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a b s t r a c t

Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely,
affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of
lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological
paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf
angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed
a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms,
MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and
simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and
real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by
an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD
more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better
indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but
essential for credible use of lidar vegetation products. The theoretical justification and experimental
evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar
data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident
use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological
conservation, and ecosystem management.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Demands for reliable ecosystem structure data are growing in
such fields as carbon sciences (Popescu et al., 2011), biomete-
orology (Chen et al., 2008), climate changes (Zhao and Jackson,
2014), wildlife and conservation ecology (Zellweger et al., 2014),
ecosystem management (Hurtt et al., 2004), and fire ecology (Mutlu
et al., 2008). Acquiring these data has long been pursued via
conventional field and remote sensing techniques, such as hemi-
spherical photography, multispectral imaging, and radar, yet with
limited successes (Lefsky et al., 2002). A superior alternative being
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extensively explored during the passing decade is lidar—a suite of
laser-based tools valuable for measuring 3D vegetation structure
across spatial scales. The superiority of lidar was proven by a pre-
ponderance of empirical studies, thereby encouraging its further
use. Indeed, lidar recently saw a surge in use by public and private
sectors for land and ecosystem management (Vierling et al., 2008).

Numerous lidars have been deployed to measure terres-
trial environments across scales, especially forest ecosystems
(Richardson et al., 2009; Yu et al., 2011). Examples of the mea-
sured vegetation characteristics include, at tree levels, height,
crown width, diameter at breast height, and crown base height
(Dalponte et al., 2011; Lin et al., 2011; Popescu and Zhao, 2008),
and at plot/stand levels, timber volume, biomass and carbon con-
tent, leaf area index (LAI), and canopy fuel parameters (García
et al., 2012; Tang et al., 2014; van Aardt et al., 2006). These lidar
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systems differ in footprint, platform, data-recording, or operating
mode. To date, the systems common to ecosystem studies are large-
footprint spaceborne waveform profiler, small-footprint airborne
discrete-return scanner, and tiny-footprint terrestrial discrete-
return scanner. They cover a decreasing spatial extent but measure
an increasing level of details.

Of current lidar technologies, terrestrial laser scanning (TLS),
which is also known as ground-based or terrestrial lidar, delivers
the finest characterization of forest structure (Hosoi and Omasa,
2006). The level of details acquired is unprecedented, with tree
trunks, branches, twigs, or even leaves easily discernible. This
high-resolution capability affords many exciting opportunities for
vegetation research. As examples, tree diameters can be directly
obtained from 3D TLS point clouds (Liang et al., 2012); efforts were
also dedicated to delineating tree components from point clouds
using automatic computer algorithms, with some promising results
reported (Hosoi et al., 2013). The fine-grained measurements make
TLS one of the best remote sensing tools to derive 3D distributions
of phytoelements and related biophysical quantities, such as foliage
profile, clumping index, and LAI (Yao et al., 2011; Zhao et al., 2011a).

Despite its great advantages, the use of TLS or any other lidars
for vegetation survey still faces practical challenges. Foremost, TLS
samples forests only partially, attributable to the occlusion from
nearer-range vegetative elements (Lovell et al., 2003). This incom-
pleteness complicates delineating tree geometry, generally making
it impossible to fully recover components of interest, such as trunks
and branches. Although the difficulty can be alleviated by coa-
lescing multiple scans, segmentation of terrestrial lidar data into
objects of interest still remains challenging (Liang and Hyyppa,
2013). Moreover, the scanning geometry of TLS leads to a more fre-
quent sampling of near-range objects than far-range objects, which,
if not corrected, will bias the estimation of certain forest structural
variables (Jupp et al., 2009); for instance, tree heights are typically
underestimated (Lovell et al., 2003).

The practical utility of lidar or TLS for vegetation analyses
depends on not just its technical capabilities but also the effec-
tiveness of ad-hoc lidar analysis methods in converting raw data
into meaningful information (Chen and Hay, 2011; Woodgate
et al., 2015). Common methods fall into two groups: those directly
involving ground-truthing vs. those not. The first group encom-
passes many empirical models previously calibrated to correlate
lidar metrics with biophysical variables (Jakubowski et al., 2013);
however, correlative models for one region or time are not always
transferrable to another. In contrast, the second group of meth-
ods turns to physics, signal processing, and heuristic rules, such as
radiative transfer theories (Ni-Meister et al., 2008) and computer
geometry algorithms (Zheng et al., 2013). These methods mani-
fest improved transferability, but their design and applicability are
limited by the validity of assumptions involved and also by the
availability of prior knowledge, computer algorithms, and physical
models.

Physics on light–vegetation interaction is particularly conducive
to lidar analyses (Jupp et al., 2009), but how to best apply physics
remains unclear, with room left for improvement. In general,
laser–canopy interactions are theoretically described using phys-
ical gap models, but these models, though being probabilistic in
nature, were rarely applied to analyze laser ranging data in a true
probabilistic manner. Rather, laser ranging is transformed into ratio
metrics as gap fractions, from which to further derive LAI. This
indirect use of lidar data is inefficient and suboptimal, with many
weaknesses in algorithm implementation. For example, gap-based
LAI algorithms will fail if gap fractions are near zero. These algo-
rithms rarely estimated leaf angle distribution; neither did they
make strict statistical inference with regard to the true underly-
ing gap probability model, therefore, providing no or sometimes
misleading uncertainty analyses. In stark contrast, direct use of

lidar data at rawer levels carries more information into canopy
characterization and facilitates the integration of data and physics.
The superiority of such data-rich paradigm was exemplified in
our physically-based scale-invariant and machine learning biomass
models (Zhao et al., 2011b, 2009). Despite its great potential (Palace
et al., 2015), this paradigm is still underappreciated.

This study aims to enhance the utility of terrestrial lidar for
measuring forest structure. Our specific objective is to forge a new
paradigm to analyze tiny-footprint TLS data for deriving foliage
density profile and leaf angle distribution at plot levels. Our anal-
yses are based on the same physical principle as has been used
in literature—the Poisson gap model. But different inherently from
earlier work, we explicitly treated this gap model as the probability
mechanism in generating laser ranging data, thereby allowing us to
estimate vegetation parameters via the maximum likelihood prin-
ciple. Similar to our previous airborne lidar analyses (Zhao et al.,
2011b, 2009), this maximum likelihood estimator (MLE) incorpo-
rates raw lidar data into inference and, thus, improves data use
efficiency and estimation accuracy. Another salient feature of MLE
is its rigorousness in quantifying uncertainty.

2. Theoretical background

Our lidar vegetation analyses rely on the combined use of
physics and statistics (Fig. 1). To provide a theoretical basis, we
next describe the Poisson gap model—a physical principle central
to vegetation remote sensing and our proposed MLE analyses. We
also review classical LAI algorithms currently employed to invert
the Poisson gap model and highlight their weaknesses.

