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The  impact  of  urban  residential  patterns  on  forest  carbon  density  was  explored.
LiDAR  and  aerial  photography  were  integrated  for  spatially  explicit  carbon  mapping.
Charlotte  has  a total  amount  of  3.8  million  tonnes  carbon  ($298  million  value).
The  impact  of  urban  patterns  varies  across  different  densities  of  neighborhoods.
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a  b  s  t  r  a  c  t

Urban  development  continues  to reshape  forest  landscapes  and  influence  the carbon  storage  capacity
of  trees.  To date,  the  impact  of  urban  patterns  on forest  carbon  density  remains  to be  systematically
evaluated.  A  major  challenge  is  the lack  of accurate  and  spatially  explicit  estimates  of  forest  carbon
storage  over  the  entire  urbanized  area.  In this  study,  we  first developed  an  integrated  approach  that
synergizes  remote  sensing  LiDAR  (light  detection  and  ranging)  and  aerial  photography  to efficiently  model
landscape-level  forest  carbon  storage  in  an  urban  environment  at a fine  resolution  of 20  m.  Using  a  case
study  in  the  Charlotte  Metropolitan  Region,  USA,  we  were  able  to determine  the  total  amount  of  carbon
stored  in  the  local  forests  to  be 3.8 million  tonnes  ($298  million  value),  with  an  average  carbon  density  of
53.6  t/ha.  We  further  applied  statistical  analysis  to investigate  the  relationship  between  urban  developed
patterns  (i.e.,  landscape  metrics)  and  forest  carbon  density  in  four types  of residential  neighborhoods
(categorized  by  percent  built-up  ranging  from  low,  medium-low,  medium-high  to  high  density).  Results

indicate  a decrease  of  forest  carbon  density  with  an  increase  of  carbon  variance  in neighborhoods  where
the  intensity  of  development  became  higher.  Residential  neighborhoods  with  a higher  built-up  density
were  more  likely  to be  affected  by a  larger  number  of  landscape  metrics.  This  indicates  that  a proper
design  of the  neighborhood  level  urban  spatial  patterns  (especially  in  high  density  neighborhoods)  is
essential  to  maximizing  forest  carbon  storage  at the  landscape  level.

Published by Elsevier  B.V.
. Introduction

Urban forests (i.e., trees in urban areas) are high quality carbon
inks to mitigate climate change by capturing carbon dioxide (CO2)

rom the atmosphere. In the United States, trees growing on the
rban land that accounts for 3% of the total landmass can sequester
4% of the amount of carbon sequestered by the entire nation’s

∗ Corresponding author. Tel.: +1 704 687 5947; fax: +1 704 687 5966.
E-mail addresses: godwinschristopher@gmail.com (C. Godwin),

ang.chen@uncc.edu (G. Chen), kun2001@gmail.com (K.K. Singh).

ttp://dx.doi.org/10.1016/j.landurbplan.2014.12.007
169-2046/Published by Elsevier B.V.
forests (Heath, Smith, Skog, Nowak, & Woodall, 2011). Nowak,
Greenfield, Hoehn, and Lapoint (2013) estimated that the volume
of carbon stored by urban forests in the United States is 643 million
tonnes ($50.5 billion value) and their annual carbon sequestration
is approximately 25.6 million tonnes ($2.0 billion value). With con-
tinued urban growth and sprawl, forests in these areas are expected
to play a more critical role in climate change mitigation and asso-
ciated initiatives, such as carbon offset trading (Poudyal, Siry, &

Bowker, 2011; Strohbach & Haase, 2012).

Recent studies have demonstrated that the amount of carbon
(per unit of tree cover) stored by urban forests is spatially non-
stationary and highly related to regional context (Liu & Li, 2012;

dx.doi.org/10.1016/j.landurbplan.2014.12.007
http://www.sciencedirect.com/science/journal/01692046
http://www.elsevier.com/locate/landurbplan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.landurbplan.2014.12.007&domain=pdf
mailto:godwinschristopher@gmail.com
mailto:gang.chen@uncc.edu
mailto:kun2001@gmail.com
dx.doi.org/10.1016/j.landurbplan.2014.12.007
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cPherson, 1998; McPherson, Xiao, & Aguaron, 2013; Nowak et al.,
013; Strohbach and Haase, 2012; Zhao, Kong, Escobedo, & Gao,
010). For example, during the mapping of urban forest carbon stor-
ge across the conterminous United States, McPherson et al. (2013)
nd Nowak et al. (2013) found large variations in the aggregated
ity-level estimates of carbon density, mainly attributed to the
omplex local and regional determinants (e.g., land development
atterns) that influence tree species composition, stand density
nd forest growth. Within city boundaries, the differences in tree
anagement practices, neighborhood age or land-use types further

eveal high impacts on forest carbon storage across neighborhoods
Grove et al., 2006; Zhao et al., 2010). Despite these encouraging
ndings, few studies have systematically quantified the impacts of
rban development patterns on forest carbon density at the inner-
ity neighborhood level (Ren et al., 2013). Landscape patterns are
ften quantified using landscape metrics, which refer to a broad
ange of quantitative indices representing spatial heterogeneity,
uch as characteristics of patches, classes of patches, or entire
andscape mosaics (Herold, Scepan, & Clarke, 2002; McGarigal,
ushman, Neel, & Ene, 2002; Plexida, Sfougaris, Ispikoudis, &
apanastasis, 2014; Richardson & Moskal, 2011; Riitters et al., 1995;
eto & Fragkias, 2005; Wu,  Shen, Sun, & Tueller, 2003). Judiciously
nalyzing the relationship between landscape metrics and forest
arbon density informs the practices on efficient city tree manage-
ent and sustainable urban environmental design (Termorshuizen

 Opdam, 2009; Xiang, 2014).
To date, a major challenge confronting such analysis is the lack

f accurate, up-to-date, and spatially explicit carbon estimates
ver the entire urban landscapes. For logistical and privacy rea-
ons (up to 90% of urban trees are on private land in the U.S.),
eld observation using limited number of plots may  cause large
rrors in sampling and leads to high uncertainties in carbon esti-
ation (Clark, Matheny, Cross, & Wake, 1997; McPherson et al.,

013). Conventional optical remote sensing provides a viable alter-
ative to study Earth surface of large geographical coverage in

 timely and cost-effective manner. However, researchers have
oticed that optical sensors are limited in their capabilities for cap-
uring the understory vegetation in multi-strata forests, and the
naccurate retrieval of tree vertical structure makes carbon estima-
ion a challenging task (Lu, 2005). Over the past decade, airborne
iDAR technology has attracted increased attention for measuring
orest carbon density across biomes (Chen, Wulder, White, Hilker,

 Coops, 2012). Lefsky et al. (2002) applied LiDAR to estimate
boveground biomass (ABG) of three species groups (temperate
eciduous, temperate coniferous, and boreal coniferous biomes)
sing a single regression, which still explained 84% of variance in
iomass. Asner et al. (2012) developed a universal LiDAR model
or four tropical regions to estimate forest carbon density at a rela-
ively high accuracy (R2 = 0.80). In an effort to study urban forests of
klahoma, Shrestha and Wynne (2012) evaluated the performance
f LiDAR biomass modeling at the individual tree level. Despite

 high diversity of tree growth rates and plant species types in
ocal forests, their research unveiled a good agreement between
iDAR estimates and field measurements (R2 = 0.63) making LiDAR

 promising tool to offer high-accuracy and wall-to-wall forest car-
on estimates over large urbanized areas (Seto, Güneralp, & Hutyra,
012).

