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Remote sensing has been widely adopted to map post-fire burn severity over large
forested areas. Statistical regression based on linear or simple non-linear assumptions
is typically used to link post-fire forest reflectance with the degree of burn severity.
However, this linkage becomes complicated if forests experienced severe mortality
caused by pre-fire disease or insect outbreaks, which is likely to occur more
frequently as a result of rapid climate change. In an effort to improve the under-
standing of the relationship between forest reflectance and fire-disease disturbances,
this study explored the efficacy of three machine learning techniques, that is,
Gaussian process regression (GPR), random forests (RF) and support vector regres-
sion (SVR), within a geographic object-based image analysis (GEOBIA) framework
to assess burn severity in a forest subject to pre-fire disease epidemics. MASTER
[MODIS (Moderate Resolution Imaging Spectroradiometer)/ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer)] airborne sensor was
applied to collect relatively high spatial (4 m) and high spectral (50 bands) resolution
reflectance data. Results show that RF, SVR and GPR models outperformed con-
ventional multiple regression by 48%, 29% and 27%, respectively. Compared to SVR
and GPR, RF not only achieved better performance in burn severity assessment, but
also demonstrated lower sensitivity to the application of different combinations of
remote sensing variables. In addition to Normalized Burn Ratio (NBR), this study
further revealed the importance of image-texture (representing spectral variability
within and between neighbourhood forest patches) in burn severity mapping over
diseased forests.

1. Introduction

High-profile wildfires have led to significant impacts on climate and terrestrial ecosystems
(Malamud, Millington, and Perry 2005). In a forest environment, fire can affect vegetation
structure, plant species diversity and biomass carbon stocks across spatial scales from the
individual tree to the landscape level (Keith, Mackey, and Lindenmayer 2009). As a
measure of post-fire effects on local and regional environments, burn severity becomes a
standardized index facilitating assessments of fire-induced vegetation consumption, mor-
tality and recovery in forest management (Lentile et al. 2006). Field mensuration to map
burn severity is subject to logistical challenges and lacks a substantial amount of spatial
details, because unburned and lightly burned patches often intersperse among severely
burned patches due to the variability in landscape patterns and microclimates (Cocke,
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Fule, and Crouse 2005). Remote sensing, which provides a synoptic view of large burned
landscapes using spaceborne or airborne sensors, has been widely adopted to map the
post-fire ecological effects in forests (Lentile et al. 2006).

The major challenge for remotely assessing burn severity is that imagery integrates
changes from all parts of the trees, including those on the ground and in the canopies
(White et al. 1996). In recent years, researchers have further found that diseases and
insects are likely to occur in fire-prone forest landscapes (Jenkins et al. 2008; Metz et al.
2011; Harvey et al. 2013). This means that wildfires may interact with both healthy and
infested forests during the same fire events. Consequently, the degree of burn severity,
the structure of trees and the stage of infestation together could add high complexity to
analyse the spectral reflectance from burned and infested landscapes. The conventional
statistical regression or classification based on linear or simple non-linear assumptions to
link post-fire forest reflectance with field measurements may therefore have difficulties
to meet burn severity mapping requirements, often leading to large errors (De Santis and
Chuvieco 2007). Recent machine learning techniques (e.g., Gaussian process regression
(GPR), random forests (RF) and support vector regression (SVR)) offer some promising
alternatives, because they have proven effective to account for complex non-linear
relationships between variables with superior performances demonstrated in a prepon-
derance of comparative research for forest applications (Chen and Hay 2011; Zhao et al.
2011). They have also revealed high capacity to tackle the data noise and high-
dimensional problems, possibly introduced by the utilization of advanced remote sensing
data sets featuring high spatial and/or high spectral resolution (Zhao et al. 2011;
Dalponte, Bruzzone, and Gianelle 2012). Despite the advantages, machine learning
was rarely used in burn severity assessment, especially in forests suffering from fire-
disease disturbances.