2.1. Light–vegetation interaction: the Poisson gap model

Light–vegetation interactions have been modeled predomi-
nantly in a probabilistic manner (Nilson, 1971). Canopies are
depicted as horizontally homogenous turbid random media (Fig. 1)
and are characterized by structure and geometry parameters: one
about leaf amount and another about leaf orientation, as denoted by
ϑveg = {L(z), G(�)}. These parameters together determine the prob-
ability of light passing through a canopy along zenith angle � from
a base height z0 to height z without being intercepted (Fig. 2):

Pgap(�, z) = exp

[
−G(�)L(z)

cos �

]
. (1)

Here, z = 0 is the ground level, and the base height z0 = hsensor is set
at the laser equipment (Fig. 2). This model is known as the Poisson
gap model. It offers not just a theoretical basis for radiative transfer
in canopies but also practical tools to interpret gap-related data,
such as hemispheric photos, laser ranging, and foliage-line inter-
cept data (Jonckheere et al., 2004). Below, we explained the two
types of canopy parameters ϑveg

{
L (z) , G

(
�
)}

in Eq. (1).
First, the vegetation geometry parameter G(�) is defined as the

mean projection of a unit foliage area onto the plane perpendicular
to a viewing direction �. G(�), known as the Ross–Nilson function,
is a function of zenith angle �. Moreover, G(�) is determined com-
pletely by leaf normal distribution or leaf angle distribution g(�),
following the relationship in Eq. (A1) (Wang et al., 2007). The leaf
angle distribution g(�) denotes the relative fraction of leaves that
have normals pointing along the zenith angle �. Note that both g(�)
and G(�) were assumed to be azimuthally symmetric, an assump-
tion implicitly made in almost all previous studies as well as in this
study. Because of the equivalence between g(�) and G(�) as in Eq.
(A1), the two are used exchangeably in the rest of the paper.

Leaf angle distribution, g(�) or G(�), is often parameterized in
pre-defined functional forms (Otto and Trautmann, 2008). The
parameterization circumvents difficulties in fully specifying val-
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Fig. 1. A forest canopy in three contrasting yet linked spaces: Physical, measurement, and parameter. Their linkages are denoted by arrows. In particular, 3D laser data “

Dlidar ” are often linked to canopy parameters “ �veg” through a physical model called the Poisson model p
(

Dlidar|ϑveg

)
. Our goal is to go from the measurement to parameter

space for retrieving canopy parameters, such as foliage profile and leaf angle distribution, from laser data. The availability of the Poisson model as an underlying probability
model makes the maximum likelihood estimator (MLE) a natural choice to directly estimate canopy parameters from 3D lidar data (see Section 3.1 for details).

ues of g(�) or G(�) pointwise for each zenith � ∈ [0, �/2]. Most
parameterization schemes employ up to two parameters to deter-
mine the functional shape of g

(
�; �
)

or G(� ; �) with � being the
parameters (Table 1). Several simple models, such as planophile,
and erectophile models, are pre-defined equations with no spec-
ifying parameter. In contrast, the ellipsoid distribution, as in the
HemiView software, requires only one parameter. Another com-
mon model for g(�) is the beta distribution with two parameters,
but its associated G-function G(�) has no neatly analytical form. In
this case, G(�) should be numerically evaluated from g(�) via Eq.
(A1).

Second, the vegetation structural parameter L(z) in the gap
model denotes the cumulative leaf area from the reference height
z0 up to z, which is calculated by integrating the vertical profile of
leaf area density u(z):

L (z) =
∫ z

z0

u
(

z′)dz′. (2)

More specifically, u(z) is the leaf area per unit volume around a
location at height z. The integration of foliage density profile u(z)

over the whole canopy layer from the ground up to the canopy
height H gives the total leaf area per unit ground area, that is, LAI
(Fig. 2). Because of the equivalence between u(z) and L(z), the two
are used exchangeably in this paper.

Foliage area density or foliage profile u(z) has been characterized
both parametrically and non-parametrically. Common parametric
models include the Weibull, the beta, and the Johnson SB distribu-
tions (Medhurst and Beadle, 2001; Mori and Hagihara, 1991; Yang
et al., 1993). The Weibull model, for example, is parameterized by
four scalars [u0,H, k, �] in the form of

uWeibull

(
z|u0,H, �, �

)
= u0 × �

�

(
H − z

�

)�−1
× e

−
(

H−z
�

)�

. (3)

As nonparametric alternatives, the curve of u(z) can be specified at
selected heights

{
zj = j × �h

}
j=1,...,m

, with 	h being a height bin

size:

u (z)
discretize−−−−−−→{uj = u

(
zj

)
: zj = j × 	h}

j=1,...,m
. (4)

This discretized version {uj}j=1,...,m
will capture more details in

foliage profile with smaller bins 	h. Compared to the paramet-

Fig. 2. (a) Schematic of terrestrial laser scanning (TLS) for a horizontal homogenous canopy of height H . The laser, placed at height z0, scans the canopy up to a maximum range
rmax from the nadir up to a maximum zenith angle �3. The ranging limit rmax and scan angle �3 are often customizable. The probability of laser intercepting phytoelements
(e.g., leaf, twig, and branch) is often described by the Poisson model (Section 2). Notice that for a scanning zenith less than �1 = across(H − z0)/rmax, the laser can “see” through
the top of the canopy, and when the angle reaches beyond �2 = across z0/rmax, the laser may hit the ground. This scanning geometry is difficult to consider by traditional
methods when inverting the Poisson model to estimate LAI, but it can be easily accounted for by our MLE method. (b) An example of scanning pattern for a Riegel scanner is
depicted in the hemispheric coordinate, where the black color indicates the blind zones not scanned and the color gradient indicates the sum of laser intensity.
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Table 1
A list of 15 common parametric models for leaf angle distribution, as formulated for either leaf normal distribution g(�) or Ross-Nilson geometry factor G(�). G(�) denotes the
projection of a unit foliage area onto a plane perpendicular to the zenithal direction; G(�) is determined inherently by g(�) according to Eq. (A1). Shorthand for the models is
noted in the “Acronym” column; the valid ranges of model parameters are given in the “Parameter” column.

Model Type Acronym Model equation of g(�) or G(�) Parameter

Uniform uni g(�) = 2/� NA
Spherical sph g(�) = sin � NA
Horizontal hor G(�) = cos � NA

Vertical vtc G
(

�
)

= 2/� · sin� NA

Erectophile erc g
(

�
)

= 2/� ·
(

1 + cos(2�)
)

NA

Planophile pln g
(

�
)

= 2/� ·
(

1 − cos(2�)
)

NA

Plagiophile (mainly around 45) plg g
(

�
)

= 2/� ·
(

1 − cos(4�)
)

NA

Extremophile (mainly erect or parallel) ext g
(

�
)

= 2/� ·
(

1 + cos(4�)
)

NA

Beta distribution bet g
(

� ; u, �
)

= 2
�


 (u+�)

 (u)
 (�)

(
1 − 2�

�

)u−1(
2�
�

)�−1
u,v > 1

Elliptical elt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(�; �, �m) = 	√

1 − �2cos2(� − �m)

	 = �/

[
cos �m · log

(
cos� + sin�
cos� − cos�

)
− sin�m · (� − �)

]
� = sin−1(�cos�m)
� = sin−1(�sin�m)

0 ≤ � ≤ 1

0 ≤ �m ≤ �

2

Ross–Goudriann’s model r–g

{
G(�; �L) = ϕ1 + ϕ2cos�
ϕ1 = 0.5 − 0.633�L − 0.33�2

L
ϕ2 = 0.877(1 − 2ϕ1)

−0.4 ≤ �L ≤ 0.6

Dickinson’s model dks

{
G(�; �L) = ϕ1 + ϕ2cos�
ϕ1 = 0.5 − 0.489�L − 0.11�2

L
ϕ2 = 1 − 2ϕ1

−1 ≤ �L ≤ 1

Ellipsoidal els

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G(�; x) =

√
x2cos2� + sin2�

x + 1.702(x + 1.12)−0.708

g(�; x) = 2x2sin�/
[

�(cos2� + x2sin2�)
2]

� = {
1 + log[(1 + ∈1)/(1 − ∈1)]

2∈1x2
; ∈1 =

√
1 − x−2, x > 1

1 + sin−1∈2

x∈2
; ∈2 =

√
1 − x2, x < 1

x > 0

Jupp’s model jup G
(

�; x
)

= xcos� + (1 − x) 2
� sin� 0 ≤ x ≤ 1

Lang’s model lan G
(

�; x
)

= (x + (1 − x) �)/2 0 ≤ x ≤ 1

ric models (e.g., Eq. (3)), the nonparametric representation is more
flexible, especially if canopy vertical structures are too complex to
be adequately approximated by parametric curves. However, this
benefit comes at the expense of having many more unknowns to
be specified (Zhao et al., 2009). For example, if specifying a profile
with a 0.1-m bin up to 50 m, almost five hundred unknowns need
to be determined (i.e., m = 500), compared to only four unknown
parameters in the Weibull model.

