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Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conven-
tional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual
tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities
and improved data accuracies accompanied by challenges for procuring and processing voluminous
LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and over-
comes computational challenges for large-area forest assessments. However, how does lower point den-
sity impact the accuracy of biomass estimation in forests containing a great level of anthropogenic
disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests
in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to
establish a statistical relationship between field-measured biomass and predictor variables derived from
LiDAR data with varying densities. We compared the estimation accuracies between a general Urban For-
est type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to
which landscape context influenced biomass estimation. The explained biomass variance of the Urban
Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest dif-
ference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type bio-
mass models outperformed the Urban Forest models at the representative point densities (100% and
40%). The Urban Forest biomass model with development density of 125 m radius produced the highest
adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE val-
ues, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that
reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromis-
ing the accuracy of biomass estimates, and these estimates can be further improved using development
density.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Loss of forest biomass in urbanizing regions is a growing con-
cern worldwide (Seto et al., 2012). Changes in biomass impact
critical ecological and environmental processes necessary for the
maintenance of biodiversity and ecosystem health, often for the
long-term and with slowed or no opportunity for recovery.
Long-term impacts include changes in regional nitrogen and car-
bon storage and flux (Groffman et al., 2006; Magnani et al.,
2007), increases in urban heat island effects (Imhoff et al., 2010),
and increased concentration of atmospheric carbon dioxide
(Nowak and Greenfield, 2012), as well as changes in human per-
ceptions of environmental quality and well-being (Grove et al.,
2006). As urban forests decrease in size and number, we face an
ever-increasing need to quantify the remaining resources.
However, some of the most vulnerable forests around growing
U.S. cities are the least accessible for ecological measurement
due to the high proportion of privately owned land typical of
metropolitan landscapes (Meentemeyer et al., 2013). Since bio-
mass directly relates to the tree structure – height and diameter
at breast height – cost-effective regional-scale remote sensing data
that characterize the structure of forest stands are needed to
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quantify biomass in urban landscapes. LiDAR provides structural
data for forest analysis studies.

Airborne and terrestrial LiDAR has emerged as a key remote
sensing technology for the accurate estimation of forest biomass
ranging from individual tree to stand levels (Mascaro et al., 2011;
Zolkos et al., 2013), and has been successfully applied to quantify
and measure biomass of tropical forests (Drake et al., 2003), shrubs
(Estornell et al., 2011), understory vegetation (Seidel et al., 2012),
unmanaged Mediterranean forests (Garcia et al., 2010), and urban
forests (He et al., 2013). However, these applications have not char-
acterized forest types found along urban–rural gradients, rarely
address the impact of landscape context on biomass estimation
across the urbanizing landscapes, and lack large-area assessment,
for example, an area comprised of a county (>1000 km2), or multi-
ple counties. Recent advancements in LiDAR technology have
resulted in improved data accuracies and higher point densities,
which can greatly increase the costs (Renslow et al., 2000), and
poses a challenge to a cost-effective procurement and processing
of voluminous LiDAR data for large-area assessments. To overcome
these challenges, large-area assessments are typically based on
plot-level regression models either ‘alone’ (Drake et al., 2002) or
through ‘fusion’ of sampled LiDAR transects with spectral data
(Popescu et al., 2004). However, these approaches to large-area
assessments are often not suitable for urban forest studies due to
the presence of different forest types, and the high degree of heter-
ogeneity at fine scales caused by repeated anthropogenic distur-
bances, such as conversion of forests to development. Therefore,
reducing LiDAR point density may provide a solution for cutting
procurement costs and overcoming computational challenges for
large-area assessments. The concept of reducing point density
may also help analyze features in point clouds derived from auto-
mated methods (e.g. Structure from Motion technique) designed to
generate a 3D point cloud from video sequences filmed from new
mobile sensors.

Data procurement and processing costs limit the extent to
which LiDAR is useful for large-area studies. To achieve both
cost-effective and accurate results, data acquisition parameters
are optimized (Lovell et al., 2005; Naesset, 2009) while tradeoffs
are made between point density and estimation accuracy
(Jakubowski et al., 2013; Magnusson et al., 2007; Zhao et al.,
2009). To date, studies considering the optimization of LiDAR
point densities, such as Gobakken and Naesset (2008), Lim et al.
(2008), and Treitz et al. (2012), were mainly focused on natural
environments and rarely accounted for the influence of landscape
context (e.g., surrounding urban development or forest stratifica-
tion following disturbance) on forest structure and biomass
estimation.

Forest structural heterogeneity and factors modifying it, such as
urbanization (McHale et al., 2009), are important determinants in
biomass estimation. Studies documenting the effects of urbaniza-
tion on forest structure have found lower stem densities in young
stands, increased forest edge opening, and increased biomass
growth compared to rural stands (Gregg et al., 2003; Moran,
1984; O’Brien et al., 2012). These structural variations affect the
total biomass, while also potentially affecting the capacity to mea-
sure biomass using LiDAR. Canopy stratification has been sug-
gested to overcome potential estimation errors due to structural
variation (Swatantran et al., 2011). Canopy stratification is a useful
organizational tool for the study of the vertical distribution of
plants and animals (Baker and Wilson, 2000), and is considered
an index of vertical structure where the higher number of canopy
strata represents increased complexity in the forest stands (Parker
and Brown, 2000). Fundamental differences in the heterogeneity of
forests types in urbanizing landscapes suggest the need for a
broader perspective and innovative approaches for the use of
LiDAR point density in forest biomass estimation.
In this study, we evaluate the effects of LiDAR point density on
the estimation of aboveground biomass of remnant forests in the
rapidly urbanizing region of Charlotte, North Carolina, USA. Using
multiple linear regression (MLR), we established relationships
between field-based biomass estimates and LiDAR-derived predic-
tor variables (PVs) for a general urban forest type and three specific
Forest Type biomass models, referred to as Urban Forest and Forest
Types (coniferous, deciduous, and mixed). For the Urban Forest, we
developed models using PVs of LiDAR data at eight point densities
while for the Forest Type models we used the original LiDAR data
and the point densities that produced similar biomass estimates
for the Urban Forest. We then compared accuracies of the Urban
Forest and Forest Type models in addition to comparison of top
performing biomass models between the Urban Forest and a com-
bined estimate for the Forest Type models. We quantified the
degree to which the presence of built development (e.g., buildings,
roads, and parking lots) influenced biomass estimation. Finally, we
analyzed the effect of canopy stratification on biomass estimation
for both the Urban Forest and Forest Type models.
2. Materials and methods

