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Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies,
which may permanently change the trajectories of forest recovery and disrupt the ecosystem services
provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects,
are examples of disturbances that together could pose major threats to forest health. This study examines
the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment
of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-
fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels),
and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based
Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire
for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions.
Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery,
high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation effi-
ciency in the process of segmentation and object-based variable extraction, leading to complicated var-
iable selection for succeeding modeling. Hence, we also assessed two widely used band reduction
algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation
of image objects and the subsequent performance of burn severity models using either PCA or MNF
derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and
MNF components were evaluated, which accounted for 10% and 20% of the total number of the original
50 spectral bands, respectively. Results show that if no band reduction was applied the models developed
for the three stages of disease progression had relatively similar performance, where both spectral
responses and texture contributed to burn assessments. However, the application of PCA and MNF intro-
duced much greater variation among models across the three stages. For the early-stage disease progres-
sion, neither band reduction algorithms improved or retained the accuracy of burn severity modeling
(except for the use of 10 MNF components). Compared to the no-band-reduction scenario, band reduction
led to a greater level of overestimation of low-degree burns and underestimation of medium-degree
burns, suggesting that the spectral variation removed by PCA and MNF was vital for distinguishing
between the spectral reflectance from disease-induced dried crowns (still retaining high structural com-
plexity) and fire ash. For the middle-stage, both algorithms improved the model R2 values by 2–37%,
while the late-stage models had comparable or better performance to those using the original 50 spectral
bands. This could be explained by the loss of tree crowns enabling better signal penetration, thus leading
to reduced spectral variation from canopies. Hence, spectral bands containing a high degree of random
noise were correctly removed by the band reduction algorithms. Compared to the middle-stage, the
late-stage forest stands were covered by large piles of fallen trees and branches, resulting in higher var-
iability of MASTER imagery. The ability of band reduction to improve the model performance for these
late-stage forest stands was reduced, because the valuable spectral variation representing the actual
late-stage forest status was partially removed by both algorithms as noise. Our results indicate that
PCA and MNF are promising for balancing computation efficiency and the performance of burn severity
models in forest stands subject to the middle and late stages of sudden oak death disease progression.
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Compared to PCA, MNF dramatically reduced image spectral variation, generating larger image objects
with less complexity of object shapes. Whereas, PCA-based models delivered superior performance in
most evaluated cases suggesting that some key spectral variability contributing to the accuracy of burn
severity models in diseased forests may have been removed together with true spectral noise through
MNF transformations.
Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc.

(ISPRS).
1. Introduction

Forests are an integral part of many terrestrial ecosystems, pro-
viding a wide range of ecological, economic, social and cultural ser-
vices. The structure and function of forests result from a dynamic
process of tree recruitment, growth, and death, and the influence
of a variety of disturbances (e.g., fires, storms, and diseases)
(Asner, 2013). Major disturbance events could initially harm most
of the ecosystem services delivered by trees. However, depending
on the extent, severity and type of disturbance, some ecosystem
services may be regained during forest succession, while the others
may be permanently disrupted (Boyd et al., 2013). Wildfires and
invasive species (especially exotic disease-causing pathogens and
insects) are examples of the disturbances that may cause perma-
nent and unexpected changes to forest landscapes and the associ-
ated services. The U.S. Forest Service currently lists them as two of
the four major threats to the health of the nation’s forests (U.S.
Forest Service, 2014). Although neither disturbance is new, a grow-
ing number of studies have found that their intensities and fre-
quencies have substantially increased over the past decade, as a
result of global change (Bergot et al., 2004; Wulder et al., 2006;
Kurz et al., 2008; Aukema et al., 2010; Olsson et al., 2012; Boyd
et al., 2013). Fires of higher severity may also be more likely to
occur in forests where invasive diseases or insects have caused
high tree mortality (Jenkins et al., 2008; Harvey et al., 2013). Fur-
thermore, the interaction of fire and insects or disease disturbances
may alter forest ecosystems in unexpected ways (Metz et al.,
2013), challenging our ability to predict the severity of burns
across large infested landscapes.