2.2. Classical LAI inversion algorithms

The Poisson gap model has long been inverted to retrieve canopy
profiles and LAI from gap data (Jonckheere et al., 2004). Existing
inversion algorithms fall roughly into three groups. First, in its sim-
plest form, LAI can be estimated by re-writing Eq. (1) as

L(z) = − cos�

G(�)
log Pgap(�, z). (5)

This formula is of limited usefulness because the geometry factor
G(�) is often unknown. However, G(�) for most canopies takes a
relatively constant value of 0.5 near � = 57.5◦, regardless of exact
functional forms of G(�). Therefore, gap fractions observed around
this hinge angle 57.5◦, Pgap(57.5◦, z), together with G(57.5◦) ≈ 0.5,
can be plugged into Eq. (7) to get a rough estimate of L(z). The
estimated cumulative leaf area index L(z) can then be differenti-
ated with respect to height z to obtain foliage area density u(z) =
∂L(z)/∂z.

The second group of algorithms is derived from the Miller’s for-

mula
∫ �

2
0

G(�)sin�d� = 1
2 (Nilson, 1999; Zhao and Popescu, 2009),

which, combined with Eq. (1), leads to

L(z) = −2

∫ �/2

0

log [Pgap(�, z)] · cos� sin�d�. (6)

This equation eliminates the dependence on the Ross–Nilson func-
tion G(�) and tends to use gap fractions Pgap observed at all zenith
angles, thus improving upon the simple algorithm in Eq. (5). In prac-
tice, the integration over [0,�/2] in Eq. (6) is done numerically by
summing over a few selected zenith annuluses (e.g., 7◦, 23◦, 38◦,
53◦, and 68◦ for Plant gap analyzer) (Rich et al., 1999).

Third, unlike the first two groups of algorithms, many other
algorithms are devised by assuming certain functional forms for
G
(

�; �
)

with � being some unknown parameters. The parameters
� together with LAI need to be estimated from data, typically using
the least-square method. For example, Jupp et al. (2005) considered
a G model G

(
�; �
)

= �cos� + (1 − �) 2
� sin�, which is a mixture of

the vertical and horizontal leaf angle distributions with the mixing
ratio � as the unknown parameter (Table 1). Using this G model,
Eq. (1) becomes

− log Pgap(�, z)︸ ︷︷ ︸
	
ŷ

=
=

L(z) · �︸ ︷︷ ︸
	
A

+
+

L(z) · (1 − �)︸ ︷︷ ︸
	
B

×
×

2/� · tan �︸ ︷︷ ︸
	
x

. (7)

The coefficients A = L (z) � and B = L (z) (1 − �) can be estimated
by regressing y = −log Pgap(�, z) against x = 2/� × tan�; then LAI
is obtained as L̂ (z) = Â + B̂. The same method was also proposed in
Lang (1987) but using a slightly different G model. For ease of refer-
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ence, we termed the algorithm of Eq. (7) as the Lang–Jupp method.
Another common algorithm of this kind is the one for the HemiView
software that adopts the ellipsoidal G model (Table 1). Its associ-
ated G parameter and the leaf area L(z) are simultaneously inverted
by minimizing the difference between the observed and modeled
values of −log Pgap(�, z) (Campbell and Norman, 1989).

Despite seeing widespread use, these existing algorithms have
practical limitations. For example, the simple hinge-angle algo-
rithm is inefficient because of discarding gap observations at angles
other than 57.5◦. More important, all the algorithms may fail
because evaluations of log Pgap

(
�, z
)

will cause errors if Pgap ≈ 0. In
addition, the algorithms in the third group implicitly assume some
“wrong” statistical models that have error structures inconsistent
with the true probability mechanism underlying the gap data,
a subtle yet nontrivial limitation that has never been examined
before. For example, linear regression adopted for Eq. (7) implicitly
assumes homogeneous errors in the observed “ −log Pgap

(
�, z
)

”,
which is not always the case. All these limitations will be automati-
cally dismissed by simply switching to a MLE paradigm, as detailed
next.

3. Methods

Laser ranging data acquired with tiny-footprint lidar are often
interpreted through the Poisson probabilistic model described
above in Eq. (1). This direct involvement of probability model
enables inferring vegetation parameters from laser ranging data
with the maximum likelihood principle (Fig. 1). Specifically, recall
that when a dataset Dlidar is observed from an underlying probabil-
ity model p

(
Dlidar|ϑveg

)
with ϑveg being some fixed yet unknown

parameters, a natural choice for inference is the maximum likeli-
hood estimator (MLE) (Casella and Berger, 1990):

ϑ̂MLE = arg maxϑveg p
(

Dlidar|ϑveg
)

(8)

which seeks the particular value of ϑveg that maximizes the prob-
ability of observing Dlidar. For clarification, p

(
Dlidar|ϑveg

)
is known

as a probability function of data Dlidar given the parameters ϑveg,
but is a likelihood function of ϑveg given the data Dlidar. Despite the
widespread use of MLE in essentially all disciplines and a justifiable
niche of MLE for analyzing gap or laser ranging data, we have not
found any previous studies that explicitly considered MLE for such
analyses. This lack of prior studies comes as a surprise to us, given
the growing body of literature that uses gap probability models as
the basic physics to analyze gap and laser ranging data.

Use of MLE to estimate vegetation parameters from lidar data
is conceptually simple, but its detailed formulation inevitably
involves some mathematics. In particular, we have to revise the
original gap model Eq. (1) to model laser ranging rather than gaps
(Sections 3.2–3.6). Readers not interested in technical specifics may
skip directly to Section 4 for our lidar vegetation analysis and
results; they may also go to the Appendix A2 for a quick exam-
ple to learn the essence and advantages of MLE over classical LAI
inversion algorithms. For those readers who are interested in the
derivation but find it difficult, we recommend them to first glean
some basic knowledge about MLE from introductory materials (e.g.,
Myung, 2003). Our MLE method was implemented in MATLAB@;
the code can be requested from the primary author.

3.1. Lidar data characteristics

We begin to detail our MLE method by first highlighting some
characteristics of TLS data, which is the data component Dlidar in
the likelihood p

(
Dlidar|ϑveg

)
(Figs. 1 and 2). Most commercial ter-

restrial lidars measure ranging, intensity, or even color RGB data,
but only the ranging data are treated in our MLE method (Fig. 2).

Laser ranging data are commonly represented as a point cloud,
either in the Cartesian [xi, yi, zi]i=1,...,n or spherical [ri, �i, �i]i=1,...,n
coordinates (Fig. 2), but these representations fail to reveal the
full information about laser–canopy interactions: The point cloud
corresponds to only those laser shots that produce a hit. We there-
fore need to recover those shots that intercept nothing within the
scanner’s effective ranging limit rmax (Fig. 2). These missing shots
produce no xyz returns and often are not saved in standard output
files, but they are easily recoverable in an ad-hoc manner because
the laser scans at a regular pattern. Following the scanning pattern,
a sweep of the point cloud allows us to identify those scan directions
along which the laser hits nothing, thus, uncovering the unrecorded
laser shots. This functionality indeed is implemented in software
programs for some commercial TLS (e.g., Leica Cyclone). Moreover,
if the laser looks downward beyond a critical angle, returns may
come from the ground rather than vegetation (Fig. 2). Such ground
returns should be differentiated from vegetation returns.