The primary goal of this research was to explore the impact
f urban development patterns on forest carbon density at the
eighborhood level. Here, we emphasize on the residential neigh-
orhoods, because the majority of urban forests are located in
hese areas where trees also have high impacts on property values

Escobedo, Adams, & Timilsina, in press). To achieve the goal, we
ntegrated LiDAR, aerial photography and field mensuration to
xtract spatially explicit forest carbon distribution and landscape
etrics over the entire urbanizing landscapes of the study area.
Fig. 1. Analytical schematics for the study with reference to Section 2.

Statistical analysis was  then used to quantify the relationship
between landscape metrics and carbon density. The flowchart
in Fig. 1 summarizes these steps; while the following sections
provide greater details and explanations.

2. Methods

2.1. Study area

The study area (1415 km2 and centered at 35◦15′N, 80◦50′W)
is located in Mecklenburg County of North Carolina, United States
(Fig. 2). The region is often referred to as Charlotte–Mecklenburg
County or the Charlotte Metropolitan Area. The rolling landscape
of the region is characterized by the southern Piedmont physiogra-
phy with secondary growth forests that have developed on former
timber plantation sites and abandoned agricultural lands. Eleva-
tion of the County ranges from 252 m above sea level in the north
to 159 m in the southern part. Forested landscapes, initially cov-
ered by widespread mixed oak forests interspersed with prairies,
represent a mix  of oak, hickory and pine. Mecklenburg County is
one of the fastest developing regions of the southeastern United
States. According to a report of U.S. Census Bureau (2013), it has
grown in population from 0.4 million in 1980 to approximately 1
million people in 2013, a trend that is expected to continue. Dur-
ing the similar period between 1985 and 2008, the region lost 33%
of its tree canopy and gained 60% developed land (Singh, Vogler,
Shoemaker, & Meentemeyer, 2012). The rapid population growth,
characterized by urban sprawl with low to high housing density,
has replaced forest and farmland dominated landscapes with an
array of developed land use types including managed treescapes
and highly fragmented urban forests.

2.2. Field measurements
A total of 75 circular field plots (0.04 ha each) were measured
during the years of 2010–2012 in vegetated areas covering all
major forest types. The plots were designed following the typically
used i-Tree ECO (Urban Forest Effects; also known as UFORE)
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from the Storm Water Services Division of Charlotte–Mecklenburg
County government office in 1896 tiles. The dimension of each
tile is 914.4 m × 914.4 m.  Original data acquisition was carried out
by the Pictometry International’s (Rochester, USA) using Optech’s

Table 1
Summary statistics† of field-measured carbon density: mean, median, maximum,
minimum and standard deviation.

Species group Mean Median Std. deviation Minimum Maximum
ig. 2. (a) Study area is located in Mecklenburg County, North Carolina, USA. (b) Cha
re  in orange polygons and the locations of field data are represented by circular pl

rotocols in urban forest studies (Nowak, Crane, Stevens, Hoehn,
 Walton, 2008). Minor adjustments were performed on site
election under the consideration of site accessibility. Within each
lot, tree diameter at the breast height (DBH), species composition,
nd merchantable tree height were recorded.

To acquire forest carbon density from field plots, we  first
pplied Jenkins allometric equations (Jenkins, Chojnacky, Heath, &
irdsey, 2003) to calculate above-ground biomass (AGB) for each
lot using tree species and DBH. Jenkins et al. (2003) complied
and modified some of the) 2640 equations based on a thorough
eview of published equations for U.S. species. The comparison
f biomass estimates using Jenkins equations and the U.S. for-
st inventory data for eastern U.S. species suggested a general
greement (approximately ±30%; Jenkins et al., 2003). Despite the
rrors in calculating biomass, these equations were employed in
his study because local equations were (and are still) not available
nd destructive sampling to accomplish such goal was  not feasible.
s further pointed out by McPherson et al. (2013), even if local
GB equations exist, they are often biased to public street and
ark trees, and forest biomass in open-grown conditions (e.g.,
treet trees) tends to differ from that in closely-spaced areas (e.g.,
emnant large tree patches). Sampling errors, which are normally
nknown, are another error source to increase uncertainty in forest
iomass estimation (Nowak et al., 2013). To calculate the whole
ree biomass, below-ground biomass (BGB) should be integrated
ith AGB. However, the knowledge of BGB in roots of urban is still

imited (McPherson et al., 2013). Here, the AGB estimates were
onverted to full biomass by applying a root-to-shoot ratio of 0.26
Cairns, Brown, Helmer, & Baumgardner, 1997). This ratio was  used
n our study based on the consideration of the relatively high model

erformance in root biomass estimation (R2 = 0.84) conducted by
airns et al. (1997), and its proved feasibility in several recent forest
tudies across U.S. cities (e.g., Nowak et al., 2008; Schmitt-Harsh,
incey, Patterson, Fischer, & Evans, 2013). Finally, the biomass
 is the county seat and the largest city in North Carolina. (c) Selected neighborhoods

estimates were converted to carbon by multiplying the constant
0.5 (Lieth, 1975), which has been a standard factor for biomass-
carbon conversion in both the natural and urban forest research
(Hudak et al., 2012; McPherson et al., 2013; Myneni et al., 2001).
Within each plot, the summarized tree-level carbon estimate was
divided by 0.04 ha (size of plot) to obtain carbon density (t/ha).

We categorized all plots into the deciduous, coniferous and
mixed types using a threshold of three-fourth that has been used
in local forest management. Specifically, if a plot consists of over
75% deciduous or coniferous trees, it was labeled as a deciduous
or coniferous plot; otherwise, it was  labeled as a mixed plot. Four
field plots were excluded from the subsequent analyses because of
their unrealistic carbon estimates. Finally, a total of 71 plots (i.e.,
25 deciduous, 21 coniferous, and 25 mixed) were selected; and
their carbon density with descriptive statistics are summarized in
Table 1.