Remote sensing has proven effective in large-area fire detection
and burn severity mapping across a diversity of environments by
linking the fire-induced physical changes in the land surface to
variations in spectral reflectance from remotely sensed images
(Hall et al., 1980; Milne, 1986; Jakubauskas et al., 1990; White
et al., 1996; Hudak and Brockett, 2004; Lentile et al., 2006;
Veraverbeke et al., 2012). Two types of approaches are typically
used to model burn severity: statistical regression (deriving con-
tinuous burn severity values) or classification (retrieving discrete
burn severity classes). Compared to field efforts required to
directly measure the post-fire burn effects, remote sensing offers
a dramatically less expensive alternative that is especially appro-
priate for managing large and topographically complex landscapes.
However, accurate burn severity assessment may become a chal-
lenging task if exotic diseases or insects have caused extensive
pre-fire tree mortality. Disease-related mortality can lead to a sig-
nificant rise in shortwave infrared surface reflectance and a
decrease in the near infrared reflectance, which is similar to the
reflectance created by ash or charred remains after combustion
of vegetation (Guyot et al., 1989; Roy and Landmann, 2005). Thus,
pre-fire mortality may be confounded with burn severity in
infested areas where low-severity fire also occurred. To understand
the degree to which these factors may influence the accuracy of
burn severity assessment, it is necessary to examine mapped burn
severity across various stages of disease or insect progression;
however, this has not been well investigated yet.
Recent developments in the sensor technologies used in remote
sensing have made it possible to improve the accuracy of burn
severity assessment using high-spatial and/or high-spectral resolu-
tion imagery. For example, Mitri and Gitas (2008) successfully
mapped burn severity with an overall accuracy of 83% using 4 m
IKONOS imagery, while Veraverbeke et al. (2012) found that the
char fraction cover derived from 50-band MASTER data was
strongly correlated with field-measured burn severity. High-spa-
tial resolution imagery enables the evaluation of the degree of burn
heterogeneity at the small patch level, which could aid in a better
characterization of the complex effects from fire and disease/insect
interactions (Turner et al., 1998; Lentile et al., 2006; Meentemeyer
et al., 2012). High-spectral resolution imagery may further
improve the analysis of such effects due to its increased sensitivity
to the spectral variations from terrestrial features (Thenkabail
et al., 2012). Since the early 2000s, Geographic Object-Based Image
Analysis (GEOBIA) has been increasingly used to extract and ana-
lyze geographic objects from high-spatial resolution imagery
(Blaschke et al., 2014). Unlike the prevailing per-pixel methods,
GEOBIA applies segmentation-generated image objects (i.e., aggre-
gates of pixels) to mimic the human perception of the real objects
on the ground (Hay and Castilla, 2008). While promising results of
applying GEOBIA have been reported in numerous studies from
various fields (Blaschke et al., 2014), less consideration has been
given to the application of data sets featuring both high-spatial
and high-spectral resolutions. Compared to the typical multispec-
tral data with less than ten spectral bands (e.g., IKONOS, SPOT,
and QuickBird), images with a high-spectral resolution contain
dozens to hundreds of spectral bands. An immediate consequence
is that the computation efficiency in segmentation (a common
process in GEOBIA) could be dramatically reduced. Furthermore,
compared to the per-pixel feature extraction, a greater number of
post-segmentation object-based features (also called feature bands)
are often extracted in order to better define ground objects and the
spatial interactions between neighboring objects, such as shape,
size, and object-based texture or patterns (Hay et al., 1996; Kelly
et al., 2008; Chen et al., 2011). Once all the spectral and feature
bands are combined as inputs for subsequent modeling, selecting
the optimal subset (from a pool of at least hundreds of object-
based bands) could pose major challenges (e.g., time-consuming
and error-prone) to GEOBIA practitioners. Reducing the number
of original spectral bands prior to GEOBIA processing is an intuitive
solution to address this issue; however, it remains unclear how
this procedure influences the precision in delineating objects
(e.g., object size and shape) and the accuracy of burn severity mod-
eling in disease-impacted forests.

Based on the above considerations, in this research we studied
the 2008 Basin Complex Fire in the Big Sur, California ecoregion,
which burned over 95,000 hectares of forest (USDA Forest Service,
2008) that was patchily infested by the exotic forest pathogen Phy-
tophthora ramorum, the cause of sudden oak death (SOD; Rizzo
et al., 2005). This non-native pathogen is estimated to have killed
hundreds of thousands of host trees in the Big Sur forests since
the mid-1990s (Meentemeyer et al., 2008). Interestingly, disease
progression is not uniform across the landscape, resulting in forest
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stands experiencing varying stages of invasion and levels of dis-
ease-related mortality. This variability in disease progression and
tree mortality has been linked to variation in field measurements
of burn severity following the Basing Complex Fire (Metz et al.,
2011, 2013). Our interest in improving post-fire rapid assessment
of burn severity across large forested landscapes heterogeneously
impacted by pests or pathogens led us to explore two research
questions: (i) How do different stages of SOD progression affect
the accuracy of forest burn severity modeled with images having
both high-spatial and high-spectral resolutions? (ii) How does
spectral band reduction influence the delineation of image objects
and the accuracy of subsequent object-based burn severity models?
2. Methods