The above pre-processing procedure converts the original TLS
point cloud [ri, �i, �i]i=1,...,n into an augmented version of data Dlidar
that is required for our MLE method:

Dlidar =
[ri, �i, ϕi, si = +1]i=1,···,m

∪[ri = z0/|cos�i|, �i, ϕi, si = −1]i=m+1,···,n

∪[ri = rmax, �i, ϕi, si = 0]i=n+1,···,N

(9)

where lidar totally emits N shots, n of which produce returns, as
indicated by the status variable si = ±1, and the other N − n pro-
duce no returns (i.e., si = 0). For those n shots with returns, m of
them hit phytoelements (i.e., si = +1) and the other n − m shots
hit the ground (i.e., si = −1). In short, the full laser ranging data
Dlidar is comprised of three subsets representing laser shots that hit
vegetation (si = +1), the ground (si = −1), and nothing (si = 0), respec-
tively. Note that in the following analyses, the azimuth �i of Dlidar
was discarded because the azimuthal symmetry was assumed for
canopies.

3.2. The Poisson model p
(

Dlidar|ϑveg
)

for laser ranging

Raw lidar measurements are not gap fractions but ranging data.
We, therefore re-formulated the gap model of Eq. (1) to instead
calculate the interception probability that a laser shot hits phy-
toelements at height z along angle �:

phit

(
�, z
)

= −
∂Pgap

(
�, z
)

∂z
= 1

cos�
G
(

�
)

u (z) exp

[
−G(�)L(z)

cos �

]
.

(10)

This equation is a probability distribution with respect to z: More
strictly speaking, the probability of a shot hitting within a height
bin �z around z along � is phit(�, z) × �z. If further expressed in the
spherical coordinate, Eq. (10) gives the probability of a laser shot
hitting vegetation at a distance ri along �i:

phit

(
�i, ri

)
= G

(
�i

)
· u
(

ri · cos�i + z0
)

·

exp

[
−G
(

�i

)
· L
(

ri · cos�i + z0
)

cos�

]
(11)

where the origin of the spherical coordinate is situated at the scan-
ner height z0 = hsensor (note that z = 0 is the ground level). phit(�i, ri)
also represents the probability of observing a vegetation return
[ri, �i, �i, si = +1].

In the case that a laser shot intercepts nothing or hits the ground
(i.e., [ri = z0/|cos�i|, �i, �i, si = −1] or [ri = rmax, �i, �i, si = 0]), the
probability of such an event is equal to that of observing a gap when
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seeing through the canopy from the scanner up to a distance of ri:

pmiss

(
�i, ri

)
=1 −

∫ ri

0

phit

(
�i, r

)
dr= exp

[
−G(�i)L(ri · cos�i + z0)

cos�i

]
(12)

where ri is equal to the scanner’s ranging limit rmax if the shot
hits nothing, but ri is equal to z0/|cos�i| if the shot hits the ground
(Fig. 2).

The expressions in Eqs. (11) and (12) combine to serve as the
probability model p

(
Dlidar|ϑveg

)
for the full data Dlidar, with Eq. (11)

for the first subset of the Dlidar (i.e., si = +1 : canopy returns) and Eq.
(12) for the second and third subsets (i.e., si = −1 or si = 0: ground
return or no returns). Noteworthily, this new version of Poisson
model explicitly accounts for the scanning setting and geometry,
such as scanner height, scanner zenith range, and ranging limit.

3.3. Maximum likelihood estimator (MLE)

Our MLE method assumes that lidar measures discrete-returns
with a sufficiently-small footprint so that the Poisson model elicited
above in Eqs. (11) and (12) is a reasonable approximation, an
assumption that has been implicitly made in many early studies
(Zheng et al., 2013). Using the observation probabilities phit

(
�i, ri

)
and pmiss

(
�i, ri

)
of Eqs. (11) and (12) for individual laser shots,

we obtained the probability of observing the full lidar data Dlidar
conditional on vegetation parameters ϑveg =

{
L (z) , G(�)

}
, which

is often expressed in the form of log-likelihood:

L(G(�), u(z)︸ ︷︷ ︸
ϑveg

|Dlidar) = log p
(

Dlidar|G
(

�
)

, u (z)
)

=
n∑

i=1

log phit

(
�i, ri

)
+

N∑
i=n+1

log pmiss

(
�i, ri

)
(13)

Maximizing it with respect to the parameters G(�) and u(z) yields
the MLE estimate:

ϑ̂veg =
{

ĜMLE
(

�
)

, ûMLE (z)
}

= arg max{
G(�), u(z)

}L
(

G
(

�
)

, u (z) |Dlidar

)
. (14)

Despite being conceptually simple, the implementation of MLE
may not be straightforward to some readers. We adopted sev-
eral practical tricks for its efficient implementation. Foremost, the
parameters of interest, ϑveg =

{
L (z) , G(�)

}
, comprise not just a few

scalars but are continuous functions over zenith angle � and height
z, respectively. To tackle this, we considered the parametric repre-
sentation for leaf angle distribution G(�) and the non-parametric
representation for foliage profile u(z), as detailed in Section 2.1.
Other practical tricks for efficiently implementing Eq. (14) are sup-
plied in the Appendix A.

3.4. Uncertainty analysis

MLE yields not just the best values of vegetation parameters
but also error intervals. According to Casella and Berger (1990),

the variance of our MLE estimate V̂ar
(

ϑ̂veg

)
can be derived by

inverting the o bserved information matrix of the log-likelihood
L
(

G
(

�
)

, u (z) |Dlidar

)
:

V̂ar
(

ϑ̂veg

)
= I−1

(
ϑ̂veg

)
=
[

∂2L
∂ϑi∂ϑj

|
ϑ̂veg

]−1

(15)

where ϑi and ϑj denote the i-th and j-th scalar parameters in the
vector ϑveg. The availability of this covariance matrix allows con-
structing uncertainty intervals; it also enables testing hypothesis
via a Chi-squared Wald-type test. For instance, to test whether or
not ϑveg differs significantly from another value ϑ0, we compute
the test static

W =
(

ϑ̂veg − ϑ0

)′
· V̂ar−1 ·

(
ϑ̂veg − ϑ0

)
(16)

where ϑ̂veg is the MLE estimate of ϑveg; both ϑ̂veg and ϑ0 are
assumed to be column vectors that each comprise k elements. The
statistic W has the Chi-squared distribution with a degree freedom
of k, thus, allowing us to compute the p-values for the test.

3.5. Model selection for leaf angle distribution

Estimation of LAI and foliage profiles from gap or ranging data
depends on which parametric model is chosen for leaf angle dis-
tribution g(�) or G(�). This issue is essentially a model-selection
problem, which has never been resolved before but can be eas-
ily tackled by our MLE method. As summarized in Table 1, the
candidate leaf angle models we considered include 15 parametric
forms. Similar to model selection for multiple linear regression, we
employed the Akaike information criterion (AIC) to compare the
candidate models and then select the one that best matches the
true leaf angle distribution for a given lidar dataset Dlidar. Specifi-
cally, AIC is calculated from the maximum log-likelihood (Casella
and Berger, 1990):

AICi = −2 logL
(

ϑ̂veg|Dlidar,Gi

)
+ 2ki (17)

where the dependence of the likelihood L on the type of leaf angle
distribution Gi is made explicit and ϑ̂veg is the MLE estimate of
{G
(

�
)

, u (z)} for the model type Gi. Gi is any of the candidate models
in Table 1, and ki is the number of total parameters when Gi is
chosen. The best G model is chosen as the one with the smallest
AIC value.