The main objective of this study is to explore the efficacy of three machine learning
techniques, that is, GPR, RF and SVR, to assess burn severity in a forest that experienced
pre-fire disease outbreaks. To do so, we apply MASTER [MODIS (Moderate Resolution
Imaging Spectroradiometer)/ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer)] airborne imagery (see sensor details in Hook et al. 2001) with
relatively high spatial (4 m) and high spectral (50 bands) resolution to examine the utility
of machine learning in analysing advanced remote sensing data sets, and compare the
burn severity modelling results of machine learning with those of typical multiple
regression.

2. Data collection
2.1. Study area

Our study site (centred at: 36°15'N, 121°43'W) is located in the Big Sur California
ecoregion, covering an area of 28,383 ha (Figure 1). It features a Mediterranean-type
climate with a rugged landscape that is dissected by steep slopes and drainages with
elevations ranging from sea level to 1571 m within 5 km of the coast (Meentemeyer et al.
2008). Major forest types in the area include mixed coniferous forests, mixed oak wood-
lands and redwood-tanoak dominant forests. Since the mid-1990s, a non-native pathogen
Phytophthora ramorum causing the disease sudden oak death (SOD) has led to substantial
mortality in the region. In 2008, major wildfires occurred for the first time in forests
affected by SOD. The largest fire, Basin Complex Fire, burned over 95,000 ha including
our study area.
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Figure 1. Study area located in the Big Sur ecoregion on the western flank of the Santa Lucia
Mountains in California. The MASTER preprocessed image mosaic is from a colour composite
using bands 5 (red), 3 (green) and 1 (blue).

2.2. Field data

A network of long-term SOD-monitoring plots (500 m* each) in Big Sur was established
in 2006 and 2007 to understand the responses of forest communities (e.g., host mortality)
to the invasion of SOD. In September and October 2008, immediately following the
containment of the Basin Complex Fire, a total of 61 plots were revisited to assess burn
severity using Composite Burn Index (CBI) (Key and Benson 2006). In this study, the
average CBI representing an overall burn effect in each plot was used.

2.3. Remote sensing data

The MASTER (MODIS/ASTER) airborne simulator was applied to collect 12 image
scenes covering the area on 26 August 2008 (approximately 1 month after the fire
perimeter was contained). All images had 50 bands including the visible and near-infrared
(VNIR) and short-wave infrared (SWIR) (bands 1-25), the mid infrared (MIR: bands 26—
40) and the thermal infrared (TIR: bands 41-50) regions. The spatial resolution of the
imagery was 4 m, and the data were radiometrically and geometrically calibrated at the
Level 1B before delivered by the vendor.

Prior to burn severity modelling, the images were preprocessed using the following four
steps: (1) minimizing the view-angle brightness gradient, (2) image mosaicking, (3) radio-
metric correction and (4) topographic correction. Specifically, (1) the sun and sensor geometry
influences the data quality with each image transect being relatively bright on one side and
dark on the other side. To minimize this view-angle brightness gradient, we fit a quadratic
curve to each column to simulate the changes in brightness across view angles and then
applied a multiplicative compensation method to compensate each pixel (Kennedy, Cohen,
and Takao 1997). (2) The 12 transects were then mosaicked in sequence using the overlapped
area from one image to balance the data range of its neighbouring image. (3) The dark object
subtraction algorithm was used to derive surface radiance (Chavez 1996) in the VNIR and
SWIR region. No atmospheric correction was applied to the MIR region, as it is insensitive to
the presence of most aerosols (Harris, Veraverbeke, and Hook 2011). In the TIR region,
surface emissivity was extracted by separating from surface temperature using the emissivity
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normalization technique developed by Kealy and Hook (1993). (4) A topographic correction
was applied to normalize for different illumination conditions caused by topography using the
C-correction method (Teillet, Guindon, and Goodenough 1982), with the preprocessed image
mosaic shown in Figure 1.