2.1. Study area

Our study site (centered at: 36�160N, 121�440W) covers an area
of 28,383 ha on the western flank of the Santa Lucia Mountains in
the Big Sur ecoregion of California (Fig. 1). The region is within
the burn perimeter of the Basin Complex Fire, ignited from a dry
lightning storm in late June, 2008. The area features a Mediterra-
nean-type climate and a rugged landscape dissected by steep slopes
and drainage networks with elevations ranging from sea level to
1571 m within 5 km of the coast (Meentemeyer et al., 2008). Major
forest types include mixed coniferous forests, composed primarily
of ponderosa pine (Pinus ponderosa), sugar pine (Pinus lambertiana),
Jeffrey pine (Pinus jeffreyi), coulter pine (Pinus coulteri), and Santa
Lucia Fir (Abies bracteata), and mixed oak woodlands consisting of
coast live oak (Quercus agrifolia), Shreve’s oak (Quercus parvula
var. shrevei), California bay laurel (Umbellularia californica), and
Pacific madrone (Arbutus menziesii), giving way to riparian corridors
of redwood/tanoak (Sequoia sempervirens/Notholithocarpus densiflo-
rus) dominated forests at lower elevations (Davis et al., 2010).
2.2. Field data

A network of long-term SOD monitoring plots (500 m2 each) in
Big Sur was established in 2006 and 2007 to understand the
Fig. 1. Study area located in the Big Sur ecoregion on the western flank of the Santa Lucia
(red), 3 (green) and 1 (blue). (For interpretation of the references to color in this figure
responses of forest communities (e.g., host mortality) to the inva-
sion of SOD. Plots were distributed in a stratified-random manner
among two dominant forest types (redwood and mixed-evergreen)
in areas with and without the pathogen (Meentemeyer et al.,
2008). A total of 42 burned plots known to contain SOD-infected
trees at the time of plot establishment were visited in September
and October 2008, immediately following the containment of the
Basin Complex Fire. The fire severity at each 500 m2 plot was
scored using the composite burn index (CBI), a scale ranging from
0.00 to 3.00 used to quantify the damage to multiple forest strata
across the entire plot (Key and Benson, 2005; Metz et al., 2011).
In this study, we used the CBI values of the dominant tree layer,
because the understory strata were not well captured by remotely
sensed data. The CBI values ranged from 0.38 to 3.00 (mean = 1.31,
median = 1.25 standard deviation = 0.67). Because these plots were
established prior to fire occurrence for understanding the
responses of forest communities (e.g., host mortality) to the inva-
sion of SOD (Meentemeyer et al., 2008), we also had data on pre-
fire disease progression. We categorized disease progression at
each plot into three stages based on physical characteristics of
dead hosts (Metz et al., 2013): (i) early-stage (many dead host trees
retained dried foliage and fine twigs), (ii) middle-stage (some older
mortality with host trees losing fine crown fuels and surface fuels
beginning to accumulate), and (iii) late-stage (most host trees have
been dead for several years and have been falling to the ground)
(Fig. 2).

2.3. MASTER imagery and data preprocessing

The MASTER (MODIS/ASTER) airborne simulator images from
12 flight transects covering the area of the Basin Complex Fire were
acquired on August 26, 2008, immediately following the fire for
rapid assessment. Each image scene contains 50 bands covering
visible-shortwave infrared (VNIR-SWIR: bands 1–25), mid infrared
(MIR: bands 26–40), and thermal infrared (TIR: bands 41–50) spec-
tral regions (Hook et al., 2001). With altitudes kept in a small range
between 3076 and 3079 m, the images had an average spatial res-
olution of 4 m. All MASTER data were obtained as a Level 1B prod-
uct standard that was radiometrically calibrated, geo-located, and
encapsulated in hierarchical data format.
Mountains in California. The MASTER image is from a color composite using bands 5
legend, the reader is referred to the web version of this article.)