3.6. Data-specific correction for effective leaf area

Strictly speaking, the foliage density profile u(z) defined and
estimated above actually represents a profile of effective plant
areas. u(z) has to be further corrected for clumping and woody phy-
toelements to generate a true foliage density profile ut(z) (Chen and
Cihlar, 1995):

ut (z) = (1 − ˛)
�e

˝e
u (z) = (1 − ˛)

1
˝

u (z) (18)

where ˛ is the nonfoliage-to-total plant area ratio; �e is the needle-
to-shoot area ratio; and ˝e is the clumping index synthesizing the
non-random patterns of phytolements at scales larger than shoots.
These factors are not explicitly accounted for by the Poisson model
of Eqs. (11) and (12); therefore, ˛ and ˝ need to be estimated ad-
hoc by other means. To estimate ˛, we clustered lidar points into
15 classes based on intensity and color RGB data via the ISO-DATA
algorithm. The 15 classes were further clumped into four classes:
foliage, wood, ground, and sky. The number of foliage points rela-
tive to that of woody points gives an estimate of ˛.

We made no further attempt to estimate ˝ for correcting for
clumping. As such, our final foliage density profile reported in this
study is (1 − ˛) u (z), which is better termed as effective foliage
profile or effective LAI.
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Fig. 3. MLE improved the estimation of canopy parameters over the traditional Lang–Jupp method: Foliage profiles and leaf angle distributions estimated by MLE (circle)
matched the true reference (dashed line) more closely than did those by the Lang–Jupp method (square). Two examples shown here are based on simulated 3D laser data;
the true reference G models chosen for the two examples are the ellipsoidal and Ross–Goudriaan’s models, respectively, and the true LAI are 5.0 and 3.0, respectively.

4. Data

4.1. Simulated synthetic laser data

Both simulated and real laser data are considered for evaluating
methods. Synthetic data are not just useful but necessary, simply
because they seem to be the only feasible source of reliable ground-
truthing for foliage profile and leaf angle distribution. Also, use
of simulators permits creating consistent data for numerous plots
and eliminates the influences of unknown extraneous factors. All
these advantages increase the confidence in model evaluation and
comparison.

To generate synthetic data, we implemented a random
simulator for the Poisson model p

(
Dlidar|ϑveg

)
. For ease of imple-

mentation, our simulator does not consider 3D stand forests but
rather horizontally-homogenous canopies. The simulator allows
generating pseudo point clouds Dlidar, given vegetation parameters,
such as foliage profile and leaf angle distribution, and the scan-
ning configuration, such as scanner height, scanning range rmax,
the range of scanning angles, and scanning resolution. In our sim-
ulation, G(�) was randomly selected out of the 15 candidates of
Table 1; u(z) was chosen as a random mixture of the Weibull, beta,
and Johnson SB distributions, with canopy heights ranging from
10 m to 40 m and LAI from 0.5 to 6.5. We totally simulated 150 sets
of laser ranging data emulating 150 imaginary forest plots.

4.2. Ground laser data

We also acquired four TLS scans from the online archive
of the University NAVSTAR Consortium (http://tls.unavco.org/
repository). The scans were conducted in April 2010 or March
2011 using a Leica ScanStation C10 instrument at four typical for-
est communities in Everglades National Park, USA: two upland dry
habitats, pineland and hammock forests, and two wetland woody
communities, cypress and mangrove forests. The pineland site has
an open canopy, dominated almost exclusively by South Florida
slash pine (Pinus elliotti var. densa). Its understory is a rich assem-
blage of grasses, sedges, and palm shrubs. The hammock site is a
closed-canopy hardwood forest, composed dominantly of gumbo-
limbo (Bursera simaruba), Sugarberry (Celtis laevigata), pigeonplum
(Coccoloba diversifolia), and white stopper (Eugenia axillaris). The
cypress site is a freshwater swamp forest, yet growing on poor soil

and stunted also by fire; therefore, the statures of cypress trees
(Taxodium spp.) are dwarf, generally no more than 6 m in height.
The fourth site is a mangrove forest at the Shark River Slough,
and the canopy is composed dominantly of red and black man-
groves (Rhizophora mangle and Avicennia germinans). For all the
fours scans, the laser was placed at about 2 m above the ground and
was configured to scan every 0.001 rad along zenith and azimuthal
directions.

5. Results

5.1. Simulated laser data

When evaluated upon the synthetic data, canopy foliage pro-
files were retrieved with reasonable accuracies by both the MLE and
Lang–Jupp methods, but MLE outperformed the classical Lang–Jupp
method. Although the foliage profiles retrieved by the two meth-
ods appeared visually similar (Fig. 3), they in many cases differed
statistically (e.g., p < 0.01 using the W test statistic for the examples
in Fig. 3). The foliage profiles estimated with MLE matched the true
reference profiles more closely (e.g., p > 0.5 for the two examples
in Fig. 3). Furthermore, the estimated LAI differed by 26% between
the two methods when averaged over the 150 plots, with the MLE
estimates much closer to the true LAI (Fig. 4).

In addition to foliage profiles, leaf angle distributions (LAD) were
accurately estimated by the MLE method but not the Lang–Jupp
method. MLE estimates of LAD were statistically indistinguishable
from the true reference models for all the 150 simulated lidar plots
(p > 0.05). As depicted in Fig. 3, the estimated G functions coincided
closely with the reference ellipsoidal and Ross–Goudriaan’s models
(p > 0.5), but the estimation with the Lang–Jupp method deviated
markedly from the references. More importantly, the true LAD
model types—ellipsoidal and Ross–Goudriann—have been correctly
identified by MLE based on AIC (Fig. 5), but these LAD distributions
were not approximated well by the Jupp G model in the Lang–Jupp
method (Fig. 3).

As a further evaluation of MLE for selecting LADs via AIC, we
found that the LAD models have been correctly identified for 131
out of the 150 simulated plots. In the other 19 cases, the G model
types with the smallest AIC values were not the true reference LADs,
but the AIC values of the true model types are always the second
or third smallest; their AIC values are very close to the smallest

http://tls.unavco.org/repository
http://tls.unavco.org/repository
http://tls.unavco.org/repository
http://tls.unavco.org/repository
http://tls.unavco.org/repository
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Fig. 4. Scatterplots of reference vs. estimated LAI for the Lang–Jupp method (left) and the MLE method (right). Horizontal bars indicate 95% prediction intervals.

AIC values. Such small differences in AIC suggest that the 19 mis-
identified G models are wrong but practically useful. Indeed, in all
the 150 cases, the best G models identified were essentially the
same as the corresponding true LAD (p > 0.1) when tested in terms
of the W statistics. This statistical insignificance reveals that regard-
less of whether or not the true model types are chosen, the use of
AIC has always found a workable model that approximated the true
LAD well enough.

Error intervals were also realistically estimated by the MLE
method. Alternatively speaking, estimated error intervals were
indicative of the true certainties in the MLE LAI estimates, but this
is not the case for the Lang–Jupp method (Fig. 4). In particular, the
advantage of MLE for error analyses is demonstrated by referring
to a statistic called prediction interval coverage probability (PICP).
PICP quantifies how frequently prediction intervals contain true
values (Zhao et al., 2013). Comparing the 95% prediction intervals
against the true reference LAI, we estimated the PICP values to be
0% and 97.3% for the Lang–Jupp and MLE methods, respectively. The
large deviation of 0% from its nominal value 95% indicates that the
error intervals estimated by the Lang–Jupp method failed to cap-
ture the true uncertainties of LAI estimates. In contrast, the close
matching between 97.3% and 95% for the MLE method highlights
the usefulness of prediction intervals for characterizing the true
uncertainties of MLE estimates. Furthermore, the PICP calculated
based on the 65% confidence intervals is found to be 67.4% for MLE,
which is close to the nominal value 65% and again suggests the
effectiveness of MLE for error analyses.