2.1. Study system

This study focuses on the urban remnant forests of Mecklen-
burg County, North Carolina (Fig. 1a). The county is located within
the Piedmont physiographic province in the center of the Charlotte
Metropolitan Area and covers 1415 km2. The region’s topography
is characterized by rolling flat lands with elevation ranging from
252 m in the northern part of the county to about 159 m in the
south. Forested landscapes in the area are primarily comprised of
oak–hickory–pine forests that have developed on former timber
plantation sites as well as through natural regeneration on aban-
doned farmland. In recent years, urban sprawl, with low- to med-
ium-density housing, has converted forest and farmland
dominated landscapes into an array of developed land cover types
with highly fragmented and complex urban forests. According to
the American Forests report in 2008, Mecklenburg County has
experienced a 33% decline in its tree canopy between 1985 and
2008, and will suffer an additional loss of �3% by the year 2015
under recent trends.
2.2. Field data

We conducted field measurements during the years 2010–2012
as part of the Charlotte ULTRA-Ex (Urban Long-Term Research
Areas Exploratory) study designed to analyze socio-ecological
interactions driving the persistence of private forest. Within each
forest site, we established three to five 11.5 m fixed-radius random
field plots (400 m2) (Fig. 1b). We measured the diameter at breast
height (dbh) of all native and invasive woody plants greater than
5 cm, including vines. Other parameters measured in each plot
include geographic coordinates, merchantable height, species’
name and type (deciduous vs. evergreen), and predominant land
cover type. Prior to the analysis, we categorized all field plots into
deciduous, coniferous, and mixed forest types using a threshold of
75% predominant land cover type. If a plot consisted of over 75%
deciduous or coniferous trees, we labeled the plot as deciduous
or coniferous, respectively. We labeled plots comprised of less than
75% deciduous or coniferous forest as mixed plots. To maintain the
uniformity in modeling biomass across the forest types, we
selected a similar number of field plots in each Forest Type result-
ing in a collection of 70 plots comprised of 22 deciduous, 23 conif-
erous, and 25 mixed plots.



Fig. 1. Study system. (a) Mecklenburg County in the center of Charlotte Metropolitan Region of North Carolina, USA, and (b) the distribution of forest cover across the county
with an overlay of LiDAR tiles and locations of field plots.
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2.3. LiDAR data

We used leaf-off multiple return LiDAR data acquired April 11–
14, 2012, and obtained from the Storm Water Services Division of
Charlotte-Mecklenburg County government office. Original data
acquisition was carried out by Pictometry International (Rochester,
USA) using Optech’s ALTM Gemini 3100 LiDAR system with aver-
age point spacing of 1 m between any two neighboring points over
the study system (Godwin et al., 2015).
2.4. LiDAR data processing and reduced point densities

We clipped the original LiDAR tiles at the plot-level using 12 m
radius to account for any possible misalignment due to GPS posi-
tional errors. Then, we reduced the original LiDAR point density
to 80%, 60%, 40%, 20%, 10%, 5%, and 1% densities (Fig. 2; Table 1)
using the ‘percentage of the total points’ reduction algorithm
developed at Boise Center Aerospace Laboratory, Boise, Idaho
(BCAL LiDAR Tools, 2013). This algorithm reduces LAS files (LiDAR
data format) by the percentage of the total points using random
selection from the pool of equal height points in each return. We
selected this data reduction approach over other approaches, such
as point density or point spacing, based on two primary consider-
ations: (1) the inconsistency of point spacing and point density
throughout the LiDAR tiles and field plots, and (2) reduction by
percentage offers nearly consistent sampling across the tiles for
large scale analysis (Anderson et al., 2006; Magnusson et al.,
2007). This resulted in eight plot-level LiDAR datasets, including
seven sets of reduced point densities.

2.5. Processing and extracting variables

2.5.1. Field-based aboveground biomass estimation
To identify an optimal LiDAR point density, we applied a gener-

alized allometric equation (Eq. (1)) (Jenkins et al., 2003) to the tree
species found in each field plot to estimate biomass for individual
trees using field-based dbh and parameters from the appropriate
species group as documented in Jenkins et al. (2003) and listed
in Table 2.

bm ¼ Expðb0 þ b1 � lnðdbhÞÞ ð1Þ

where bm is total aboveground biomass (kg dry weight) for
trees > 5 cm in dbh, Exp is the exponential function, dbh is the diam-
eter at breast height in centimeters (cm), ln is the natural log base e
(2.718282), and b0 and b1 are parameters for hardwood and soft-
wood tree species groups (Table 2).