Fig. 2. (a) A healthy forest stand with fine litter; (b) early stage of infestation where trees are killed by sudden oak death and can retain their dried foliage and fine twigs for a
year or longer; (c) middle stage of infestation where standing dead trees eventually lose their fine crown fuels, and the snags and large branches begin to fragment and fall;
and (d) late stage of infestation where fallen trees and branches create large piles of ground fuels in areas (Metz et al., 2013).
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The pre-processing of MASTER data includes four main steps: (i)
minimizing the view-angle brightness gradient; (ii) image mosa-
icking; (iii) radiometric correction, and (iv) topographic correction.
Specifically, (i) the sun and sensor geometry influences the data
quality with each image transect being relatively bright on one
side and dark on the other side. To minimize this view-angle
brightness gradient, we fit a quadratic curve to each column to
simulate the changes in brightness across view angles, and then
applied a multiplicative compensation method to compensate each
pixel following methods of Kennedy et al. (1997), who successfully
removed the view-angle effect in AVIRIS hyperspectral imagery. (ii)
The 12 transects were then mosaicked in sequence using the over-
lapped area from one image to balance the data range of its neigh-
boring image. (iii) We used the dark object subtraction algorithm
to derive surface radiance from the image mosaic in the VNIR-
SWIR region (Chavez, 1996). No atmospheric correction was
applied to the MIR region, as it has been found to be insensitive
to the presence of most aerosols (Kaufman and Rehmer, 1994;
Harris et al., 2011). In the TIR region, surface emissivity was
extracted by separating it from the surface temperature using the
emissivity normalization technique developed by Kealy and Hook
(1993). (iv) Finally, a topographic correction was applied to nor-
malize for different illumination conditions caused by topography
using the C-correction method (Teillet et al., 1982) and a 30 m DEM
derived from data collected by ASTER sensor as part of the global
digital elevation model (GDEM) project (ASTER GDEM Validation
Team, 2009).

2.4. Spectral band reduction

Using all 50 spectral bands from the MASTER image mosaic in
the GEOBIA process would significantly increase the computation
requirements during image segmentation and object-based feature
extraction, as well as during the selection of the optimal subset
from hundreds of object-based variables for burn severity assess-
ment. To ease computational requirements, we used two statistical
algorithms to reduce the number of input spectral bands prior to
the object-based analysis: principal component analysis (PCA)
and minimum noise fraction (MNF).

Both PCA and MNF are well-known spectral transformation
methods in remote sensing. PCA (also known as Karhunen–Loéve
analysis) converts the correlated spectral bands from the original
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image into a set of linearly uncorrelated components using an
orthogonal transformation (Jolliffe, 2002). The proportion of vari-
ance explained by each component is calculated using eigenvalues,
with the first component accounting for the single greatest propor-
tion of the variance across all the original spectral bands. Each sub-
sequent component accounts for the next largest proportion of the
remaining variance (Holden and LeDrew, 1998). Fig. 3(a) shows the
percentage of variance (calculated using eigenvalues) explained by
the number of PCA components. The first component accounted for
the maximum variance of 68.3%. Cumulatively, the top 5 compo-
nents accounted for 93.9% of the variance, while the top 10 compo-
nents together explained 98.1% of the total variance. Similar to
PCA, MNF seeks to derive new uncorrelated bands based upon
two cascaded PCA transformations, but unlike PCA, MNF optimizes
the signal-to-noise ratio to produce principal component images
ordered by decreasing signal quality (Green et al., 1988). Fig. 3(b)
represents the relationship between the calculated MNF compo-
nents and variance explained by the number of MNF components.
The top 5 and top 10 components accounted for 57.6% and 68.7% of
the total variance, respectively. The components that contained
low variance were primarily composed of noise. To increase com-
putation efficiency and compare band reduction scenarios, we
selected the top 5 and then top 10 components from the PCA and
MNF transformed images, representing 10% and 20% of the total
number of the original MASTER spectral bands. This resulted in five
band reduction scenarios: no band reduction (i.e., the 50 original
bands), 5 PCA components, 10 PCA components, 5 MNF compo-
nents, and 10 MNF components.
2.5. Object-based burn severity modeling