5.2. Ground-based laser data

Canopy profiles estimated from the TLS data reveal large dispar-
ities in canopy structure among the four forest communities typical

of Everglades National Park. The profiles all accord well with known
stand characteristics (Fig. 6). The dwarf cypress forest, for exam-
ple, has the lowest canopy (about 6.4 m), whereas the mangrove
canopy is the highest of the four (∼23.2 m). The hardwood ham-
mock is shown to support the densest canopy, with an estimated
total effective plant area of 8.76, followed by the mangrove, cypress,
and pineland forests (i.e., 4.34, 1.69, and 0.57: values estimated by
MLE and uncorrected for clumping). The hammock canopy profile
also manifested very low foliage density near the ground, consis-
tent with a fairly open shrub layer and a sparse, species-poor herb
layer as observed in the field. The open-canopy pineland forest has
the lowest estimated total leaf area; its foliage density peaks in
the understory layer and was estimated to be 0.15 m−1 (uncor-
rected for clumping). This density is about twice larger than the
peak foliage density observed in the upper canopy. Such a relatively
thick understory corresponds to the rich assemblage of the palm
shrub and other flora covers on the pineland forest floor. Between
the upperstory and understory of the pineland forest is an almost
open layer from the height of 2.2–9.7 m in the profile. In the cypress
forest plot, the canopy profile showed a relatively large local peak
in the understory, attributable mostly to cypress knees and some
sawgrass cover.

The vertical canopy profiles estimated by the MLE and
Lang–Jupp methods generally resembled each other (Fig. 6), both
characterizing the overall forest canopy structures well. However,
the profiles from the two methods also exhibited some systematic
differences that were tested to be statistically significant in terms
of the W statistics (p < 0.001). Foremost, the Lang–Jupp method
yielded effective LAI smaller than the MLE estimates, a finding sim-
ilar to the results from the synthetic data in Fig. 4; the relative
difference averaged 61% over the four sites. Similarly, the maximum
foliage densities estimated by the Lang–Jupp method were lower
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Fig. 5. Use of AIC for model selection. The true leaf angle distributions for two examples in Fig. 3 are correctly identified as those with smallest AIC values (i.e., white bars).
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Fig. 6. Comparisons of estimated canopy parameters between the MLE (red-circle) and Lang–Jupp (green-square) methods for four sites of representative forest types in
Everglades National Park, USA: Pineland, Hammock, Cypress and Mangrove. The best models of leaf angle distribution chosen by MLE were lan, lan, jup and r–g for the four
sites, respectively. Gray envelopes denote 95% uncertainty intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

than the MLE estimates. For example, the MLE and Lang–Jupp esti-
mates of peak foliage density in the hammock profile was 1.8 and
1.0 m−1, respectively. Of the four forests, the dwarf cypress showed
the largest dissimilarity in the estimated canopy profiles between
the two methods. The MLE profile of cypress exhibited three peaks,
as compared to only two peaks for the Lang–Jupp method.

Estimated LADs differed markedly between the MLE and classi-
cal Lang–Jupp methods (Fig. 6). The best LADs chosen by MLE were
lan for the pineland and hammock plots, jup for the cypress plot,
and r–g for the mangrove plot, with the respective model param-
eters being 0.64, 0.66, 3, and −0.35. Their associated G functions
depicted in Fig. 6 deviated substantially from the Lang–Jupp esti-
mates. No ground-truthing exists to ascertain which method gave
better LAD estimation. However, the MLE estimates are likely to
be closer to the true LADs for the following qualitative evidence:
For the mangrove forest, the MLE estimate suggests that leaves are
more vertically oriented than horizontally whereas the Lang–Jupp
method indicates the opposite. The MLE depiction of leaf distribu-
tion is more consistent with some field-observed ecophysiological
trait of the Rhizophoraceae; that is, the more vertically leaves are
oriented, the greater the salinity tolerance of the species is (Saenger,
2002).

Clustering the intensity and photography data into meaningful
classes was found to be strongly sensitive to the initial parame-
ter settings of the ISO-DATA algorithm. As a result, the use of the
clustered classes to estimate wood-to-total-area ratios also varied
greatly from one run of the ISO-DATA algorithm to another. For
example, the nonfoliage ratio ˛ computed for the pineland plot fell
within the range of 0.05–0.43 over 50 random runs of the same clus-
tering. Applying such ratios to correct for canopy profiles therefore
will lead to large uncertainties in retrieving the true foliage pro-
files. Regardless of such sensitivity and uncertainty, we found that
the estimated nonfoliage ratios depended strongly on height. The
ratios appeared smaller for the top canopy than the bottom canopy,
a pattern consistently observed for the four forest plots. For exam-
ple, the estimated wood-to-total-area ratio for the upper canopy
of the pineland forest (i.e., 15–20 m) was almost ten times smaller
than the lower layer (i.e., 5–20 m).

6. Discussion

Tiny-footprint laser scanning resolves 3D structures of hetero-
geneous terrestrial environments with high precision and speed.
This capability goes far beyond the proof-of-concept and was exem-
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plified in earlier studies and our analyses (Jupp et al., 2009; Zheng
and Moskal, 2009). The fine-grained levels of TLS data permit direct
retrieval of vegetation parameters and avoid the need for auxiliary
ground-truthing. The direct retrievals can be achieved using either
objected-based methods to dissect point clouds (Liang et al., 2012)
or physical-based model inversion such as our MLE method; the
latter generally finds more use, due to the availability of physics
theories to model laser–vegetation theories (Zhao et al., 2011b).
However, lidar vegetation analyses are sensitive to the choices of
inversion algorithms, even if using the same physics model; this
sensitivity is evidenced by the 26% difference in our LAI estimates
between the MLE and classical algorithms. Such a large magnitude
or uncertainty, therefore, justifies our thrust for improving the use
of physics for TLS vegetation analyses.

Despite the growing popularity of physically-based gap models
in lidar vegetation analyses (Jupp et al., 2005), classical gap analy-
sis methods are not tailored to TLS point cloud data (Lovell et al.,
2003) and, therefore, are in many cases sub-optimal. Their weak-
nesses were partly overcome by our new MLE paradigm for several
reasons:

(1) Classical gap methods are not optimal in terms of data use
efficiency. Raw data from laser ranging or hemispheric pho-
tography do not provide direct measures of gap fractions that
are needed for the classical algorithms. Rather, these gap frac-
tions Pgap

(
�, z
)

are derived beforehand from xyz point clouds
or photos using ratio estimators. As such, the xyz or spheri-
cal coordinates of lidar points cannot be directly ingested in
the classical formula, a weakness explicitly tackled by our MLE
method.

(2) If a probability model is readily available to describe observed
data, MLE comes naturally as a choice for parameter estimation
from the data. Likewise, given the adopted use of the Poisson
model as a probabilistic basis for TLS data, MLE is one of the most
statistically justifiable choices for retrieving canopy parame-
ters. The use of MLE not only generates the most likely values
of vegetation parameters and but also provides a strict statisti-
cal framework for error analyses. In contrast, classical methods
rarely permit strict error analyses with regards to the Poisson
model.

(3) Classical methods usually do not allow simultaneously esti-
mating foliage area profiles u(z) and LADs G(�). Many classical
methods attempt to eliminate the influence of G functions or
choose a pre-defined form for G(�) (Jonckheere et al., 2004),
but the chosen form is not guaranteed to be a realistic approx-
imation to the true G(�). This issue was rarely considered by
classical algorithms and can be easily addressed by MLE: in
addition to inferring the parameters, G(�) and u(z), MLE can
compare different G model types and choose the best one
among a pool of candidate LAD models.

(4) Implementations of classical methods face many practical diffi-
culties, especially because they entail evaluating logPgap

(
�, z
)

.
The observed gap fractions sometimes approaches zero at large
zeniths and also exhibits substantial variability at small zenith
angles, causing numerical instability and biases if not cautiously
addressed (Zhao and Popescu, 2009). This difficulty or the like
is not an issue for the MLE method because MLE is based on raw
lidar data not gap fractions.