3. Methodology
3.1. Object-based variable extraction

The MASER image mosaic was segmented using a geographic object-based image
analysis (GEOBIA) approach to generate image objects at a relatively small tree patch
level aiming to characterize heterogeneity in the burned and infested forests while
reducing high spectral variation. To do this, eCognition Developer 8 (Trimble
Navigation, Sunnyvale, California) was applied to generate image objects with an average
size of 0.8 ha (Figure 2). All the variables used in the succeeding burn severity assessment
were extracted from these objects and are considered as object-based variables.

The independent object-based variables were derived from MASTER imagery and
categorized into three types: original spectral bands, image-texture and spectral indices.
The 50 original spectral bands (hereafter: Spectral) was derived by averaging pixel values
within image objects for the 50 MASTER bands. Image-texture was calculated for each of
the spectral bands, comprising two types of texture variables, that is, internal texture
(TXIT) and neighbourhood texture (GEOTEX). Specifically, TXIT represented the stan-
dard deviation within each object, while GEOTEX characterized the relationship between
neighbourhood objects where standard deviation was calculated using the averaged pixel
values from the centre object and its immediate neighbours (Chen et al. 2011). We have
calculated several spectral indices, including Normalized Burn Ratio (NBR), Normalized
Difference Vegetation Index (NDVI), SWIR-MIR Index (SMI), NIR-SWIR-Emissivity
version 1 (NSEv1), which have been proven effective in previous burn severity studies
covering a wide spectral range from VNIR-SWIR to TIR (Tucker 1979; Kaufman and

Figure 2. A sample area with red lines representing the boundaries of segments and white colour
signifying the cover of post-fire white ash.
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Remer 1994; Key and Benson 2006; Veraverbeke, Hook, and Hulley 2012). The
MASTER bands used to calculate these indices are presented in the following equations:

NBR = (NIR — LSWIR)/(NIR + LSWIR) (1)
NDVI = (NIR — Red)/(NIR + Red) @)

SMI = (SSWIR — MIR)/(SSWIR + MIR) 3)
NSEv1 = ((NIR — LSWIR)/(NIR + LSWIR)) x E (4)

where NIR is near infrared (reflectances from band 9), SSWIR is shorter short-wave infrared
(reflectances from band 12), LSWIR is longer short-wave infrared (reflectances from band
24), MIR is mid infrared (reflectances from band 29) and E is emissivity (reflectances from
band 43). Consequently, a total of 154 independent variables were extracted. The object-based
dependent variable was calculated by overlaying field plots onto image objects and then
assigning field-measured CBI values to the spatially corresponding objects.

A machine learning minimal-redundancy-maximal-relevance approach (nRMR) was
applied to select a subset of independent object-based variables, which was based on the
principle of minimizing similarity between each variable, and maximizing relevance with
the target class of field-measured CBI (Peng, Long, and Ding 2005). To facilitate
straightforward comparisons of burn severity assessment, mRMR was used to generate
consistent input variables for all the four types of models (i.e., multiple regression and
three machine learning models). This study selected the top eight variables (in order of
predicting power) and evaluated the model sensitivity to the application of different
number of independent variables from top one to top eight.

3.2. Multiple regression

A linear regression model was developed to link mRMR-selected MASTER variables
with field-measured CBI at the 0.05 significance level. All the field plots were randomly
divided into two groups, with half of the plots used as training data and the remainder for
validation. Root-mean-squared errors (RMSEs) of CBI were calculated with the indepen-
dent validation plots. The same data groups were further applied to train and validate the
machine learning models presented in the following sections, and their RMSEs were used
for cross-comparison among the models.