GEOBIA provides an appropriate solution to capture meaningful
ground objects while reducing high spectral variability in high-
spatial resolution imagery (Chen et al., 2012). As a prerequisite of
GEOBIA, image segmentation requires defining the size and shape
of objects. In this study, eCognition Developer 8 (Trimble Naviga-
tion, Sunnyvale, California) was applied to segment the original
MASTER 50-band image mosaic, as well as each transformed com-
ponent image after band reduction (Section 2.4). A scale parameter
(defining mean object size) of 30 was used to derive image objects
at the small forest patch level aiming to capture high heterogene-
ity. The parameters of shape and compactness were set to the soft-
ware default values of 0.1 (shape) and 0.8 (compactness). We also
evaluated other parameter values and had similar segmentation
results. The main reason is that in the natural forest environment
canopy shadows are often interspersed with spectral responses
of tree leaves across varying incident angles, introducing high
spectral variation. All the segmentation parameters were initially
Fig. 3. (a) Components generated by PCA (principle component analysis) and the percenta
generated by MNF (minimum noise fraction) and the percentage of variance explained
derived under the no-band-reduction scenario and then applied
to the other four scenarios to enable the examination of how band
reduction affected image homogeneity and object characteristics.
In particular, if the same set of segmentation parameters is used,
images of different spectral variations could differ from each other
in defining object size and shape. The size was calculated by
recording the number of object boundary pixels, while the shape
was calculated using the shape index (SI), which measures the
complexity of an object’s shape by comparing it to a standard
shape (square) of the same size and alleviates the size dependency
by using a perimeter (pi) and area (ai) for each image object i
(Forman and Godron, 1986):

SI ¼ 0:25pi=
ffiffiffiffi

ai
p

ð1Þ

which equals 1 if the shape is a square. A non-compact object has a
shape index value greater than 1.

Three types of remote sensing variables were extracted from
the segmentation-derived image objects, including band/compo-
nent, internal texture, and neighborhood texture (Table 1). Specif-
ically, (i) band/component was calculated by averaging spectral
reflectance or PCA/MNF component values within each image
object. (ii) Internal texture was derived by calculating the standard
deviation within each image object. (iii) Neighborhood texture
describes the relationship between neighboring objects and was
calculated as the standard deviation of the averaged pixel values
from the center object and its immediate neighbors (Chen et al.,
2011). These three variables were calculated for each image band
or component in each of the feature extraction scenarios resulting
in a total number of 150, 15, 30, 15 and 30 variables for the five
scenarios of no band reduction, 5 PCA components, 10 PCA compo-
nents, 5 MNF components, and 10 MNF components, respectively.
Obviously, if no band reduction was performed, the number of
variables used in burn severity modeling would substantially
increase (e.g., 150 versus 15). The plots where the dependent var-
iable of field-measured CBI was collected were overlaid onto the
image objects and the object-based dependent variable values
were extracted from the spatially corresponding objects. Here,
we followed Castilla and Hay (2008) by assuming each image
object to be homogenous and have great potential to represent
meaningful geographic objects. We also recognized the spatial var-
iability of field data and image objects; however, it remained chal-
lenging to take the variability into consideration when assigning
plot values to image objects. In this study, all the variables were
extracted using custom code written in interactive data language
(IDL; ITT Exelis, McLean, Virginia, USA).

In this research, stepwise multiple regression models were
developed for burn severity assessment. For each scenario of the
variable reduction (Section 2.4), three models were developed
ge of variance explained by the cumulative number of components. (b) Components
by the cumulative number of MNF components.



Table 1
Three types of variables derived from remote sensing imagery.

Variable type Variable name Description

Band/component BDi Average of spectral reflectance or component values for the ith* band/component within image objects
Internal texture TXITi Internal standard deviation for the ith band within image objects
Neighborhood texture GEOTEXi Neighboring standard deviation for the ith band within neighboring image objects

* i represents band/component number.
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corresponding to three stages of disease progression, resulting in a
total number of 15 regression models. To reduce multicollinearity,
the Pearson’s linear correlation coefficients were calculated for all
the remote sensing predictor variables prior to regression analysis.
If the coefficient between two variables was higher than 0.7
(Dormann et al., 2012), only the variable that had higher correlation
with field-measured CBI was retained. Based on this rule, redundant
independent variables were discarded before applying the forward
stepwise regression with all models developed at a 0.05 significance
level. During modeling, variance inflation factor (VIF) was also calcu-
lated to detect the influence of multicollinearity among the predic-
tor variables. All predictor variables with a VIF smaller than 5 were
retained in our analyses (Neter et al., 1996). Field plots were split
into three groups based on the three stages of disease progression,
resulting in each group having between 11 and 20 measurements
of CBI. Thus, a leave-one-out cross-validation technique (Davis,
1987) was chosen to calculate root mean square error (RMSE) of
each burn severity model. Model development and validation were
performed using IDL code (ITT Exelis, McLean, Virginia, USA).
3. Results and discussion