We aggregated tree species observed in the field into hardwood
and softwood species groups. We used parameters of each respec-
tive species group to calculate biomass for individual trees and
then averaged the biomass at plot-level by applying a tons per
hectare conversion unit. We used dbh to estimate biomass due
to: (1) dbh is the most stable predictor for regression models com-
pared to predictors that incorporate LiDAR-derived tree height and



Fig. 2. An illustration of percentage-based LiDAR data reduction. The total number of LiDAR points (TP) and average point spacing (PS) are shown for each point density
reduction at plot-level (400 m2).

Table 1
Distribution of point density, point spacing, and file size at plot-level for different LiDAR data reductions.

LiDARa Point density (point/m2) Point spacing (m) File size (MB)

Min Max Average Min Max Average

100 2.64 13.67 5.77 0.21 0.65 0.43 10.1
80 2.12 11.12 4.57 0.23 0.71 0.48 8.11
60 1.66 8.29 3.46 0.27 0.82 0.56 6.10
40 1.06 5.37 2.30 0.35 1.04 0.71 4.07
20 0.51 2.78 1.16 0.51 1.52 1.03 2.05
10 0.26 1.32 0.58 0.77 2.30 1.52 1.06

5 0.13 0.68 0.29 1.10 3.29 2.25 0.55
1 0.03 0.14 0.06 2.27 8.90 5.48 0.14

MB = megabyte.
a Percentage of original LiDAR data.

Table 2
Parameters used for estimating aboveground biomass for all hardwood and softwood species found in the study system. Developed by Jenkins et al. (2003).

Species group Parameters R2

b0 b1

Hardwood Soft maple/birch �1.9123 2.3651 0.958
Mixed hardwood �2.4800 2.4835 0.980
Hard maple/oak/hickory/beech �2.0127 2.4342 0.988

Softwood Cedar/larch �2.0336 2.2592 0.981
Pine �2.5356 2.4349 0.987
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crown diameter (Popescu, 2007), and (2) species-independent bio-
mass equations only require dbh compared to species-dependent.

2.5.2. LiDAR metrics extraction
We extracted plot-level metrics from LiDAR data using FUSION

software developed at Pacific Northwest Research Station, Seattle,
WA (McGaughey, 2014). We normalized the clipped plot-level
LiDAR datasets using 1 m resolution digital elevation model
derived from LiDAR ground returns. This process removed topogra-
phy effects from LiDAR points across the datasets for yielding
height-above-ground values. For extracting plot-level tree metrics,
we used the height range 1.5–35 m to exclude understory vegeta-
tion and objects taller than the trees found within the region. We
calculated descriptive statistics for normalized LiDAR point densi-
ties across the entire vertical profile (e.g., minimum, maximum,
variance, interquartile distance, percentiles, etc.) and canopy
related metrics (e.g., percentage of first returns above 3 m, percent-
age of first return above mean, and mode, etc.) (Frazer et al., 2011;
Jakubowski et al., 2013). We derived and further identified a total
of 37 metrics from previous studies at the plot-level (Table 3).



Table 3
Predictor variables derived from each LiDAR point density reduction and used in multiple regression models for estimating plot-level
biomass.

Variable Variable description

TRC Total return count
Hmin Height minimum
Hmax Height maximum
Hmean Height mean
Hmode Height mode
HSD Height standard deviation
Hvar Height variance
Hcv Height coefficient of variation
Hske Height skewness
Hkur Height kurtosis
HAAD Height average absolute deviation
HMAD Height median absolute deviation
HMADme Median of the absolute deviations from the overall median
HMADMo Median of the absolute deviations from the overall mode
HIQR Height interquartile range
HP(1–99) Height percentile: 1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th (median), 60th, 70th, 75th, 80th, 90th, 95th, and 99th
CRR Canopy relief ratio
PFRame Percentage first returns above mean
PFRamo Percentage first returns above mode
FRaMe First returns above mean
FRaMo First returns above mode
ARaMe All returns above mean
ARaMo All returns above mode
DevDena Development density radius: 50 m, 75 m, 100 m, 125 m, 150 m, 175 m, 200 m, and 500 m
BAratiob Ratio between coniferous and hardwood basal area in the plot
CSTRATA Canopy stratification

a Variable derived from 2007 land cover estimated using LiDAR structural and Landsat TM data at 5 m spatial resolution (Singh et al.,
2012).

b Variable derived from field-based dbh.
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Since the estimation of biomass is directly related to structural
metrics, we did not consider the intensity component of LiDAR in
the analysis.

2.5.3. Development density estimation
To examine the effect of development and the distance effect on

biomass estimation, we calculated development density (Eq. (2)) at
multiple buffer distances of increasing radii around each plot
(Table 3).

Ds: ¼
PN

i di

N
ð2Þ

where Ds. is the development density, di is the number of developed
cells in the circular plot, N is the total number of cells in the circular
plot, and a constant spatial resolution of land cover for all ‘i’. We
reclassified land cover types, developed from Landsat TM and LiDAR
structural data (Singh et al., 2012), into a 5 m raster representing
developed (impervious surfaces and managed clearings) and undev-
eloped land cover (farmland, forest and barren land). We then cal-
culated the total area of developed land cover within the multiple
buffers to estimate the development density.