3.3. Random forests (RF)

RF are a highly versatile ensemble of decision trees that performs well for linear and non-
linear prediction by finding a balance between bias and variance (Breiman 2001; Segal
2003). This ensemble learning method is known as ‘bagging’ as it grows trees in which
successive trees do not depend on earlier trees. Each tree is independently determined
using a bootstrap sample of the data set and a simple majority vote is taken for final
prediction (Liaw and Wiener 2002). Use of RF requires specifying two standard para-
meters: the number of input variables randomly chosen at each split at each node (mtry)
and the number of trees (ntree). After exploratory trials using training data, we found little
variability in the results of our burn severity assessment and finally chose the mtry value
of 3 and the ntree value of 100 as model parameters.
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3.4. Support vector regression (SVR)

SVR, originating from statistical learning theory, provides the capability to handle highly
non-linear problems even with noisy training (Vapnik 1998). SVM essentially transforms
the non-linear regression problem into a linear one by using kernel functions to map the
original input space into a new feature space with higher dimensions, with an ability to find
unique global solutions that are not inhibited by multiple local minima (Cristianini and
Shawe-Taylor 2000). This study applied a model type e-SVR in the regression (&: precision
parameter) and RBF as the kernel function. In e-SVR, an e-insensitive loss function is used
for tolerating small errors between the predicted and true values as long as the errors are less
than &; RBF often leads to better model performance than the other kernels (Chen and Hay
2011). A two-step grid-search technique suggested by Hsu, Chang, and Lin (2009) was used
to tune three model parameters, including penalty parameter (C), ¢ and kernel parameter ().

3.5. Gaussian process regression (GPR)

Similar to SVR, GPR is another popular kernel-based machine learning method for non-linear
regression problems (e.g., Zhao et al. 2011). GPR is typically formulated and interpreted in a
Bayesian context (Rasmussen and Williams 2006). To infer an unknown functional relation-
ship from a training data set, GPR first elicits a prior GPR to constrain the possible forms of
the unknown function and then updates this prior in the light of training samples to generate a
posterior GPR as the final functional model (Rasmussen and Williams 2006; Zhao, Popescu,
and Zhang 2008). The learning of a GPR model also needs to specify some parameters related
to the covariance or kernel functions (also known as hyper-parameters). The hyper-parameters
to be tuned for a RBF kernel include magnitude, characteristic length and noise variance,
roughly corresponding to the C, y and ¢ parameters of SVR (Pasolli, Melgani, and Blanzieri
2010). And the maximum-likelihood-II method (aka empirical Bayes or evidence approxima-
tion) was applied for parameter tuning in this study (Bishop 2006).

4. Results and discussion
4.1. Model sensitivity to variable selection

The application of the mRMR feature selection algorithm resulted in a list of object-based
variables. The top eight selected variables, as ranked in terms of predictive power, were
TXIT (band 14), GEOTEXT (band 16), Spectral (band 10), NBR, TXIT (band 5), TXIT
(band 15), Spectral (band 33) and NDVI. Compared to the VNIR-SWIR bands typically
used in burn severity mapping, the extra detailed MIR-TIR bands from MASTER were
also expected to make a positive contribution to the understanding of the burn effects,
taking advantage of their ability to record longer wavelength electromagnetic radiation.
However, the variable selection results indicate that the VNIR-SWIR bands (1-25)
remained vital to burn severity assessment, while the other bands (26—50) and associated
texture and spectral indices did not have a high correlation with field-measure CBI as
VNIR-SWIR did. Only band 33 from the MIR spectral range was selected. We further
note that, among the three types of object-based variables (see Section 3.1), image-texture
demonstrated higher likelihood to be more statistically relevant to CBI. In particular, three
internal and one neighbourhood texture variables were selected by mRMR, suggesting
that object-based spectral variability is a valuable indicator characterizing the differences
in forest patches that suffered from fire-disease disturbances. Additionally, similar to the
findings from previous research (De Santis and Chuvieco 2007; Fox, Maselli, and Carrega
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Figure 3. The performance (i.e., RMSEs) of the multiple regression, random forests, support
vector regression and Gaussian process regression models using different combinations of variables
selected by mRMR from top one to top eight.

