and agricultural areas and plateaus when the error is 3 pixels.
Then, the values decrease until the misregistration error reaches
10 pixels, after which the lines become stable. This is similar to
the trends described in Fig. 4. However, one exception is the shape
change in the suburban area. In particular, when the misregistra-
tion increases from 0 to 5 pixels, the object shape has a dramatic
change from 1.25 to 1.41 (13% increase), a value that approaches
that of the agricultural lands. The main reason is that many of
the suburban image-objects contained rugged boundaries with
elogated shapes, such as underdevelopment areas and new com-
munities where major changes typically occurred (bright tones in
Fig. 3b2). In contrast, their neighbors were typically forest stands
bounded by roads that had relatively simple boundaries. The mis-
registration created more complex boundaries than the simple
ones, which unavoidably increased the shape index value.

3.2. Impacts of misregistration on change detection error

The change detection errors were calculated for both the object-
based and the pixel-based methods, with their results presented in
Fig. 6 for (a) urban, (b) suburban and (c) agricultural areas. Simi-
larly trends can be found for all the three areas (i.e., change detec-
tion error increases with the increase in misregistration error).
When a small shift between the two-date images occurs (e.g.,
smaller than 10 pixels), the change detection error increases. For
example, even if the misregistration is only a single pixel, the
change detection error increases by 22.7% (pixel-based) and
21.26% (object-based) for urban, 22.0% (pixel-based) and 21.6%
(object-based) for suburban, and 19.0% (pixel-based) and 18.4%
(object-based) for agricultural areas (Fig. 6). When the shift
between the images is larger than 10 pixels, the errors gradually
increase up to approximately 60%. Although the change detections
using pixels and objects have similar error trends, the object-based
method performs relatively better by reducing the average errors
by 0.7%, 1.3% and 4.5% for urban, suburban and agricultural areas,
respectively. Clearly, the larger MOS in the area, the better the ob-
ject-based paradigm performs.

To quantify the relationships between change detection error
and misregisration error, all six trend lines in Fig. 6 were simulated
using logarithmetric equations, with R2 ranging from 0.88 to 0.98
(Table 1). In order to reduce the misregistration-caused change
detection error to 10%, the shifts between the multidate images
are required to be less than 0.03 pixels (pixel-based) and 0.07
pixels (object-based) for urban, 0.05 pixels (pixel-based) and
0.07 pixels (object-based) for suburban, and 0.10 pixels (pixel-
based) and 0.23 pixels (object-based) for agricultural areas
(Table 1). As anticipated, both methods show that large landscape
features (e.g., agricultural lands) are not as sensitive as small fea-
tures (e.g., built-up areas) to the misregistration. Compared to the
results using individual pixels, the object-based method consis-
tently performs better by 133%, 40% and 130% for urban, suburban
and agricultural areas. However, it should be noted that the two
types of methods reacted differently for different levels of changes.
In theory, the changes extracted from multidate images are due to
the large spectral difference between pixels/image-objects from the
same geographic locations. After misregistration is introduced,
whether ‘new’ changes will be detected actually relies on the dis-
agreement between the pixels/image-objects with their neighbors.

Figs. 7 and 8 show two examples of high and low spectral differ-
ences between the changed areas and their neighbors. Specifically,
Fig. 7 represents the change from the underdevelopment to the
new residential. Since the barren land in the underdevelopment
area has very high spectral reflectance compared to the other areas
(e.g., trees in either leaf-off (2006 image in Fig. 7) or leaf-on (2011
image in Fig. 7) condition), misregistration at small errors (from 1
to 3 pixels) has a relatively low impact on change detection,
although the results generated by the pixel-based method tend
to have a more pronounced pepper-and-salt effect. Fig. 8 illustrates
the changes in an agricultural area that are due to crop phenolog-
ical variability. Contrary to the case in Fig. 7, when small misregis-
tration errors occur, a big portion of the ‘real’ change disappears
(Fig. 8a0 versus Fig. 8a1–a3) using OBCD; while, the pixel-based
method is better able to retain changes (Fig. 8b0 versus Fig. 8b1–
b3). One potential reason is that large agricultural lands generated
large-sized image-objects, and their spectral responses were simi-
lar to those of their neighboring lands. Upon misregistration,



Fig. 6. The relationships between misregistration error and change detection error (pixel-based versus object-based) for (a) urban, (b) suburban and (c) agricultural areas.

Table 1
Simulation of change detection error (y) as a function of misregistration error (x).

Study area Method Equation R2 x (pixel), when y = 0.1a

Urban Pixel-based y = 9.50 ln(x) + 32.04 0.88 0.03
Object-based y = 10.65 ln(x) + 28.47 0.91 0.07

Suburban Pixel-based y = 9.583 ln(x) + 29.53 0.94 0.05
Object-based y = 10.21 ln(x) + 26.59 0.96 0.07

Agriculture Pixel-based y = 10.61 ln(x) + 24.27 0.96 0.10
Object-based y = 11.61 ln(x) + 17.29 0.98 0.23

a y = 0.1 indicates a 10% change detection error.
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changes in other areas may become more evident, which falsely re-
moved the changes in the current area represented by large-size
image-objects (Fig. 8a1–a3). This leads to a potential issue of using
the object-based paradigm in change detection, where large-area
non-substantial changes may not be detected using OBCD even
when a small registration error occurs. We note that the applica-
tion of an inaccurate change ratio may have also caused this issue.