2.5.4. Canopy stratification
Reducing point density could dilute the effect of vertical com-

plexity and impact the accuracy of biomass estimates. Therefore,
we analyzed the effect of canopy stratification on the biomass esti-
mations using the Landscape Management System (LMS)
(McCarter, 2001; McCarter et al., 1998) and the Forest Vegetation
Simulator (FVS) model (Dixon, 2002; Stage, 1973; Wykoff et al.,
1982). FVS uses internal model diameter/height relationships to fill
in height and crown information that was not measured in the
plots. In addition, FVS provides volume estimates for measured
trees. We used LMS to calculate canopy layers using a canopy strat-
ification algorithm based on work by Baker and Wilson (2000). The
default canopy overlap parameter (�5) imposed a 5 ft. gap
between the bottom of one canopy layer and the top of the next
lower canopy layer. For evergreen forests in our datasets, this pro-
duced few canopy layers because of a more continuous canopy
structure. Thus, we adjusted the overlap parameter to produce
results for a 5 ft. gap (�5), no overlap or gap (0), and a 5 ft. overlap
(+5), allowing for the detection of multiple canopy layers in the
continuous canopy structure of the sampled stands. We examined
the results for each overlap parameter and selected the +5 ft. over-
lap parameter since it revealed very distinct multiple layers and
complex structures in the data.
2.6. Statistical analysis and model development

We used MLR to evaluate the statistical relationship between
field-based biomass and LiDAR-derived PVs (Table 3). First, we
developed biomass models for Urban Forest using PVs derived
from reduced LiDAR point densities to identify the optimal point
density suitable for biomass estimation. Second, to account for bio-
mass variation due to forest types across urbanizing landscapes
and to test for differences among forest types, we developed sepa-
rate regression models for evergreen, deciduous, and mixed forest
stands using PVs from the identified optimal point density (i.e.,
LiDAR percentage that produced matching or improved biomass
estimates compared to the original data) (Chen and Hay, 2011;
Zhao et al., 2009). Third, we used Urban Forest biomass models
developed using PVs derived from 100%, 40% and 10% point densi-
ties to compare and analyze the effect of development density on
the estimation of biomass. We used Urban Forest models based
on three point densities to ensure that the effect of development
is not by chance and is point density independent. Finally, to ana-
lyze the effect of canopy stratification, we developed regression
models where the residuals of the top performing biomass models
are treated as a new response variable against the PVs of interest
and canopy stratification. This analysis determined the strength



Fig. 3a. Predicted versus observed aboveground biomass at each LiDAR point density reduction.
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of the relationship between biomass and canopy structural com-
plexity of the urban forests.

We implemented the MLR analyses in three steps: (1) identifi-
cation of outliers, (2) variable selection followed by data transfor-
mation if needed, and (3) model development and performance
evaluation. We started by identifying a list of LiDAR metrics
(Table 3) from previous studies that are the best predictors of
plot-level biomass in order to simplify the variable selection pro-
cess (Dubayah et al., 2010; Frazer et al., 2011; García et al., 2010;
Hall et al., 2005). We applied the variance inflation factor (VIF)
and the Pearson correlation coefficients to select optimal PVs for
MLR that minimized data dimensionality and the presence of mul-
ticollinearity within the PVs, and to overcome issues of over fitting.
Due to many potential non-collinear PVs, we also applied an
automated approach by employing the ‘regsubsets’ function from
the LEAPS package (Lumley and Lumley, 2013) in the R statistical
software (R Core Team, 2013) to view ranked models based on dif-
ferent scoring criteria (adjusted R2, Mallows’ Cp Statistic, BIC etc.)
for selecting the best regression subset (Vianna et al., 2014). We
used the lowest Mallow’s Cp score, which is equivalent to the
Akaike information criterion (AIC) for selecting the best subset of
PVs. The AIC favors smaller residual of errors and penalizes over fit-
ting a model. Therefore, lowest AIC value is ideal for selecting a
model from a set of models for a given set of data. We also used
logarithmic transformations during the development of the MLR
models to achieve linearity between field-based biomass and
non-linear forest structural parameters (Frazer et al., 2011;
Hudak et al., 2006; Lefsky et al., 2002).



Fig. 3b. Change in adjusted R2 and RMSE (root mean square error) across reduced LiDAR point densities.

Table 4
Multiple linear regression models for predicting aboveground biomass of urban forests using predictor variables derived from original LiDAR data and point density reductions
(by percentage).

LiDARa Urban Forest model with coefficients R2 R2 adjusted RMSE (t/ha) Xvalb (t/ha) F-testc

100 y = 44.39 + 0.31Hvar–3.72HMADmo + 3.46HP05 0.8203 0.8114 31.99 34.02 (F1, 63 = 1.21, p = 0.43, CI = 0.74/1.99)
80 y = 49.26 + 0.31Hvar–3.65HMADmo + 3.28HP05 0.8086 0.7992 33.02 35.34 (F1, 63 = 1.24, p = 0.39, CI = 0.75/2.03)
60 y = 5.40 + 0.28Hvar–2.58HMADmo

⁄⁄ + 3.12HP05 + 0.62PFRame
� 0.8076 0.7948 33.10 36.93 (F1, 63 = 1.24, p = 0.39, CI = 0.75/2.03)

40 y = 11.13 + 0.28Hvar–3.36HMADmo + 2.67HP05 + 0.75PFRame
⁄ 0.8210 0.8090 31.94 34.06 (F1, 63 = 1.22, p = 0.43, CI = 0.74/1.99)

20 y = 26.16 + 0.28Hvar–3.44HMADmo + 2.70HP05 + 0.51PFRame
� 0.7872 0.7730 34.82 37.58 (F1, 63 = 1.27, p = 0.34, CI = 0.77/2.08)

10 y = 19.57 + 0.27Hvar–3.64HMADmo
⁄ + 2.84HP05 + 0.62PFRame

� 0.7747 0.7597 35.82 38.87 (F1, 63 = 1.29, p = 0.30, CI = 0.79/2.12)
5 y = 34.12 + 0.28Hvar–3.47HMADmo

⁄ + 2.30HP05 + 0.56PFRame
� 0.7624 0.7466 36.79 39.35 (F1, 63 = 1.31, p = 0.28, CI = 0.80/2.15)

1 y = �119.15 + 1.27TRC
⁄ + 2.56Hmin + 0.17Hvar + 259.90CRR 0.7164 0.6975 40.19 43.63 (F1, 63 = 1.40, p = 0.18, CI = 0.85/2.29)

Level of significance: 0.001 ‘⁄⁄’ 0.01 ‘⁄’ 0.05 ‘�’ 0.1.
a Percentage of original LiDAR data.
b 10-fold cross validation.
c Between observed and predicted aboveground biomass.