3.1. Comparison of image objects

PCA and MNF transformations are two types of band reduction
algorithms, which generated different new components and image
objects (Fig. 4). Specifically, Fig. 4 represents a comparison of
image objects (with white polygon boundaries) in a sample study
site for the five band reduction scenarios (a) no band reduction
(i.e., 50 bands), (b) 5 PCA components, (c) 10 PCA components,
(d) 5 MNF components, and (e) 10 MNF components. The backdrop
of (a) is a true color composite using MASTER bands 5, 3, and 1,
where light tones represent ash, brown colors indicate moderate
burns in forest stands, and a small portion of green trees indicate
low levels of fire damage. The backdrops of (b) and (c) are the color
composites using the first three PCA components, while the back-
drops of (d) and (e) are the color composites using the first three
MNF components. Compared to the MNF-based image objects
(hereafter MNF objects), the PCA-based image objects (hereafter
PCA objects) were more similar to the objects generated using the
original 50 spectral bands (hereafter hyperspectral objects) (Table 2
Fig. 4. Sample objects (with white polygon boundaries) derived from five band-reductio
components, (d) 5 MNF components, and (e) 10 MNF components, overlaid on images w
backdrop of (a) is a true color composite using MASTER bands 5, 3, and 1, where light ton
portion of green trees reveal low level of fire damage. The backdrops of (b) and (c) are th
and (e) are the color composites using the first three MNF components. (For interpretati
version of this article.)
and Fig. 4). Because the same set of segmentation parameters (i.e.,
scale, shape and compactness) were employed to generate image
objects from the original spectral bands for the PCA/MNF compo-
nents, the resulting objects with similar characteristics (e.g., size
and shape) could indicate similar variance within the pre-segmen-
tation imagery. This is confirmed by the fact that the first 5 or 10
PCA components in (b) and (c) explained more variance than the
first 5 or 10 MNF components in (d) and (e) (93.9% or 98.1% versus
57.6% or 68.7%). The PCA objects were on average 35% (0.28 versus
0.79 ha) and 68% (0.54 versus 0.79 ha) of the size of hyperspectral
objects, while the MNF objects were 5.4 (4.27 versus 0.79 ha) and
8.3 times (6.54 versus 0.79 ha) larger than the hyperspectral
objects (Table 2). The comparison of object shape provided similar
results, where the PCA and hyperspectral objects were comparable
(1.90 or 2.05 versus 2.12 ha) and MNF objects were much less com-
plex (1.62 or 1.50 versus 2.12 ha; Table 2, Fig. 4). For example,
using the same set of segmentation parameters the severely
burned forest stands [yellow color in (d) and (e)] were composed
of less than 10 MNF objects, but were made up of more than 40
spectral or PCA objects.

Compared to the no-band-reduction scenario, the PCA transfor-
mation led to mild over-segmentation, while the MNF algorithm
resulted in notable under-segmentation. Although both algorithms
rely on a similar principle of data transformation by orthogonaliz-
ing the original feature space, a unique step in MNF is the calcula-
tion of a noise covariance matrix to decorrelate noise content
rather than just maximizing the captured variance as PCA does
(Green et al., 1988). In addition to reducing spectral noise, MNF
also dramatically condensed the image spectral variation. In a for-
est environment, such variation is typically introduced by multiple
tree structures, snags, gaps, and shadows. In this study, the varia-
tion was boosted by the combination of disease and fire caused
tree stress and dieback, ash accumulations, and changes in soil
properties. Compared to MNF, PCA had a marginal impact on
reducing the spectral variation of the MASTER image mosaic.
3.2. Comparison of burn severity models

The adjusted determination of coefficients (R2) and RMSEs of
the burn severity models (for the five band reduction scenarios
and three stages of disease progression), and all of the statistically
n scenarios: (a) no band reduction (i.e., 50 bands), (b) 5 PCA components, (c) 10 PCA
ith RGB composites of (a) bands 5, 3, and 1, and (b)–(e) components 1, 2, and 3. The
es represent ash, brown colors indicate moderate burns in forest stands, and a small
e color composites using the first three PCA components, while the backdrops of (d)
on of the references to color in this figure legend, the reader is referred to the web



Table 2
Comparison of object size and shape between the five band reduction scenarios (no band reduction, 5 PCA components, 10 PCA components, 5 MNF components and 10 MNF
components).