2.3. LiDAR data

LiDAR data covering the entire study area were acquired
Deciduous 121.63 110.03 58.93 26.54 298.46
Coniferous 66.77 62.20 33.15 21.17 165.89
Mixed 87.85 84.42 34.36 20.94 154.05

† The unit of all the statistics is t/ha.
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LTM Gemini 3100 LiDAR system (Optech Incorporated, Vaughan,
anada) with 1 mission on April 11th, 2012, 2 missions on April
2th, 2012, 1 mission on April 13th, 2012, and 2 missions on April
4th, 2012. Data were collected at a nominal point density of 1.0
oint/m2, with four returns from each pulse. Raw point clouds were
enerated using Applanix POSPac v4.4 (Applanix Corp., Richmond
ill, Canada) and the DashMap software package (Optech Incor-
orated, Vaughan, Canada). TerraMatch (Terrasolid Ltd., Helsinki,
inland) was used to measure and apply small adjustments to the
ystem’s orientation angles in order to ensure proper alignment of
ata between flight lines.

.4. National Agriculture Imagery Program (NAIP) imagery

A multispectral NAIP (National Agriculture Imagery Program)
osaic, hereafter referred to as NAIP image,  covering the study

rea was downloaded from the USDA Geospatial Data Gateway
http://datagateway.nrcs.usda.gov/). Original NAIP images were
aken during the leaf-on season in 2012 at 1.0 m spatial resolution
ith four spectral bands (blue, range of wavelength: 400–580 nm;

reen, range of wavelength: 500–650 nm;  red, range of wave-
ength: 590–675 nm;  and near infrared, range of wavelength:
75–850 nm). The image was orthorectified with data quality

nspected before it was delivered by the vendor (U.S. Department of
griculture, 2014). GPS was further used to examine the geometric
ccuracy of the downloaded NAIP image, which revealed an aver-
ge horizontal error of less than 3 m.  Because carbon estimation
as conducted at the spatial resolution of 20 m × 20 m (see details

n Section 2.6), the geometric accuracy of the NAIP image met  our
eeds.

.5. Object-based neighborhood analysis

.5.1. Object-based image classification
Geographic object-based image analysis (GEOBIA) provides an

ppropriate solution to capture and analyze meaningful ground
bjects while reducing high spectral variability in high-spatial res-
lution (i.e., typically higher than 5 m)  imagery (Blaschke et al.,
014; Chen et al., 2012; Wulder, Hall, Coops, & Franklin, 2004).
rom the geography perspective, an object can be defined as a rel-
tively homogenous area that differs from its surroundings. This
erm is often used to represent patch in landscape ecology. To calcu-
ate landscape metrics that quantify the characteristics of patches,

 GEOBIA segmentation approach was firstly applied to extract
bjects. Specifically, we used eCognition Developer 8 (Trimble
avigation, Sunnyvale, California) to segment the four-band NAIP
mage with each band assigned the same weight. After a trial-and-
rror test, the spatial scale parameter (defining mean object size) of
0 was used to derive image objects aiming to capture high hetero-
eneity in the urban area (e.g., small tree clusters and individual

able 2
esidential neighborhood categories (low, medium-low, medium-high and high density) w

Category Number Average size (ha) 

Low (PBU† ≤ 15%) 22 775 

Medium-low (15% < PBU† ≤ 25%) 27 257 

Medium-high (25% < PBU† ≤ 40%) 27 195 

High  (PBU† > 40%) 24 128 

† PBU: Percent built-up.
n Planning 136 (2015) 97–109

houses). Here, image objects are clusters of neighboring pixels to
represent meaningful ground objects. Identifying the class of each
image object is important, as different land-cover and land-use
(LCLU) types may  affect forest carbon density in different ways. This
process was  accomplished by applying the classic supervised near-
est neighbor classification algorithm to all the NAIP image objects
using eCognition Developer 8. Besides the four spectral bands, spec-
tral variation (i.e., standard deviation) of each spectral band within
each image object was  also computed and used in the classifica-
tion. Six LCLU classes were finally generated including deciduous,
coniferous, built-up, open space, water, and bare soil. Both training
and reference samples (300 each) were randomly extracted from all
the image objects. The LCLU types of these samples were identified
through manual photo interpretation and field visits. A confusion
matrix was  generated with user’s accuracy, producer’s accuracy,
overall accuracy, and kappa statistic calculated to evaluate the clas-
sification result (Congalton & Green, 1999).

2.5.2. Neighborhood selection
There are a total of 464 Neighborhood Profile Areas

(NPA) in Mecklenburg County as defined by the 2012
Charlotte–Mecklenburg Quality of Life study (City of Charlotte and
Mecklenburg County, 2014). These NPAs were developed using the
2010 Census Block Group geography, with each NPA representing
one or more census block groups. Because the residential neigh-
borhoods are the emphasis of this study, the classification results
(Section 2.5.1) were used to assess the ratio of residential land use
in each neighborhood. It was  considered as a residential neighbor-
hood when the neighborhood had at least 75% of the built-up land
use. Within each selected neighborhood, the classified NAIP image
was applied to calculate percent built-up (PBU) (built-up area
divided by total neighborhood area) demonstrating residential
density. Finally, we selected 100 residential neighborhoods that
were almost equally divided into four categories to represent
four types of residential densities: low, PBU ≤ 15%; medium-
low, 15% < PBU ≤ 25%; medium-high, 25% < PBU ≤40%; and high,
PBU > 40%. Because there is no official classification of residential
neighborhoods based on residential density, the thresholds were
chosen with the main purpose to distinguish major residential
conditions (e.g., homes condensedly developed, or homes with big
yards covered by trees). The neighborhood number, average size
and description of each category are presented in Table 2. Four
samples representing these neighborhoods are shown in Fig. 3.

2.6. Forest carbon estimation
2.6.1. Calculation of plot-level carbon density
LiDAR metrics were calculated from raw point clouds using

FUSION, a widely-used free LiDAR processing package (McGaughey,
2014). Prior to the extraction of metrics, two steps were applied to

ith the selected number and average size of neighborhoods and their characteristics.

Characteristics

Forest dominated neighborhoods with patches of subdivisions. Areas
of  these neighborhoods tend to be larger than neighborhoods present
in  other categories
Suburban style development with reasonably large number of trees
contained in the yards of homes. These neighborhoods also contain
medium to large sized clumps of forested land
Condensed suburban style development with little to no trees
contained in yards of homes. These neighborhoods contain small to
medium disaggregated clumps of forested land
Mixed use neighborhoods containing residential areas and nearby
business. They are typically developed in a very tight suburban style,
including apartments and townhouses

http://datagateway.nrcs.usda.gov/
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Fig. 3. Sample neighborhoods representing four types of residential densities of (1) low, (2) medium-low, (3) medium-high and (4) high. For each neighborhood, the red
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cial case of the Box–Cox transformation when zero is chosen for the
� parameter. Due to the limited number of field plots for each type
of forest species, the leave-one-out cross validation was  applied

Table 3
LiDAR metrics extracted from the raw point data and the corresponding
abbreviations.