Fig. 4. Predicted biomass categorized by LiDAR point density reduction with red
horizontal line indicating the median of observed biomass.
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2.7. Evaluating model performance

We compared the performance of MLR models using an adjusted
R2, the AIC, and root mean squared error (RMSE) based on a 10-fold
cross validation (k-fold CV) analysis. The adjusted R2 is the percent-
age of variation explained by those PVs that influence the response
variable. The adjusted R2 corrects upward bias, especially in small
samples. We used the AIC to evaluate the performance of biomass
models resulting from development density with increasing radii
around each plot. Since biomass models comprised of relatively
low number of observations (for example, 22 deciduous, 23 conif-
erous, and 25 mixed plots in Forest Type models), we selected the
k-fold CV method to assess the accuracy following Naesset (2002).
In this approach, the dataset is divided into k subsets, and at each
iteration, one of the k subsets is used as testing data and the other
k � 1 subset as training data. The variance of the resulting estimate
is reduced as k is increased. We also used F-test to determine if the
variance of observed biomass was equal to biomass estimated
using PVs of reduced point densities.
3. Results

3.1. LiDAR point density effects on Urban Forest biomass model
performance

We observed similar biomass predictions for Urban Forest
across all the reduced LiDAR point densities. The amount of bio-
mass variance (adjusted R2) explained by LiDAR-derived PVs was
consistent across the reduced point densities (Fig. 3a) with the
highest difference of 11.5% observed between the 100% and 1%
point density biomass models. The RMSE and k-fold CV values of
Urban Forest models showed a similar trend with the maximum
difference of 8.2 t/ha and 9.6 t/ha, respectively (Fig. 3b; Table 4).
The biomass estimates from the 40% point density models were
similar to the 100% point density except for the significance of
the PFRame variable (Table 3). PFRame was present in all models
below 80% point density, with the exception of the 1% model.
The biomass variance across the reduced point densities was best
explained by the tree height variance (Hvar (>60%)), followed by
height percentile (HP(1–99)), percentage of first returns above mean
(PFRame) (if significant in the model), and the median of the



Fig. 5. Predicted versus observed aboveground biomass by Forest Type: (a) model based on 100% point density, (b) model based on 40% point density, and (c) effect of basal
area ratio (BAratio) on the evergreen and mixed Forest Type biomass models of 40% point density.

Table 5
Multiple linear regression models for predicting aboveground biomass of different Forest Types using 100% and 40% point densities.

LiDARa Forest type Coefficients R2 R2 adjusted RMSE (t/ha)

100 Evergreen y = �65.62 + 0.03TRC + 27.08Hmin + 0.32Hvar–4.58 HMADmo 0.8681 0.8371 23.37
Deciduous y = 178.85 + 0.30Hvar–73.78In(HMADmo) + 3.38HP05 0.8267 0.7942 29.13
Mixed y = 121.89–79.20In(TRC) + 0.15Hvar–15.30HP01 + 4.76HP05 0.8490 0.8135 24.79

40 Evergreen y = �239.07 + 40In(TRC) + 0.25Hvar–2.67HMADmo + 8.21HP01 0.8362 0.7977 26.05
Deciduous y = 210.21 + 0.31Hvar–83.92In(HMADmo) + 2.98HP05 0.8257 0.7930 29.22
Mixed y = 73.12–0.04TRC + 0.25Hvar–8.48HP01 + 6.54HP05 0.8056 0.7598 28.13

40b Evergreen y = �370.27 + 52.7In(TRC) + 0.25Hvar–2.69HMADmo + 29.53Hmin–0.79BAratio
� 0.8599 0.8161 24.09

Mixed y = 129.12–0.05TRC + 0.23Hvar–8.90HP01 + 5.94HP05–89.23BAratio
⁄ 0.8555 0.8104 24.25

Level of significance: 0.01 ‘⁄’ 0.05 ‘�’ 0.1.
a Percentage of original LiDAR data.
b Model with basal area ratio (BAratio) variable.
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absolute deviations from the overall mode (HMADMo). F-tests
(equality of two variances) revealed no significant differences
between the observed and predicted biomass estimates (Table 4)
with virtually consistent distributions across the models except
for slight differences at the 60% and 20% LiDAR point densities
(Fig. 4).

3.2. Performance of Forest Type biomass model

While Urban Forest biomass models performed consistently
well across the reduced point densities, due to similar adjusted
R2, we selected 100% and 40% point densities for developing Forest
Type biomass models. Forest Type biomass models outperformed
(individually as well as cumulatively) the Urban Forest models at
both the 100% and 40% point densities. Forest Type biomass mod-
els produced, on average, 4–6 t/ha lower RMSE values than Urban
Forest models. The evergreen biomass model based on the 100%
point density produced the highest adjusted R2 and lowest RMSE
followed by mixed and deciduous types (Fig. 5; Table 5). We found
a moderate but significant difference in evergreen and mixed types
biomass variance (on average 4.56%) between the 100% and 40%
point densities (Fig. 5) except for the deciduous type which



Fig. 6. Change in AIC (Akaike Information Criterion) and RMSE (Root Mean Square
Error) values with increasing radii for development density. Contribution of
development density in regression models for predicting biomass using predictor
variables derived at the point density reductions of (a) 100%, (b) 40%, and (c) 10%.
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showed similar adjusted R2 (79%) and RMSE (29 t/ha) values. Bio-
mass estimates of evergreen and mixed models performed simi-
larly as we introduced the basal area ratio variable into the
models. The average difference of RMSE values of Forest Type bio-
mass models based on 100% and 40% point densities was 2 t/ha.
However, we observed a difference of 6.2 t/ha and 5 t/ha at 100%
and 40% densities, respectively, between Urban Forest and the
combined estimates of Forest Type models (Table 5).