Scenario Object size (ha) Object shape

Minimum Maximum Mean Standard deviation Minimum Maximum Mean Standard deviation

No band reduction 0.01 9.43 0.79 0.64 0.35 5.00 2.12 0.57
5 PCA components 0.01 3.72 0.28 0.25 0.35 4.96 1.90 0.60
10 PCA components 0.01 6.51 0.54 0.44 0.35 5.01 2.05 0.58
5 MNF components 0.10 63.30 4.27 3.11 1.01 5.19 1.62 0.32
10 MNF components 0.02 75.58 6.54 4.69 1.02 3.95 1.50 0.29
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significant remote sensing variables used in these models are
presented in Table 3. Under the no-band-reduction scenario, the
models developed for the three stages had relatively similar results
(R2 = 0.60, 0.55 and 0.64, and RMSE = 0.31, 0.42 and 0.47), while
the application of band reduction resulted in much greater varia-
tion between models across the three stages. Table 3 shows that
the R2 values of the early stage models ranged from 0.35 to 0.86
(standard deviation of 0.19); while R2 values ranged from 0.57 to
0.92 (standard deviation of 0.16) and 0.61–0.76 (standard devia-
tion of 0.07) for the middle and late stage models, respectively.
In all cases, the application of 10 components always improved
the burn severity modeling results with higher R2 values and lower
RMSEs than the use of 5 components. As presented in Table 3, such
improvements ranged from 4% to 22% using PCA, and 5–31% using
MNF. However, the magnitude of improvements was stage-depen-
dent with more discussions about the model performance at indi-
vidual stages provided in the succeeding paragraphs. When
comparing the two band reduction algorithms, Table 3 shows that
the PCA-based models outperformed the MNF-based models (using
the same number of components) in four (out of the six) cases. And
in one of the two remaining cases, they had similar performance
(R2 = 0.59 versus 0.61). Although MNF had high capacity to reduce
both the spectral noise and spectral variation in the MASTER image
mosaic as discussed in Section 3.1, the fact that PCA-based models
delivered superior performance suggests that some spectral varia-
tion contributing to the burn severity modeling in disease-
impacted forests may have been removed through MNF transfor-
mations together with the real noise.

At the early stage of disease progression, the dead trees may
retain dry foliage and fine twigs, giving them a ‘‘freeze-dried’’
appearance (Kelly and Meentemeyer, 2002). As a result, there
Table 3
Burn severity models for five band reduction scenarios (no band reduction, 5 PCA compo
stages of disease progression (early, middle and late).

Scenario Stage Adjusted R-squared

No band reduction Early 0.60
Middle 0.55
Late 0.64

5 PCA components Early 0.46
Middle 0.66
Late 0.59

10 PCA components Early 0.50
Middle 0.92
Late 0.76

5 MNF components Early 0.35
Middle 0.57
Late 0.61

10 MNF components Early 0.86
Middle 0.79
Late 0.66

* p < 0.01.
** p < 0.05.
should be a noticeable decrease in the near infrared spectral reflec-
tance and a rise in the shortwave infrared reflectance, similar to
the reflectance produced by fire-induced ash (Roy and
Landmann, 2005). This might explain the phenomenon where the
early stage model using all the 50 bands overestimated the impact
of low severity of burns (Fig. 5). In terms of applying PCA or MNF
components in modeling low severity burns, Table 3 shows that
the new models almost always have lower R2 values and higher
RMSEs (except using the MNF 10 components) than those applying
the original spectral bands. As illustrated in Fig. 5, the reduced
model performance may be due to an overestimation of the impact
of low-severity fires and an underestimation of the impact of med-
ium-severity fires. In a forest environment, tree crowns often dom-
inate the contribution of forest reflectance, although the
background soil/vegetation and tree shadows may also add sub-
stantial variation to remotely sensed imagery, especially when
the data has both high-spatial and high-spectral resolutions. Our
results suggest that often the variation removed by either the
PCA or MNF algorithm was vital to burn severity modeling at the
early stage of disease progression where tree mortality led to a
‘‘freeze-dried’’ appearance. After transformations, the spectral
reflectance from dried foliage and fine twigs was possibly
enhanced, resulting in a higher degree of overestimation of low-
severity burns. An exception occurred when the 10 MNF compo-
nents with a mean object size of 6.54 ha were used in modeling.