LiDAR metric Abbreviation

Total return count TRC
Minimum Height.Min
Maximum Height.Max
Mean Height.Mean
Mode Height.Mode
Standard deviation Height.Stddev
Variance Height.Var
Skewness Height.Skew
Kurtosis Height.Kurt
Height 1st percentile Height.P01
Height 5th percentile Height.P05
Height 10th percentile Height.P10
Height 20th percentile Height.P20
Height 25th percentile Height.P25
Height 30th percentile Height.P30
Height 40th percentile Height.P40
Height 50th percentile Height.P50
Height 60th percentile Height.P60
Height 70th percentile Height.P70
Height 75th percentile Height.P75
Height 80th percentile Height.P80
olygon shows the neighborhood boundary overlaid on the original NAIP true color
mage.  (For interpretation of the references to color in this figure legend, the reader

ormalize LiDAR points and remove outliers. Specifically, the filter
lgorithm developed by Kraus and Pfeifer (1998) was used to distin-
uish ground points from non-ground points. Based on the ground
oints, we created a digital elevation model (DEM) for the entire
tudy area, which was then applied to normalize LiDAR returns by
emoving the impact of surface topography. The outliers were elim-
nated using a height range from 2 m to 38 m that represents the
ctual growth condition of local trees. Consequently, a total of 25
etrics were extracted at the field plot level (Table 3). Similar lidar

rocessing and metrics have been widely used in previous studies
o estimate forest vertical structure in both the urban and natural
nvironments (e.g., Shrestha & Wynne, 2012; Treitz et al., 2012).

Deciduous, coniferous and mixed plots contain different tree
tructures that should be modeled separately to account for varia-
ion in carbon storage (Chen & Hay, 2011; Popescu & Wynne, 2004).
n this research, multiple regression models were developed to
ink LiDAR metrics (independent variables) with field-measured
arbon density (dependent variable) at a 0.05 significance level.
o overcome multicollinearity, variance inflation factor (VIF) was
alculated for all the predictors. By following a common rule of
humb to avoid multicollinearity, the independent variables were
elected where VIFs were smaller than 5 in the final models. As fur-
her suggested by several researchers (e.g., Hudak et al., 2006; Chen

 Hay, 2011; Frazer, Magnussen, Wulder, & Niemann, 2011), non-
inear relationships between carbon density and forest structure
ften occur, and the transform of input variables using the natu-
al logarithmic function and the Box–Cox transformation (a power
ransform) have the potential to improve the performance of LiDAR

arbon modeling. The Box–Cox transformation, which is often used
o achieve linearity in the model, was calculated in the form of an
xponent containing the value � (Eq. (1)). This value was derived
y plotting the log likelihood against � values, and finding the �
osite, while the black polygon is the same boundary overlaid on the classified NAIP
erred to the web version of this article.)

that was  associated with the maximum log likelihood value for the
model (Box & Cox, 1964). The logarithmic function is actually a spe-
Height 90th percentile Height.P90
Height 95th percentile Height.P95
Height 99th percentile Height.P99
Canopy relief ratio CRR
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Table 4
Interpretation of the selected landscape metrics (McGarigal et al., 2002).

Landscape metric Interpretation

Percentage of Landscape Area
(PLAND)*

Value approaches 0 when the largest
patch of the corresponding patch type
becomes increasingly rare in the
landscape. Equals 100 when the entire
landscape consists of a single patch
type

Mean Patch Size (MPS)* A function of the number of patches in
the class and total class area

Edge Density (ED) ** ED standardizes edge to a per unit area
basis that facilitates comparisons of
edge length among landscapes of
varying size

Contagion Index (CONTAG)** CONTAG measures the extent to which
patch types are aggregated or clumped
(i.e., dispersion); higher values of
contagion may  result from landscapes
with a few large, contiguous patches,
whereas lower values generally
characterize landscapes with many
small and dispersed patches

Shannon’s diversity index (SHDI)** SHDI equals 0 when the landscape
contains only 1 patch (i.e., no
diversity). SHDI increases as the
number of different patch types (i.e.,
patch richness, PR) increases and/or
the proportional distribution of area
among patch types becomes more
equitable

Patch cohesion index (COHESION)** COHESION measures physical
connectedness of the corresponding
patch type. Value is sensitive to the
aggregation of the focal class. As patch
cohesion increases the patch type
becomes more clumped or aggregated
in distribution

* Class level metric, with six values computed for six classes in each neighborhood,
02 C. Godwin et al. / Landscape an

o assess the model performance with both R2 values and RMSEs
root-mean-squared errors) reported (Davis, 1987).

(�) =

⎧⎪⎨
⎪⎩

(
y� − 1

)
�

, � /= 0

log (y) , � = 0

(1)

.6.2. Calculation of landscape-level carbon density and forest
alue

The classified NAIP image was used as the base map  for extract-
ng deciduous, coniferous, and mixed forests for the entire city.
pecifically, 0.04 ha square grids were overlaid to the area for the
urpose of simulating field plots of the same size. Within individual
rids, we followed the same criterion in field mensuration (Section
.2) to determine within-grid forest species types by applying a
hreshold of 0.75. Specifically, if more than 75% of the grid pix-
ls were classified as coniferous (or deciduous) trees, the grid was
abeled as a coniferous (or deciduous) plot. If neither coniferous nor
eciduous trees could dominate the grid area with more than 75%
f coverage, and the area still had more than 75% of tree coverage, it
as labeled as a mixed plot. LiDAR metrics (Table 3) were extracted

or all the grids, which was followed by applying the three devel-
ped forest carbon models (Section 2.6.1) to map  the wall-to-wall
arbon density at the urban landscape level.

To estimate economic value associated with the carbon stored
n Charlotte’s urban forests, the total amount of carbon storage was

ultiplied by $78.5 (per tonne of carbon). The value of $78.5 was
sed on the basis of the social costs of carbon estimated in 2010, and
as been recommended by the U.S. Government (2010) and Nowak
t al. (2013). It should be noted that carbon markets are highly
olatile, and the value of sequestered carbon depends on a range of
ocial and regulatory factors (Zheng, Ducey, & Heath, 2013). Here,
e did not intend to provide an accurate market price for the local

rees that is in fact difficult to achieve. The main purpose was to
eliver a preliminary monetary assessment of the urban forests
rowing in Charlotte–Mecklenburg County.