3.3. Development density effects on biomass model performance

Development density exhibited a negative relationship with
biomass and contributed on average 2.3% to the total explained
biomass variance of models using 100%, 40%, and 10% point densi-
ties. Equivalent contributions of development density suggest that
development density is independent of point density and not due
to chance. We achieved lower AIC and RMSE values with higher
significance levels using development densities between 100 m
and 175 m radius buffers, peaking at 125 m with p < 0.01 signifi-
cance level for all three reduced point densities (Fig. 6a–c). Table 6
illustrates how biomass variance improved with the addition of
development density. The biomass models at 125 m radius pro-
duced the highest adjusted R2 (0.83, 0.82, and 0.78 at 100%, 40%,
and 10% point densities, respectively) and the lowest k-fold CV-
RMSE values (30.4 t/ha, 32.9 t/ha, and 38.2 t/ha at 100%, 40%, and
10%, respectively). Analysis of variance (ANOVA) tests revealed
that biomass models using development densities at 100 m,
125 m, 150 m, and 175 m are significantly different from the mod-
els that exclude development density at all three reduced point
densities (Table 6).
3.4. Contribution of canopy stratification on biomass estimation

Canopy stratification did not contribute to the Urban Forest bio-
mass model and only marginally improved the unexplained vari-
ance of the Forest Type biomass models. On average, the canopy
stratification improved Forest Type biomass models by 1.4 t/ha
and 1.2 t/ha at 100% and 40% point densities, respectively; the
deciduous model showed the greatest improvement of 2.2 t/ha at
both densities (Table 7).
4. Discussion

Accurate and repeated biomass estimation over large urbaniz-
ing areas has become a necessity to manage remnant forests and
their potential impacts on regional carbon dynamics. This research
explored the effects of LiDAR point density and landscape context
on the accuracy of biomass estimates in urban remnant forests at a
regional-scale. We found that reducing point density provided a
viable solution to regional-scale assessment without compromis-
ing accuracy of biomass estimates. Differences in adjusted R2 and
RMSE values between 100% and 1% LiDAR point density cases were
modest and disproportionate to the reduction in average point
spacing and file size (Table 1). Jakubowski et al. (2013) found sim-
ilar results and suggested that the accuracy of predicted forest
structure metrics remains relatively high until low point densities
are incorporated in the model. In addition, we were unable to
extract many important LiDAR metrics below 1% data reduction,
and therefore we used 1% as the cut-off for the analysis. These raise
two important methodological questions not addressed in this cur-
rent study. First, what is the minimum number of points required
to represent the three-dimensional structure sufficiently to pro-
vide suitable metrics for accurate biomass estimation? Second,
how to reduce LiDAR data without compromising the quality of
structural attributes? In this study, the data reduction algorithm
and the structural predictors contributed to the performance of
biomass estimation across the reduced point densities.

LiDAR data reduction by the ‘percentage of the total points’
algorithm was selected over the ‘point density’ and ‘point spacing’
algorithms since the latter two methods vary tile to tile and are
determined by the complexities found in forest stands. For exam-
ple, the overall point spacing for the county-level LiDAR data was
1 m, while plot-level LiDAR data reduced to 20% density produced
the equivalent point spacing. Table 1 shows that LiDAR data at
lower point densities decreased the average point spacing dispro-
portionately in comparison to reductions in file size. These findings
are consistent with Anderson et al. (2006) in that the reduction of
LiDAR data to a certain extent does not affect the statistical prop-
erties of the elevation models. Therefore, LiDAR data can be
reduced without significantly impacting the accuracy of biomass
estimates. For example, models using 40% LiDAR point density
with a significant reduction in density, spacing, and file size pro-
duced comparable biomass estimates to models using the full
LiDAR dataset (Table 1). Our study is based on the Charlotte Metro-
politan Area where the best data point density may not be the best
for other geographic regions of varying urban development densi-
ties and spatial patterns. This baseline research offers a feasibility



Table 6
Contribution of development density, derived at nine different radii, in the regression models for predicting aboveground biomass using predictor variables derived at 100%, 40%,
and 10% LiDAR point densities.

LiDARa Radius
(m)

Coefficients R2 R2

adjusted
AIC RMSE (t/

ha)
Xvalc (t/
ha)

ANOVA-testd

100 00 y = 44.39 + 0.31Hvar–3.72HMADmo + 3.46HP05 0.8203 0.8114 644.99 31.99 34.02
50 y = 42.51 + 0.31Hvar–

3.72HMADmo + 3.49HP05 + 15.73DevDen
b

0.8207 0.8087 646.85 31.96 34.69

75 y = 48.71 + 0.31Hvar–3.69HMADmo + 3.42HP05–
33.79DevDen

b
0.8218 0.8100 646.43 31.86 35.52

100 y = 54.60 + 0.30Hvar–3.51HMADmo + 3.49HP05–
99.43DevDen

⁄
0.8336 0.8226 641.97 30.78 33.10 (F00–100r = 4.82, df = 61, 60,

P = 0.03)
125 y = 55.97 + 0.30Hvar–3.39HMADmo + 3.34HP05–

112.66DevDen
⁄⁄

0.8380 0.8272 640.26 30.38 30.39 (F00–125r = 6.55, df = 61, 60,
P = 0.01)