(5) Classical methods are not well tailored to the idiosyncrasy
of TLS data. Foremost, unlike hemispheric photos that cap-
ture interactions of light with the whole canopy layer at all
zenith angles and record only the silhouette of the canopy,
TLS pinpoints phytoelements within a maximum radius and
thus, cannot always “see” through the full canopy layer at large
zenith angles beyond a critical angle (Fig. 2). As a result, the
true fractions of gaps through the canopy top cannot be reli-

ably estimated for these large angles. Also, most lidar scanners
look both upward and downward. All these factors complicate
the use of classical methods to handle laser scanning geome-
tries. In contrast, our MLE method explicitly accounts for the
configurations of laser scanning.

How to validate lidar estimation? Strict validation is hampered
by a lack of high-fidelity ground-reference data; this is particularly
true for foliage profile and LAD because they are hard to measure
in-situ (Pisek et al., 2011, 2013; Wang et al., 2007). We are unaware
of any existing research that directly measured stand-level canopy
profiles. Rather, ground reference was often collected using indirect
methods, such as point-quadrat sampling and allometric equations
(Lefsky et al., 2002), but the true accuracies of such indirect ground-
reference are hard to establish at first hand and could be worse than
those of TLS estimates (Zhao et al., 2011a). Occasionally, accurate
direct measurements are available, but a temporal or spatial dis-
crepancy is unavoidable: The space sampled by lidar, for example,
does not coincide exactly with the space of in-situ measurements
(Zhao and Popescu, 2009). All these difficulties make it impracti-
cal to assess absolute accuracies of lidar-derived canopy profiles or
LAD. Instead, most studies assess TLS methods only qualitatively or
relative to other indirect estimates (Jupp et al., 2009). As a remedy,
several studies used artificial trees with known structures (Hosoi
and Omasa, 2006). Our study offered another viable alternative
by using simulated data. Such well-controlled data avoided extra-
neous uncertainties and helped to confidently establish empirical
advantages of our MLE method.

The Poisson gap model is a theoretical basis of canopy remote
sensing and our MLE analyses (Nilson, 1971), but its exact model
form, that we adopted is exponential rather than Poisson. This
seeming discrepancy is dismissed by clarifying the assumption
underlying the Poisson model: the light–vegetation interaction in
one horizontal canopy layer is independent of those in other layers
(Nilson, 1971, 1999). As such, the probability that a laser beam trav-
eling along the zenith angle � intercepts the whole canopy layer n
times is a Poisson distribution P (n) = exp(−M)Mn/n! with its mean
M = G(�)L/cos�. Then, the probability of intercepting nothing gives
the gap fraction P(n = 0) = exp(−G(�)L/cos�), which exactly is the
Poisson model of Eq. (1) and is actually an exponential distribution
with respect to LAI L. Hence, the Poisson and exponential distribu-
tions are two manifestations of the same light–vegetation principle
(Jonckheere et al., 2004); their associated random variables are con-
tact number n and leaf area L, respectively. A tiny-footprint laser
beam is obscured by its first interception and is unable to reli-
ably detect the remaining contacts, if any (Zheng et al., 2013). The
laser range to its first interception is a random variable compatible
with cumulative leaf area, thus, making the exponential form of the
Poisson model a natural choice for inference in our MLE method.

Strict use of theoretical gap models to interpret laser data is
applicable for large- and tiny-footprint lidars but can be problem-
atic for small-footprint airborne discrete-return lidar, attributed
to the differing scales at which lasers interact with vegetation.
In particular, a large-footprint waveform encapsulates the collec-
tive interaction of laser with leaf particles within a canopy; this
scale is the traditional regime in which to apply the gap theory
to build physical remote sensing models (Sun and Ranson, 2000).
Hence, the Poisson model, in the form of radiative transfer theo-
ries, is applicable for analyzing large-footprint waveforms, such as
ICESat/GLAS data (Koetz et al., 2006). For TLS, the tiny-footprint
laser is analogous to the thin long needle as used by conventional
field techniques, which captures the light–vegetation only at ele-
ments levels. But the assemblage of all laser pulses, as a whole,
represents canopy-level interactions, and thus, can also be inter-
preted by the Poisson model, as exemplified by our MLE analysis.
Contrary to large- and tiny-footprint lidars, the footprints of air-



110 K. Zhao et al. / Agricultural and Forest Meteorology 209–210 (2015) 100–113

borne lidar are incommensurate with the typical scales at which
to model light–vegetation interactions. More important, airborne
discrete returns are converted from raw waveform signals by some
proprietary peak detection algorithms; this conversion is hard to
be interpreted physically, further distorting the physical interpre-
tation of point clouds. Zhao and Popescu (2009) explicitly discussed
the theoretical dilemma caused by literally applying physically-
based algorithms to analyze small-footprint discrete-return data.
Overall, caution should be exercised when attempting to apply
physical models to retrieve vegetation parameters from lidar data.

The theoretical applicability of MLE for TLS vegetation anal-
yses depends on how well physical gap models describe
laser–vegetation interactions captured by lidar. Therefore, as
argued in the preceding paragraph, our MLE method finds better
theoretical justifications for smaller laser footprints. In general, the
laser footprints of commercial TLS scanners, though finite in size,
are small enough to pinpoint phyto-elements (Jupp et al., 2009; Yao
et al., 2011; Zhao et al., 2011a). Furthermore, although the laser
spot diverges with distance, the far-field footprint sizes of many
commercial TLS lidars are still relatively small; for example, Leica
scanners have a nominal footprint size of <5 mm at a distance of
50 m; such a laser beam can be treated as an imaginary thin needle
for intercepting phytoelements, thus justifying the validity of our
MLE method. Interpreted differently, our MLE method has less the-
oretical justifications for those customized terrestrial lidars with
relatively large footprints, such as the Echidna system with a beam
size of ∼50 cm at 50 m that may intercept a mixture of multiple
phytoelements. However, despite this less theoretical justification,
the Echidna data has been successfully inverted using gap-based
algorithms (Zhao et al., 2012, 2011a); therefore, we suspect that in
term of practical performances, MLE will be equally applicable for
such lidar systems, which deserves further investigations.

Foliage clumping should be corrected for to derive actual leaf
areas (Chen and Cihlar, 1995; Zhao et al., 2012), but our MLE method
has not explicitly accounted for clumping because of some the-
oretical difficulty: The Poison model was originally derived for
random not clumped canopies. Other two alternative gap mod-
els, binomial and Markov, have introduced some clumping indices
(Nilson, 1999), but their gap formula, if treated as probability mod-
els, are not identifiable for parameter estimation. For example, the
Markov gap model is exp(−G(�)�L(z)/cos�), where the clumping
index parameter ˝ appears together with the parameter L(z) in
the product ˝L(z); consequentially, these two parameters are non-
identifiable, an inherent difficulty that no statistical methods can
tackle. This theoretical difficulty can be circumvented by at least
two ways. First, an ad-hoc way is to derive the clumping index
independently using some customized procedures, such as that
reported in Zhao et al. (2012). Another way is to replace the Poison
model in our MLE method with a complex theoretical gap model
that explicitly considers canopy clumpness; one candidate is the
gap model formulated in Nilson (1999).

Direct laser estimates of canopy profiles comprise both foliage
and nonfoilage phytoelements. The use of TLS intensity or color
data was found generally difficult, if not impossible, for correcting
for non-foliage elements. For example, intensity is low because the
laser beam is reflected from a target of low reflectivity or equally
because it hits only part of an phytoelement. RGB photos acquired
from TLS systems are of the same nature as fisheye hemispheri-
cal photos. Both the types of the photos are strongly influenced by
local complex light regimes (Jonckheere et al., 2004); the varying
level of shading and light-exposure within canopies complicates
distinguishing between foliage and woody phytoelements from the
RGB photos. To accurately derive woody-to-total area ratios, addi-
tional informative data are needed from alternative technologies.
One promising option is multispectral lidar that measures spectral
responses at more than on one wavelength (Gaulton et al., 2013).