.7. Statistical analysis

.7.1. Calculation of landscape metrics
Landscape metrics, typically developed on the basis of

nformation-theory measures and fractal geometry, have proven
o be suitable for capturing the structures and patterns of a land-
cape since late 1980s (Herold et al., 2002; Riitters et al., 1995;
urner, 1989; Wu et al., 2003). While a variety of metrics are avail-
ble for investigation, the challenge is twofold: first, many of the
etrics are highly correlated; second, no single metric can repre-

ent all aspects of the complex urban patterns (Seto & Fragkias,
005). In this study, we evaluated the impact of five aspects (i.e.,
rea, shape, dispersion/interspersion, diversity, and connectivity)
f spatial heterogeneity on forest carbon storage, by adopting six
epresentative landscape metrics: percentage of landscape area
PLAND), mean patch size (MPS), edge density (ED), contagion index
CONTAG), Shannon’s diversity index (SHDI), and patch cohesion
ndex (COHESION) (Table 4; McGarigal et al., 2002). Specifically,
LAND was computed to represent the area percentage for each of
he six LCLU classes. Different urban development patterns may
hange landscape composition in varying ways. For example, a
igh density residential area tends to contain a lower proportion
f forest patches and a higher proportion of build-ups than a low
ensity residential area. MPS  was also calculated for each of the six

CLU classes, with the purpose to measure the extent of subdivi-
ion within neighborhoods. A smaller MPS  often suggests a higher
egree of fragmentation, although the interpretation should also
ake into account the size of neighborhood (McGarigal et al., 2002).
including deciduous, coniferous, built-up, open space, water, and bare soil.
** Landscape level metric with one value calculated in each neighborhood.

Both PLAND and MPS  are area-related landscape characteristics.
ED is a measurement of patch shape complexity. Compared to the
natural environments, anthropogenic features (e.g., buildings and
parking lots) add higher patch diversity to the landscape, increas-
ing the total length of edge, and thus edge density (Chen, Zhao,
& Powers, 2014). CONTAG is an index that subsumes both disper-
sion and interspersion, and quantifies the extent to which patch
types are clumped (McGarigal et al., 2002). Hence, landscapes with
numerous small and dispersed patches are generally characterized
by low CONTAG values (Herold, Couclelis, & Clarke, 2005). SHDI has
been a popular index in ecology to measure species diversity in a
given community (Magurran, 1988). Here, SHDI was  calculated to
measure the relative abundance of LCLU classes that were present
in neighborhoods. By following Schumaker (1996), COHESION was
computed to quantity the physical connectivity of patch types dis-
persing in landscapes. Generally, small COHESION values are often
associated with highly subdivided landscapes (Yu & Ng, 2007). In
this study, the widely-used Fragstats package was employed to cal-
culate PLAND and MPS  at the LCLU class level, and ED, CONTAG,
SHDI and COHESION at the landscape level (McGarigal et al., 2002).

We note that the choice of 4 or 8-neighbor rule affects the
delineation of patches, and thus the calculation of metrics. The 8-
neighrbor rule was chosen in our tests, based on the consideration
that both the cardinal and diagonal pixels/cells should be treated
as adjacent neighbors, and such choice has proven effective in the
landscape and/or forest literature (Linke, Franklin, Huettmann, &

Stenhouse, 2005; Marceau & Moreno, 2008; Richardson & Moskal,
2011). We  further compared the values of landscape metrics using
these two rules, and found that the choice of rule (i) had no impact
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n PLAND, ED, CONTAG, and SHDI, (ii) only slightly altered COHE-
ION values by less than 0.03% for the four types of residential
eighborhoods, and (iii) changed MPS  values by less than 6% across
he neighborhoods with t-test showing no significant difference
p > 0.05) between 4 and 8-neighbor MPS  values.

.7.2. Impact of neighborhood development patterns
Neighborhoods with various residential densities directly

hange how urban forests are fragmented, which may  have dif-
erent impacts on forest carbon storage. In this study, we  first
ummarized and compared all the selected landscape metrics for
he four types of residential neighborhoods of low, medium-low,

edium-high and high density. t-Test was employed to assess
hether different types of neighborhoods (i.e., urban development
atterns) have resulted in significantly different landscape metric
alues. Then, carbon density was calculated within each neighbor-
ood by dividing the total amount of forest carbon storage by the
rea of canopy cover. Spearman’s correlation coefficients were cal-
ulated to evaluate the relationship between forest carbon density
nd the selected landscape metrics for the four types of neighbor-
oods and all the neighborhoods, respectively (Hollander & Wolfe,
973). Because such relationships are potentially nonlinear, Spear-
an’s correlation is suitable to assess whether two  variables can

e described using a monotonic function; while the commonly-
sed Pearson’s correlation only measures the linear relationships
etween variables. Spearman’s coefficient ranges from −1 to +1. If
orest carbon density and the selected landscape metrics are mono-
onically related, Spearman’s coefficient is close to 1, even if they
re not linearly related. Spearman’s coefficient is close to 0 when
he data are roughly elliptically distributed.

. Results

.1. Object-based image classification

A total of six LCLU classes were generated using the object-based
mage classification, with an overall accuracy of 83.92%, and kappa
tatistic of 0.84. Among all the classes, forests occupied approxi-
ately 50% of the Charlotte region (deciduous: 44.65%; coniferous:

.51%; Fig. 4). The user’s and producer’s accuracies for decidu-
us and coniferous trees were 82.57% and 86.54%, and 81.48%
nd 75.86%, respectively (Table 5). Particularly for deciduous trees,
rrors were partially introduced by misclassification between trees
nd open space. Besides forests, the other four classes accounted for
2.65% (built-up), 21.59% (open space), 3.46% (water), and 2.14%
bare soil) of the region, respectively (Fig. 4). The highest classifi-
ation accuracy was achieved for water (user’s accuracy: 100.00%;
roducer’s accuracy: 96.00%; Table 5).

.2. Plot-level carbon density models

Separate carbon density models were developed for the three
orest types (i.e., deciduous, coniferous and mixed) using plot-level
eld measurements and LiDAR metrics (Table 6). Among them,
he best performance was achieved by modeling coniferous trees
R2 = 0.86 and RMSE = 11.84 t/ha). For the deciduous tree plots, the

odel explained 74% of the carbon variance (RMSE = 12.82 t/ha);
hile for the mixed tree plots, the model accounted for 56% of the

arbon variance (RMSE = 13.56 t/ha). The results suggest that mod-
ling carbon storage in deciduous trees is more difficult than that
n coniferous trees. Similar findings were also reported by previous
tudies for the estimation of forest vertical structure and biomass

Boudreau et al., 2008; Popescu & Wynne, 2004). This could be
xplained by the fact that deciduous trees have irregular shaped
anopy with high variation (Chen, Hay, Castilla, St-Onge, & Powers,
011). Even for the same species, canopy shape and tree growth
Fig. 4. Charlotte land-cover and land-use classification result using geographic
object-based image analysis (GEOBIA).

are highly affected by a variety of microclimate and local environ-
mental factors. In an urban setting, the impacts from these factors
are non-stationary and contain high heterogeneity. For instance,
anthropogenic disturbances may  create large open spaces (e.g., a
backyard) for trees to branch freely or influence tree crown size and
shape with man-made features (e.g., trees adjacent to a building).