The loss of tree crowns in the middle and late stages of disease
progression enabled better signal penetration and a lower spectral
variation in the MASTER image mosaic. Especially for the middle
stage, Table 3 shows that all models based on the band reduction
had improved R2 values ranging from 2% to 37%, compared to the
models using the original spectral bands. Even when only 5 PCA
nents, 10 PCA components, 5 MNF components and 10 MNF components) and three

value Significant independent variable RMSE
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Fig. 5. Field-measured CBI versus estimated CBI for five band reduction scenarios (no band reduction, 5 PCA components, 10 PCA components, 5 MNF components and 10
MNF components) and three stages of disease progression (early, middle and late).
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components (accounting for 10% of the number of original image
bands) were used in the regression the model performance
improved, with R2 values increasing from 0.55 to 0.66. For the late
stage, Table 3 shows that the two models using 5 PCA and 5 MNF
components slightly underperformed the burn severity model
without the application of band reduction by 5% and 3%. When
using 10 components, the model performance improved margin-
ally by 7% and 2%. Since the variation of R2 values among these
models was relatively small (7% of standard deviation), both band
reduction algorithms were considered to be able to retain the accu-
racy of burn severity modeling in forest stands at the late stage of
disease progression. Compared to the middle-stage, the late-stage
forest stands were covered by large piles of fallen trees and
branches, resulting in relatively higher variability in the MASTER
imagery. This may introduce uncertainties in the late-stage model-
ing results after applying band reduction. Compared to the early-
stage condition, both PCA and MNF provided a better balance of
computation efficiency and accuracy of burn severity models for
the middle- and late-stage conditions.
4. Conclusion

Increasingly, forest ecosystems are experiencing a variety of
complex and interacting disturbances. Large fires are occurring
more frequently and burning forest stands where invasive diseases
have already caused high tree mortality. This study investigated the
possibility of applying MASTER airborne imagery with both high-
spatial (4 m) and high-spectral (50 bands) resolutions to assess
post-fire burn severity in forests affected by three different stages
of pre-fire mortality (i.e., early – trees retaining dried foliage and
fine twigs, middle – trees losing fine crown fuels, late – trees falling
down) due to SOD. While GEOBIA is gradually becoming a standard
tool for analyzing high-spatial resolution imagery, high-spectral
resolution imagery with dozens to hundreds of bands can dramat-
ically reduce computation efficiency and poses challenges to the
object-based variable selection for accurate burn severity model-
ing. This study further evaluated the impacts of two widely used
band reduction algorithms PCA and MNF on the delineation of
image objects and the resulting accuracy of burn severity modeling.
If no band reduction was applied, the models developed for the
three stages of disease progression had relatively similar perfor-
mance, suggesting that the invasion of SOD did not have a major
impact on the performance of burn severity modeling using unre-
duced images of high-spatial and high-spectral resolutions, but this
is computationally intensive. However, the application of PCA and
MNF introduced substantial variability among the segmentation
and modeling results across the three stages. Compared to the
image objects generated using all the 50 spectral bands, our results
show that the PCA components led to mild over-segmentation (i.e.,
smaller mean object sizes) and the shape of objects was marginally
affected, while the MNF components resulted in notable under-seg-
mentation (i.e., larger mean object sizes) and the shape of image
objects exhibited reduced complexity by 24% and 29% using the
top 5 and top 10 MNF components, respectively. Compared to
PCA, MNF dramatically reduced image spectral variation, generat-
ing larger image objects with less complexity of object shapes.
However, PCA-based models outperformed the MNF-based models
in most cases, suggesting that MNF may have removed some varia-
tion that was vital for distinguishing between spectral reflectance
from diseased trees and fire-induced ash or charred remains. Com-
parison of the early-stage burn severity models showed that both
band reduction algorithms were typically unable to improve or
retain the model performance over no-band-reduction, except for
the model using 10 MNF components. Compared to the no-band-
reduction scenario, band reduction led to a higher level of overesti-
mation of low degrees of burns and underestimation of medium
degrees of burns, probably due to the fact that both PCA and MNF
enhanced the reflectance from dried tree crowns similar to the
way fire-induced ash change the reflectance. For the middle and
late stages, trees losing crowns allowed for improved signal pene-
tration and a lower spectral variation in the MASTER image mosaic.
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Consequently, the two band reduction algorithms evaluated in this
research (using 10 PCA/MNF components as input) showed promis-
ing results of balancing computation efficiency and the perfor-
mance burn severity modeling in the forests stands subject to the
middle and late stages of SOD progression. Finally, we note that
the conclusions made from the burn severity models using PCA
and MNF are scene-dependent. If the landscape is covered by for-
ests with different structures and/or subject to distinct disease
impacts, the post-fire spectral variation at various infestation stages
may also differ from that observed in this study. Compared to the
model involving PCA and MNF, the no-band-reduction models
may have higher transferability across varying forest landscapes,
but remain computationally expensive.
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