150 y = 55.91 + 0.30Hvar–3.35HMADmo + 3.51HP05–
106.57DevDen

⁄
0.8370 0.8261 640.65 30.47 33.76 (F00–150r = 6.14, df = 61, 60,

P = 0.01)
175 y = 53.67 + 0.30Hvar–3.45HMADmo + 3.50HP05–

84.11DevDen
⁄

0.8316 0.8204 642.77 30.97 33.67 (F00–175r = 4.03, df = 61, 60,
P = 0.05)

200 y = 54.23 + 0.30Hvar–3.49HMADmo + 3.45HP05–
72.48DevDen

b
0.8295 0.8181 643.58 31.16 34.93

500 y = 52.55 + 0.31Hvar–3.66HMADmo + 3.48HP05–
43.33DevDen

b
0.8248 0.8132 645.32 31.59 37.76

40 00 y = 55.34 + 0.29Hvar–3.71HMADmo + 3.12HP05 0.8049 0.7953 650.33 33.34 34.53
50 y = 56.32 + 0.29Hvar–3.71HMADmo + 3.10HP05–

8.70DevDen
b

0.8050 0.7920 652.29 33.33 37.56

75 y = 62.52 + 0.29Hvar–3.67HMADmo + 3.06HP05–
60.89DevDen

b
0.8100 0.7974 650.59 32.89 35.56

100 y = 65.96 + 0.28Hvar–3.42HMADmo + 3.24HP05–
123.91DevDen

⁄
0.8254 0.8137 645.12 31.53 33.83 (F00–100r = 7.04, df = 61, 60,

P = 0.01)
125 y = 66.79 + 0.28Hvar–3.29HMADmo + 3.30HP05–

134.85DevDen
⁄⁄

0.8297 0.8183 643.50 31.15 32.87 (F00–125r = 8.73, df = 61, 60,
P = 0.01)

150 y = 66.41 + 0.28Hvar–3.24HMADmo + 3.27HP05–
125.45DevDen

⁄⁄
0.8275 0.8160 644.33 31.35 34.53 (F00–150r = 7.86, df = 61, 60,

P = 0.01)
175 y = 64.03 + 0.29Hvar–3.34HMADmo + 3.22HP05–

96.49DevDen
⁄

0.8194 0.8074 647.31 32.07 35.16 (F00–175r = 4.82, df = 61, 60,
P = 0.03)

200 y = 65.15 + 0.29Hvar–3.41HMADmo + 3.17HP05–
85.38DevDen

⁄
0.8175 0.8053 647.99 32.24 36.48

500 y = 62.83 + 0.29Hvar–3.57HMADmo + 3.19HP05–
47.89DevDen

b
0.8103 0.7977 650.50 32.87 35.84

10 00 y = 43.03 + 0.25Hvar–1.54HMADmo + 3.13HP05 0.7598 0.7480 663.84 36.99 41.67
50 y = 42.47 + 0.25Hvar–

1.54HMADmo + 3.13HP05 + 4.84DevDen
b

0.7598 0.7438 665.83 36.98 40.84

75 y = 50.03 + 0.24Hvar–1.49HMADmo + 3.11HP05–
61.92DevDen

b
0.7651 0.7494 664.40 36.58 41.47

100 y = 56.47 + 0.24Hvar–1.38HMADmo + 3.24HP05–
138.43DevDen

⁄⁄
0.7857 0.7714 658.42 34.93 40.50 (F00–100r = 7.25, df = 61, 60,

P = 0.01)
125 y = 58.09 + 0.24Hvar–1.29HMADmo + 3.26HP05–

148.82DevDen
⁄⁄

0.7909 0.7769 656.83 34.51 38.23 (F00–100r = 8.92, df = 61, 60,
P = 0.01)

150 y = 58.02 + 0.24Hvar–1.26HMADmo + 3.23HP05–
141.19DevDen

⁄⁄
0.7895 0.7754 657.27 34.63 39.30 (F00–100r = 8.45, df = 61, 60,

P = 0.01)
175 y = 55.19 + 0.24Hvar–1.33HMADmo + 3.17HP05–

109.58DevDen
⁄

0.7792 0.7645 660.37 35.46 39.95 (F00–100r = 5.27, df = 61, 60,
P = 0.03)

200 y = 56.15 + 0.24Hvar–1.38HMADmo + 3.11HP05–
95.61DevDen

⁄
0.7760 0.7611 661.30 35.72 42.89

500 y = 50.89 + 0.25Hvar–1.52HMADmo + 3.10HP05–
38.70DevDen

b
0.7634 0.7477 664.85 36.71 42.13

Level of significance: 0.001 ‘⁄⁄’ 0.01 ‘⁄’ 0.05 ‘�’ 0.1.
a Percentage of original LiDAR data.
b Insignificant in the model.
c 10-fold cross validation.
d Between models with and without development density.
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of reducing data acquisition costs and volume while retaining the
accuracy of forest biomass estimates in complex urban environ-
ments. Largely, such data reduction can considerably minimize
data processing time for large-area assessments without compro-
mising the accuracy of biomass estimates. Point density reductions
may lower data costs for large-area assessments, especially in
cases where repeated coverage is needed.