The final carbon density models developed for the three forest
types had different forms after the assessment of natural logarith-
mic  and Box–Cox transformations (Table 6). Specifically, simple
linear regression best modelled the relationship between the car-
bon stored in coniferous trees and LiDAR metrics. For the deciduous
plots, a Box–Cox power transformation was selected to transform
the dependent variable of carbon density, and the natural logarith-
mic  transform was applied to the independent variables of LiDAR
metrics. The final form of the deciduous carbon model was  cho-
sen after a thorough evaluation of model accuracy using various
combinations of transformation. In this model, if no transformation
was used, the model only explained 20% of the variance related to
carbon density, while the application of Box–Cox and natural log-
arithmic transformations led to a 53% increase (Table 6). For the
mixed forest plots, we  received the best carbon estimation result
by using the natural logarithmic transformation on all the vari-
ables in the model. With no transformation applied, the model
only accounted for 47% of the carbon variance compared to 56%
with transformations (Table 6). We  further noticed that a universal
LiDAR model has proven sufficient in carbon estimation of natu-
ral forests with good performance (e.g., R2 = 0.80, RMSE = 27.6 t/ha)
regardless of forest types (Asner et al., 2012; Lefsky et al., 2002).

However, the relationship between LiDAR metrics and forest car-
bon density in an urban environment tends to vary across tree
types as evidenced by this study. Especially for the deciduous trees,
they have irregular shaped canopies and the tree crowns are often
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Table 5
Confusion matrix and kappa statistic of the geographic object-based image classification result.

User class Reference class

Built-up Coniferous Deciduous Bare soil Open space Water Total User’s accuracy (%)

Built-up 52 0 5 8 2 1 68 76.47
Coniferous 2 22 3 0 0 0 27 81.48
Deciduous 0 7 90 1 11 0 109 82.57
Bare  soil 0 0 0 20 0 0 20 100.00
Open Space 2 0 6 0 44 0 52 84.62
Water 0 0 0 0 0 24 24 100.00

Total  56 29 104 29 57 25 300
Producer’s accuracy (%) 92.86 75.86 86.54 68.97 77.19 96.00

Overall accuracy = 83.92%; Kappa statistic = 0.84.

Table 6
The plot-level carbon density models, adjusted R2 and RMSEs for the three forest types.

Species Group Model Adjusted R2 RMSE (t/ha)

Deciduous Y−0.5 = (ln (abs(Height.Skew)) × (−0.01) + ln (Height.P95) × (−0.08)
+  ln (Height.P05) × (0.01) + ln (TRC) × (−0.01) +
ln  (Height.Min) × (−0.06) + 0.66

0.74 12.82

Coniferous Y = Height.P05 × (4.94) + TRC
× (0.01) + Height.Var × (0.22) − 32.97

0.86 11.84

Mixed ln (Y) = ln (Height.P01) × (−0.11) + ln (abs(Height.Skewness)) × (−0.11) +
ln  (Height.P40) × (1.26) + 0.17

0.56 13.56
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 = estimate of plot-level carbon density; Height.Skew = skewness; TRC = total retur
st  percentile; Height.P05 = Height 5th percentile; Height.P40 = Height 40th percenti

eformed as a result of inconsistent anthropogenic disturbances.
espite the high complexity, LiDAR remained a valuable tool in our

orest carbon estimation when an appropriate variable transforma-
ion was applied. Fig. 5 shows the standard errors of carbon model
stimates for (a) deciduous, (b) coniferous, and (c) mixed plots. All
esiduals appear to behave randomly suggesting that the selected
odels fit the data without apparent bias.

.3. Landscape-level carbon density estimates

The average carbon density of the forested areas in the
harlotte–Mecklenburg County was estimated at 53.6 t/ha, with a
otal amount of 3.8 million tonnes. From the monetary value per-
pective, the carbon stored in urban trees was worth $298 million.
he wall-to-wall carbon density map  (Fig. 6) illustrates a general
ecrease of forest carbon storage from the county fringe to the
enter, corresponding to a spatial shift from low-density to high-

ensity residential neighborhoods. This was further confirmed
y the summarized carbon density statistics (i.e., mean, median,
aximum, minimum and standard deviation) for the four types

f neighborhoods (i.e., low, medium-low, medium-high and high

Fig. 5. Standardized residuals of carbon model estimates f
t; Height.Min = height minimum; Height.Var = height variance; Height.P01 = Height
ight.P95 = Height 95th percentile.

density) as shown in Table 7. Specifically, the increase of built-up
areas led to a constant decrease of forest carbon density from
61.86 t/ha (low-density residential) to 42.29 t/ha (high-density
residential). It should also be noted that the variance of carbon
estimates (i.e., standard deviation) increased as the percent built-
up increased within the neighborhoods. The maximum carbon
density in the high-density residential category was similar to that
in the low-density category (73.46 versus 78.08 t/ha). This finding
confirmed that forest ecosystems are highly influenced by various
urban spatial patterns. Especially in a highly developed area, even
if two  neighborhoods have exactly the same percentage of canopy
cover, carbon density is likely to be different under varying land
development regulations.

3.4. Neighborhood development patterns

Pattern analysis indicates that the four types of residential

neighborhoods changed urban landscapes in varying ways (Fig. 7).
For example, deciduous trees that covered approximately 45% of
the entire region showed a significant (t-test, p < 0.05) decrease
of average patch size (i.e., MPS) from 0.53 ha to 0.14 ha, from low

or (a) deciduous, (b) coniferous, and (c) mixed plots.
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Fig. 6. A wall-to-wall carbon density map  of Charlotte–Mecklenburg County, North Carolina. Insets (a) and (b) illustrate sampler high and low carbon density areas,
respectively.

Table 7
Summary statistics† of carbon density for the four types of residential neighborhoods.

Category Mean Median Std. deviation Minimum Maximum

Low
(PBU‡ ≤ 15%)

61.86 63.63 9.34 41.74 78.08

Medium-low (15% < PBU ≤ 25%) 58.22 58.54 9.86 41.94 76.61
Medium-high
(25%  < PBU ≤ 40%)

52.3 52.12 12.17 32.12 76.49

High
(PBU  > 40%)

42.29 41.16 17.83 13.06 73.46

† The unit of all the statistics is t/ha.
‡ PBU: percent of built-up land.