2008), NBR and NDVI were found sensitive to the variation in burn severity, and NBR
exhibited stronger capacity in the estimation of CBIL

The performance (i.e., RMSEs) of multiple regression, RF, SVM and GPR models
showed similar trend lines applying different variable combinations selected by mRMR
from top one to top eight (Figure 3). Specifically, if the number of variables was smaller
than five, all the four types of models tended to be sensitive to the addition of more
variables, with errors dramatically decreasing by approximately 17%, 16%, 31% and 42%
for multiple regression, RF, SVM and GPR, respectively. In contrast, the error trend lines
became relatively flat if more than five variables were applied, suggesting that the top four
independent variables were already sufficient to our burn severity assessment, while the
other variables may either have low correlations with CBI or only add redundancy to the
existing model variables. Furthermore, the use of different variable combinations added
higher variation to the results of SVR and GPR than to those of multiple regression and
RF. One obvious reason is that the models are inherently different in structure. This could
also be caused by the application of feature selection algorithm, where the ‘best’ variable
combination selected by mRMR may not always be the best for other algorithms.

4.2. Comparison of model performance in burn severity assessment

The comparison of all the models’ performance shows that machine learning outperformed
multiple regression by 48%, 29% and 27% using RF, SVR and GPR, respectively (Figure 4).
The model errors of multiple regression (using different variable combinations) ranged from
0.49 to 0.59, which were close to 20% of the most severe burn (i.e., CBI = 3), while machine
learning proved to be more effective to reduce the burn severity estimation errors. Hence, our
comparisons suggest that pre-fire disease outbreaks in a forest landscape could add high
complexity to post-fire burn severity assessment, and conventional linear models are likely
unable to capture the complex relationships between spectral measurements and burn severity.
Using multiple regression is particularly problematic when numerous candidate predictors are
available, for which variable selection is sensitive to random errors in observations. Our
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Figure 4. The comparison of the model average error (grey bar) and the error standard deviation
(error bar) among the multiple regression, random forests, support vector regression and Gaussian
process regression models.

analyses clearly demonstrate that machine learning often provides better alternative techni-
ques because of their flexibility of modelling non-linear relationships based on limited
observations. Of the three models tested here, SVR and GPR models had similar perfor-
mances because they are exemplar-based kernel machines and we have used the RBF kernel
for both of them. But we note that SVR often gives a sparse model that is fitted only from a
subset of training samples, whereas GPR is a full model based on all the training samples. In
our analyses, both SVR and GPR were outperformed by RF. The superiority of RF could
probably be attributed to its ensemble-learning paradigm, that is, combining multiple weak
learners into a strong learner. This model-averaging paradigm offers a theoretically appealing
and practically effective inference framework to unravel complex remote sensing data sets, as
demonstrated in both our results and earlier studies.

5. Conclusion

Three machine learning techniques, that is, GPR, RF and SVR, were introduced within a
GEOBIA framework to assess burn severity in a forest landscape where an exotic disease,
SOD, has caused pre-fire substantial tree mortality. Compared to the conventional multiple
regression, RF, SVR and GPR reduced model errors by 48%, 29% and 27%, respectively,
suggesting that a complex relationship exists between post-fire forest reflectance and the
degree of burns in disease forests. Of the three tested machine-learning techniques, RF
showed better performance in burn severity assessment and lower sensitivity to the applica-
tion of different combinations of remote sensing variables. In addition to the widely used
spectral index of NBR, we also found that image-texture representing spectral variability
within and between neighbourhood forest patches was a valuable indicator characterizing
the differences in forests that experienced fire-disease disturbances. Finally, we note that our
model errors could be partly caused by the fact that the signals received by remote sensors
are typically biased to the upper level of forest canopies, while the field-measured CBI
values contain forest changes from all the strata. The inconsistency of spatial scale between
field plot size and image resolution may have also caused errors. In our study, GEOBIA was
applied to extract and analyse meaningful burned patches (average size of 0.8 ha) that
simulated the actual burn effects in the field.
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