The cumulative Forest Type biomass model outperformed the
Urban Forest model at both 100% and 40% point densities. The
observed variability in model performance across the three forest
types at both point densities corroborate the findings of Zolkos
et al. (2013). The structural complexities (e.g., canopy stratifica-
tion, presence of understory vegetation, canopy density, etc.) of
forest strata are one potential source of variability in model perfor-
mance. Other issues, such as leaf-on vs. leaf-off LiDAR data, also
impact model performance. Naesset (2005) reported that the vari-
ability of the height distribution tends to increase from leaf-on to
leaf-off conditions, which may cause variation in biomass esti-
mates. This research utilized leaf-off data, and so this effect could
not be evaluated. Likewise, less variation in the heights of conifers
could lead to higher accuracies for biomass estimates in coniferous
stands compared with hardwood stands (Nelson et al., 2004). This



Table 7
Contribution of canopy stratification in estimation of aboveground biomass for Urban Forest and Forest Type using predictor variables derived at 100% and 40% LiDAR point
densities.

LiDARa Urban Forest Forest Type

Biomass model Residuals–CSTRATA Biomass model Residuals–CSTRATA

RMSE (t/ha) RMSE (t/ha)

100 31.99 31.91 Evergreen 23.37 22.32
Deciduous 29.13 26.97
Mixed 24.79 23.71

40 31.94 31.78 Evergreenb 26.05 25.07
Deciduous 29.22 27.00
Mixedb 28.13 27.82

a Percentage of original LiDAR data.
b Model without BAratio (coniferous and hardwood basal area ratio) variable.
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disparity may also depend upon the height to biomass relationship
difference between hardwood (more biomass in branches) and
conifer species (Nelson et al., 2007). However, differences in the
performance of the Forest Type (evergreen and mixed) models
using 100% and 40% of LiDAR data were unexpected. Adding the
‘basal area ratio’ variable to these models resulted in similar esti-
mates, suggesting that the reduced point density does not fully
explain the complexity found in the lower strata of evergreen trees
in urban remnant forests either in evergreen or mixed forest type
field plots. This is a significant finding given the prevalence of coni-
fers in the study system, making ‘basal area ratio’ an important
variable to compensate effectively for low point densities in the
evergreen and mixed forest type biomass models.

Urbanization alters tree growth and understory recruitment
along urban–rural gradients (O’Brien et al., 2012). Evaluation of
biomass models using development density at increasing radii
revealed development density as an important contributor to bio-
mass estimates and the quantification biomass of urban remnant
forests. Our results illustrate improved performance from 100 m
to 175 m buffer distance, with no change beyond 175 m (Fig. 6;
Table 6). Insignificant contributions of development density to bio-
mass estimation from the edge of the field plot to 100 m may be
due to the deliberate distribution of field plots within forest sites
with the least amount of developed land cover. The absence of a
development density effect beyond175 m could be ascribed to
the maximum developed land cover around each plot given the
prevalence of developed land cover in this urbanizing region. To
verify this significant outcome was not by chance and was inde-
pendent of point density. We modeled biomass at three different
LiDAR point densities (100%, 40%, and 10%) and found the same
outcomes. O’Brien et al. (2012) suggested that anthropogenic
impacts on urban forests could be multi-faceted, therefore, addi-
tional research is required to fully understand which land cover
type has more impact on forest biomass estimates along urban–
rural gradients.

Evaluation of multiple linear regression models in our analysis
illustrated that descriptive statistics metrics (e.g., tree-height-var-
iance (Hvar)) explained more variance than direct canopy height
related metrics and were overall key predictors of biomass. The
second largest contributor to overall model performance was
HMADMo (median of the absolute deviations from the overall
mode), which is a robust measure of variability within the data
sample. This implies that field-measured biomass is primarily
related to overall vertical forest structure. Zimble et al. (2003)
identified tree-height-variance as an effective metric for classifying
various vertical forest structural configurations. Additionally, leaf-
off LiDAR has been recommended to improve the estimation accu-
racy of biophysical properties and prediction in a mixed forest,
with further improvements by adding forest stratification
(Naesset, 2005). However, the contributions of these two variables
in overall model performance could be a potential explanation for
the relatively poor performance of canopy stratification in our
Urban Forest biomass model.

5. Conclusions

Management of urban remnant forests and critical ecological
and environmental processes necessary to maintain ecosystem
functioning and services can be enhanced by the resourceful use
of LiDAR remote sensing for improved assessment of regional-scale
urban forest biomass. This study advances the application of LiDAR
data for effective assessment of large-area biomass. Our results
suggest that reducing LiDAR point density may offer an effective
solution for minimizing regional-scale data procurement costs
and overcoming computational challenges while maintaining
desired accuracy of biomass estimations. Our evaluation of Urban
Forest models performance suggests that LiDAR data with an aver-
age point spacing of 0.70–1.50 m (approximately 1.35 points/m2)
may offer a cost-effective, large-area LiDAR data procurement
and processing for urban forest landscapes. Equivalent biomass
estimates across multiple point densities suggests the ‘percentage
of the total points’ data reduction algorithm is suitable for large-
area applications. Lower individual and cumulative RMSE values
of the Forest Type biomass models emphasize the consideration
of forest types for reasonable biomass estimates at regional-scales.
As expected, land cover type impacts the productivity and growth
of forests in urbanizing landscapes, and when we added develop-
ment density to the biomass models, our estimates improved.
We also observed that canopy stratification did not improve our
biomass estimation for urban forests but did lead to a slight
improvement when applied to the deciduous biomass model. This
suggests complexity in the vertical strata of deciduous forests
affects biomass estimation. Our evaluation of all biomass models
revealed tree-height-variance as the most useful biomass predic-
tor, corroborating its suitability for classifying various vertical for-
est structure configurations. Overall, our findings suggest that
reduced density LiDAR data may lower data procurement costs
for repeated assessments without sacrificing accuracy, and bio-
mass estimates can be improved by including landscape character-
istics (e.g., land cover types, development density, etc.) in regional
analyses.
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