Fig. 7. Stock charts of the selected landscape metrics (i.e., PLAND: percentage of landscape area; MPS: mean patch size; ED: edge density; CONTAG: contagion index; SHDI:
Shannon’s diversity index; and COHESION: patch cohesion index) for four types of residential neighborhoods (Low: low density; M-low: medium-low density, M-high:
medium-high, and High: high density). Maximum, minimum and average values are presented for each metric.
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Table 8
Spearman’s correlation coefficients between forest carbon density and the selected landscape metrics across low, medium-low, medium-high, and high density neighborhoods.

Landscape metric Low density
neighborhoods

Medium-low density
neighborhoods

Medium-high density
neighborhoods

High density
neighborhoods

All neighborhoods

PLAND C1 0.03 ns 0.06 ns −0.37 ns −0.01 ns −0.46**

PLAND C2 0.03 ns 0.12 ns −0.01 ns −0.10 ns 0.10 ns
PLAND C3 −0.04 ns 0.44* 0.63** 0.67** 0.58**

PLAND C4 0.01 ns −0.22 ns −0.06 ns −0.09 ns 0.05 ns
PLAND C5 0.21 ns −0.63* −0.62 ns −0.56** −0.42**

PLAND C6 −0.06 ns 0.17 ns 0.08 ns 0.24 ns 0.16 ns
MPS C1 −0.08 ns 0.07 ns −0.48* 0.21 ns −0.40**

MPS  C2 −0.20 ns 0.12 ns 0.02 ns 0.06 ns 0.23*

MPS  C3 −0.21 ns 0.45* 0.59** 0.81** 0.61**

MPS  C4 −0.10 ns −0.14 ns 0.16 ns 0.19 ns 0.24**

MPS  C5 0.29 ns −0.38 ns −0.37 ns −0.23 ns 0.04 ns
MPS  C6 0.14 ns 0.12 ns 0.01 ns 0.09 ns 0.22*

ED 0.25 ns −0.23 ns −0.21 ns −0.59** −0.33**

CONTAG −0.13 ns 0.27 ns 0.26 ns 0.32 ns 0.25*

COHESION 0.11 ns 0.32 ns −0.19 ns 0.22 ns 0.26**

SHDI 0.04 ns −0.25 ns −0.17 ns −0.07 ns −0.14 ns
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ignificance levels: * p < 0.05; ** p < 0.01.
s: p > 0.05. PLAND: percentage of landscape area; MPS: mean patch size; ED: edg
atch  cohesion index. C1: built-up; C2: coniferous, C3: deciduous, C4: bare soil; C5

o high residential density neighborhoods. The corresponding
verage area percentage values (i.e., PLAND) significantly (p < 0.05)
ecreased from 58.82% to 24.03% as well. Conversely, MPS  and
LAND for the built-up exhibited significant (p < 0.05) increase
rom 7.12 ha to 39.57 ha, and from 9.87% to 46.34%, respectively.
his was expected because one of the major types of LCLU change
n urbanized regions (including Charlotte) is the conversion
rom forests to build-ups (Herold et al., 2005; Seto & Fragkias,
005). However, the sizes and percentages of coniferous patches
emained relatively stable across the four types of neighborhoods.
his is possible due to the protection activities implemented by
ocal communities since coniferous trees only accounted for 5.51%
f the entire region (Fig. 4).

As another major LCLU class occupying 21.59% of the area, open
pace showed an unexpected pattern, which was different from the
atterns unveiled by both the forest and built-up classes (Fig. 7).

nitially, we anticipated that open space should have smaller patch
izes in higher density neighborhoods. However, its MPS  showed
o significant change (p > 0.05) across medium-low, medium-high
nd high density neighborhoods. MPS  only disclosed a significant
p < 0.05) decrease from low to medium-low density neighbor-
oods (from 0.18 ha to 0.11 ha). This may  have reflected the past
nd current urban planning regulations enforced in the area. Simi-
arly, bare soil showed no significant (p > 0.05) change of patch size
nd area percentage across the neighborhoods with varying resi-
ential densities (Fig. 7). This is due to the fact that bare soil in the
egion typically represented areas under new constructions (e.g.,
ew houses or roads), and such activities have occurred with no
ias to specific neighborhood types.

At the landscape level, Fig. 7 shows that low density neigh-
orhoods have the lowest degree of patch shape complexity
ED = 880.25) and diversity (SHDI = 1.15), and the highest degree
f aggregation (CONTAG = 61.97) and patch connectivity (COHE-
ION = 99.78). This makes sense because these neighborhoods were
overed by large portions of forests, subject to a low level of anthro-
ogenic disturbances. Similar findings were also reported by other
rban researchers (Herold et al., 2005; Ren et al., 2013; Seto &
ragkias, 2005). With the increase of built-up coverage (i.e., for
edium-low, and medium-high density neighborhoods), ED and

HDI significantly (p < 0.05) increased with CONTAG and COHE-

ION decreased (Fig. 7). However, Fig. 7 further demonstrates
hat the four metrics start to reveal an opposite trend, when the
eighborhoods are comprised of more than 40% of build-ups (i.e.,
igh density neighborhoods). This can be explained by the fact
sity; CONTAG: contagion index; SHDI: Shannon’s diversity index; and COHESION:
 space; and C6: water.

that urban build-ups gradually replaced forests as the major LCLU
class in the neighborhoods. Even though, the development patterns
extracted from the high density neighborhoods were found to be
more similar to those of medium-low and medium-high density
neighborhoods, rather than the low density neighborhoods.

3.5. Relationships between neighborhood pattern and carbon
density

Spearman’s correlation (�) was  calculated to identify the mono-
tonic relationship between forest carbon density and each of the
selected landscape metrics with results presented in Table 8. Sur-
prisingly, none of the landscape metrics unveiled a significant
correlation with carbon density in the low density neighborhoods.
Since most of these neighborhoods were dominated by forests, tree
growth may  have been highly correlated with local species types
and environmental factors, such as topography and precipitation.
With urban landscapes increasingly affected by human activities,
the role that the selected landscape metrics played in determining
carbon density became gradually apparent. For the high density
neighborhoods, the metrics of deciduous patch size (MPS C3) and
area percentage (PLAND C3) demonstrated strong and positive cor-
relations with carbon density (�MPS C3 = 0.81; �PLAND C3 = 0.67) at
the significance level of 0.01 (Table 8). Meanwhile, the area percent-
age of open space and edge complexity were negatively correlated
with carbon density (�PLAND C5 = −0.56; �ED = −0.59).