Previous research conducted by Townshend et al. (1992)
and Dai and Khorram (1998) have quantified the effects of
Fig. 7. The 2006 and 2011 images and the detected changes in white (i.e., from the und
methods where the misregistration error is i ranging from 0 to 3 pixels.
misregistration on change detection using pixel-based approaches
and lower spatial resolution images (i.e., 250/500 m MODIS and
28.5 m Landsat TM). Both studies suggest a registration accuracy
of at least 0.2 pixels for achieving a change detection error of
10%. The comparison between their results and ours indicates that
different registration standards may be applied to images of
different spatial resolutions. For the h-res data, the spectral vari-
ability within the neighboring pixels is much higher, making accu-
rate image registration increasingly important for minimizing
erdevelopment to the new residential), using object-based (ai) and pixel-based (bi)



Fig. 8. The 2006 and 2011 images and the detected changes in white (i.e., crop phenological variability), using object-based (ai) and pixel-based (bi) methods where the
misregistration error is i ranging from 0 to 3 pixels.
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change detection errors, particularly for the areas containing fine-
scale features (e.g., urban regions). It is also worth noting that even
using the object-based method, it is still difficult to fully
compensate for the negative impacts of misregistration on change
detection when the image spatial resolution is increased. In addi-
tion, unlike the pixel-based approaches using individual pixels,
OBCD requires a unique segmentation procedure to extract im-
age-objects (i.e., internally coherent segments) as the basic study
units. However, geo-objects (i.e., geographic objects in the real
world) are scale dependent. Even for the same landscape features,
these objects could be extracted at a course scale (e.g., forest
stands), while they could also be extracted at a fine scale (e.g.,
small tree clusters). The inconsistency between image-objects
and geo-objects lead to over-segmentation or under-segmentation
(Castilla and Hay, 2008). Hence, under a misregistration condition,
the concept of multitemporal objects remains complicated. The po-
tential errors likely to be introduced during both the segmentation
and the threshold-based change detection processes add a level of
complexity greater than that when applying pixel-based
approaches.

4. Conclusions

Recent research efforts have indicated the improved perfor-
mance of detecting spatially detailed changes in h-res imagery
by shifting from the classic pixel-based paradigm to the object-
based paradigm (i.e., OBCD); however, less consideration was given
to the misregistration issue in OBCD. In this research, we examined
the impacts of misregistration on OBCD using h-res multidate SPOT
5 imagery (5 m) for three types of landscapes dominated by urban,
suburban and rural features. With the increase in misregistration
error, we found that, both the size and shape of the detected
‘change’ objects showed dynamics, though in relatively small
ranges, indicating that misregistration has a comparatively low im-
pact on object size and shape. An exception occurred in the subur-
ban area, where residential or underdevelopment image-objects
contained rugged boundaries with elongated shapes, while their
neighbors were typically forest stands bounded by roads that had
relatively simple boundaries. Small misregistration errors (e.g.,
lower than 5 pixels) may result in the generation of more image-
objects with complex boundaries (i.e., higher shape index values).
We further note that, for the agricultural area with large MOS, the
detected ‘change’ objects possessed a mean size similar to that of
all objects. As MOS became smaller (e.g., suburban or urban), the
size of ‘change’ objects was getting much smaller than that of all
objects in the area. The impacts of misregistration on change
detection accuracy were evaluated by comparing OBCD with a pix-
el-based approach. For all the three areas, OBCD proved less sensi-
tive to misregistration. Additionally, the larger MOS in the study
area, the better the OBCD performed. However, it is important to
understand that for the h-res data, the spectral variability within
the neighboring pixels is much higher than that in relatively low
resolution data, making accurate image registration more crucial
to change detection. To achieve a change detection error of 10%,
the best result from OBCD was 0.23 pixels for the large and homo-
geneous agricultural area. While this result is typical for multiple
landscape features if using medium/low resolution images and pix-
el-based approaches (Townshend et al., 1992; Dai and Khorram,
1998), our findings suggest that change detection using the
object-based paradigm is unlikely to fully compensate for the neg-
ative impacts of misregistration on change detection due to an in-
crease in image spatial resolution. But, we note that the conclusion
made in this study was based on the use of a multitemporal change
detection approach. If other change detection approaches are used,
e.g., class-object change detection (Chen et al., 2012), misregistra-
tion may have a lower impact on high-spatial resolution imagery.
However, additional processes and/or rules are possibly required
(e.g., object-based classification), which could introduce extra
errors.
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