4. Discussions

4.1. Uncertainties in image classification

In the study area, most of the open space was equivalent to
grass space (e.g., lawn). The spectral reflectance from grass and
broadleaf trees were similar in both the visible and near infrared
bands that together comprised the NAIP image. In fact, we found
that such misclassification was  often biased to open space, where
an open space object with high spectral variation was  likely to
be misclassified as deciduous trees. Another source of error was
misclassification caused by the 3D geometry of terrestrial surfaces.
In high-resolution optical imagery (i.e., 1 m NAIP in our case),

detailed spatial information can be easily observed. However, one
side effect is that forest canopies and anthropogenic features often
cast shade on the neighboring surfaces that have lower elevations.
The mixed spectral information from these surfaces could possibly
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educe classification accuracy. Although the use of GEOBIA has
roven effective to mitigate such effect (Blaschke et al., 2014),
isclassification of some boundary objects between tree patches

nd build-ups or open space remained. This was also the major
ource of error for extracting the built-up class (Table 5).

Due to specular reflection, the reflected radiation from water
odies is normally within a narrow cone in space. In most cases,
emote sensors are only able to capture a small portion of such
nergy, resulting in low spectral reflectance from lakes, rivers or
onds. Hence, water bodies were easily distinguished from the
ther LCLU features. However, we note that the reflectance from
ater is also relevant to the concentration of suspended sediments,
hich could increase uncertainties in classification (Han, 1997).

t was further discovered that some bare soil objects were mis-
lassified as build-ups. Most of the bare soil areas were the sites
xperiencing new constructions (e.g., from forest to residential),
here the surfaces (e.g., temporary unpaved roads) showed the

imilar high reflectance as some of the impervious surfaces.

.2. Carbon density estimation

The historical carbon storage in Charlotte forests was not well
ocumented, hence our result was evaluated through an inter-city
omparison, and was similar to the carbon density estimate in the
ity of Atlanta (66.3 t/ha) (Nowak et al., 2013). As southeastern
.S. cities, both regions are geographically close, and share simi-

ar types of dominant temperate broadleaf forests. However, the
omparison also indicates that Charlotte trees per hectare have
tored less carbon than the trees growing in Atlanta. This may  be
artially explained by the application of different approaches in
arbon estimation (i.e., remote sensing versus field mensuration).
or the Atlanta case, limited number of field plots was  used, which
an provide accurate carbon estimates at the plots, but may  have
ntroduced a sampling error. Our result was created by summariz-
ng the LiDAR-measured wall-to-wall carbon estimates across the
ntire forested areas. Trees that are subject to various degrees of
nthropogenic disturbances are likely to lock up carbon at differ-
nt levels. For example, Liu and Li (2012) reported that a highly
ragmented road forest stores much less carbon than a landscape
nd relaxation forest (13.17 versus 33.65 t/ha) in an urban setting.
emote sensing has the capacity to account for such high level of

ragmentation; however, we recognize the errors and uncertainties
n upscaling field carbon measurements using LiDAR models.

.3. Impact of urban development on forest carbon density

The derived Spearman’s correlation coefficients in Table 8
emonstrate that: (i) single landscape metrics tend to have diffi-
ulties to consistently contribute to a significant carbon-pattern
elationship in the neighborhoods of varying residential density
ypes. However, (ii) patch area characteristics (e.g., area percent-
ge) of the dominant forest types (i.e., deciduous trees in our
tudy) have a high potential to influence carbon density for most
f the neighborhoods that are subject to a relatively high level of
nthropogenic disturbances. (iii) Residential neighborhoods, which
ave experienced a higher degree of development intensity (i.e.,
igher built-up coverage), are possibly affected by a larger num-
er of spatial pattern metrics. Consequently, forest carbon density
ay  exhibit higher variations across these neighborhoods. This is

vident in our study (Table 7), where the carbon density stan-
ard deviation values were found to progressively increase from
.34 t/ha (low density residential) to 17.83 t/ha (high density resi-

ential).

Analyses of landscape patterns in urban environments often
reat cities as homogenous (e.g., Herold et al., 2005; Ren et al., 2013).
owever, Grove et al. (2006) and Zhao et al. (2010) reported that
n Planning 136 (2015) 97–109 107

the differences in tree management practices or land-use types can
exert high impacts on forest carbon storage across neighborhoods.
So, should the assessment of the pattern-carbon relationship be
conducted at the neighborhood level or the city level? What are the
differences? To address the questions, our study further quantified
the relationship between carbon density and the selected landscape
metrics for all the neighborhoods combined together (i.e., without
distinguishing neighborhoods of varying density types). Compared
to our findings extracted from the individual neighborhood types, a
larger number of landscape metrics (i.e., 11 out of the total 16) were
found to be significantly correlated with carbon density at the city
level (Table 8). This suggests that distinct policies should be devel-
oped to recognize the scale-induced variation in supporting city-
and neighborhood-level forest management and sustainability.

5. Conclusions

The amount carbon stored by urban forests is highly influenced
by city development patterns. Evaluating their relationship can
inform on urban sustainability planning and design. However, this
practice is often impeded due to the lack of large-area and spatially
explicit carbon estimates. In this study, LiDAR, aerial photography
and field mensuration were integrated to map  forest carbon den-
sity over the 1415 km2 Charlotte Metropolitan Area in the United
States, which was  followed by a statistical analysis of the rela-
tionship between landscape metrics and forest carbon density in
four types of residential neighborhoods with built-up density from
low, medium-low, medium-high, to high. Our results demonstrate
a total amount of 3.8 million tonnes carbon ($298 million value)
in the Charlotte metropolitan region, with an average carbon den-
sity of 53.6 t/ha. The selected landscape metrics that significantly
influenced tree carbon storage varied across different types of
neighborhoods, although the area percentage of deciduous trees
(the local dominant forest type) had a significant and positive cor-
relation with carbon density across most of the neighborhoods. It
was further discovered that residential neighborhoods with higher
built-up coverage were more likely to be affected by a larger num-
ber of spatial pattern metrics, and their carbon density values
unveiled a higher degree of variation. This suggests that it is possi-
ble to dramatically enhance the ability of forest carbon storage at
the landscape level by designing proper policies to inform on urban
spatial development at the neighborhood level. With high-spatial
resolution remote sensing datasets becoming gradually available in
more regions, the framework developed for the Charlotte area can
also be applied to studying the relationship between forest carbon
density and neighborhood development patterns in many other
cities. However, it should be noted that the presented framework
needs to be well calibrated and validated before the conclusions
can be made to support urban sustainability, because model errors
may  propagate through the calculations within major processing
steps, including field carbon estimation, LCLU classification, remote
sensing carbon modeling, neighborhood delineation, and landscape
metric extraction.
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