The multibands are often chosen purposely to maximize the spec-
tral distinction among various scene components. Also, the use of
active light sources for multispectral lidar alleviates the confound-
ing effect of varying light levels within canopies.

Our MLE analyses emphasize not only simultaneous estimation
of foliage density profile and leaf angle distribution, but also real-
istic error quantifications. Such uncertainty analyses were often
overlooked: Although some previous studies calculated error inter-
vals, they rarely continued to evaluate the true reliability of the
estimated errors (Frazer et al., 2011; Zhao et al., 2011b). With-
out knowing how well the estimated errors are indicative of the
true uncertainties, we cannot guarantee credible use of the esti-
mated vegetation parameters. For this reason, we argue strongly
for going beyond just estimating errors but additionally assessing
the usability of the estimated errors. As exemplified here, a viable
metric is PICP that allows quantifying how trustworthy the esti-
mated uncertainties are. PICP is easy to compute without requiring
additional new data; its utility has also been demonstrated in Zhao
et al. (2013). The routine use of PICP therefore should be encouraged
for future quantitative remote sensing applications; this practice
will improve the data quality assurance of remote sensing-derived
information. Overall, quantifying uncertainties is better than just
ignoring them but still is not sufficient; we need to further quantify
the trustworthiness of the estimated uncertainties.

Being a systematic, general-purpose inferential procedure, MLE
opens up new ways to exploit gap-related remote sensing or field
data for estimating LAI and LAD. In particular, MLE can be applied
directly to other common gap data, such as hemispherical photos,
that have been previously analyzed using classical algorithms. Our
MLE paradigm can also be extended with little modifications to
some troublesome scenarios difficult to tackle by classical meth-
ods, for example, when the topography is rugged or when multiple
lidar scans or hemiphotos are mixed for estimation. The prior infor-
mation on complex topography and the scanning geometries is
attributed to individual laser pulses (Meng et al., 2010) and there-
fore, can be easily accounted for by MLE because the log-likelihood
is formulated also at the levels of individual pulses. The exact degree
to which MLE helps with these difficult scenarios should be deter-
mined in future investigations.

7. Summary

TLS or ground-based lidar becomes an increasingly valuable
tool for measuring terrestrial micro-environments and holds great
potential for characterizing fine-scale vegetation structures. TLS
resolves tree architectures often at trunk, branch, or even leaf levels,
and therefore, substantially complements airborne and spaceborne
lidars for ecosystem studies. Currently, the full capability of TLS is
yet to be attained, attributable partly to difficulties in data analyses.
The majority of model-based TLS analyses relied on gap fractions
through the use of the Poisson model as a basic theory for describ-
ing laser–vegetation interactions, but gap fractions are lidar ratio
metrics reduced from raw laser ranging data, thus, leaving room to
improve in terms of data use efficiency. Our MLE analyses helped
to fill this critical gap by developing a strict statistical framework
that directly ingests raw ranging data for estimating vegetation
structural parameters.

As a flexible physically-based algorithm for retrieving bio-
physical variables, our MLE framework is theoretically justifiable,
conceptually simple, and practically effective. Compared to classi-
cal methods, MLE accommodates the idiosyncrasy of laser scanning
geometry and data characteristic, capitalizes on more information
inherent in lidar data, and improves laser-based characterization
of canopy vertical structure. Additionally, MLE tackles uncertainty
analyses explicitly and realistically, an aspect that is critical but
was largely overlooked. Evaluations of the methods suggest that
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the MLE estimates of foliage profiles and leaf angle distributions
differed from the estimation using the classical method, often
to a statistically significant degree. When tested upon synthetic
data, MLE outcompeted the classical estimation. The combination
of theoretical and experiment evidence confirmed that MLE is a
paradigm-shifting method for exploring laser ranging data and it
enhances the capability of terrestrial lidar for characterizing for-
est canopies. The MLE method also has good generality and can be
applied to analyze other gap and ranging data, such as hemispher-
ical photos and airborne laser data, with no or little modification.
Such extended applications should be examined in future research.
Overall, high-precision lidar measurements, in conjunction with
advanced data analyses as developed here, delivers reliable vegeta-
tion information to improve understandings of ecosystem structure
and functioning.
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Appendix A.

1. Leaf angle distribution and Ross–Nilson G function

The leaf angle distribution g(�) is a probability density over

the upper hemisphere, which satisfies
∫ �/2

0
g(�)sin�d� = 1. More

important, for a canopy, its leaf angle distribution g(�) fully
determines the associated Ross–Nilson G function, following the
relationship (Wang et al., 2007; Wilson, 1960):

G(�) = 1
2�

∫ 2�

0

dϕ

∫ �/2

0

g(�′)| cos � · cos �′ + sin � · sin �′ | sin �d�′

=
∫ �/2

0

g(�′)S(�′, �) d�′

S(�′, �) =

⎧⎨⎩
| cos � · cos �′ |

cos � · cos �′ ·
(

2ϕ̃t

�
− 1

)
+ 2

�
sin � sin �′ sin ϕ̃t

if| cos � cos �′ | ≥ 1

otherwise

ϕ̃t = arccos(− cot � · cos �′).
(A1)

2. Simple justifications for MLE

The following toy example is given to help non-expert readers to
quickly grasp the essence of our MLE method and understand why
MLE is preferred to classical gap-based methods for analyzing laser
ranging data. Specifically, consider a probability model p (z|ϑ) =
ϑexp(−ϑz) for laser ranging z with the true parameter being ϑ =
0.1, from which we generated 10 random ranging observations of z:
D = [16.5, 18.5, 11.2, 5.5, 8.4, 1.0, 11.3, 22.4, 5.5, and 1.1]. To estimate
ϑ from D, the classical gap method does not directly use the original
ranging-based model p (z|ϑ) but turns to an equivalent gap-based
model Pgap (z|ϑ) = 1 −

∫ z

0
p (z′|ϑ) dz′ = exp(−ϑz), which gives

ϑ̂gap =
−log

(
P̂gap (z|ϑ)

)
z

. (A2)

If z is taken to be 10.0, then five out of the ten observed z’s in D are
beyond z, giving an estimated gap of P̂gap (z|ϑ) = 5

10 = .5. We thus

get an estimate ϑ̂gap = − log (.5) /10 = 0.069, as compared to the
true value ϑ = 0.1.

In contrast, MLE directly deals with the ranging data and it finds
the best ϑ by maximizing the likelihood:

ϑ̂MLE = argmaxϑp (D|ϑ) = argmaxϑp (16.5|ϑ) p (18.5|ϑ) · · ·p (1.1|ϑ)

(A3)

which gives ϑ̂MLE = 0.099 with a 95% confidence interval [0.04,
0.16]. This estimate is very close to the true value 0.1 and it also falls
into the estimated interval. Overall, MLE provides a strict frame-
work for statistical inference and uncertainty analyses.

This example, though simple and contrived, captures the
essence of our MLE method. We further expounded on it to show
how MLE improves upon data use efficiency. By comparison, MLE
uses the original data D but the gap method ϑ̂gap relies on only the
ratio (i.e., 5

10 = 0.5). The use of the ratio (i.e., 0.5) loses much infor-
mation in the raw data because it is impossible to recover the z’s
from only 0.5. Also, the same ratio value can be obtained by using
any z threshold between 8.4 and 11.2, thereby contributing some
artificial variability to the estimated ϑ̂gap. Furthermore, the ratio
by itself bears no information on the because the ratio 0.5 can be
equally obtained from 1/2, 2/4, 4/8, or 10/20, among others. Sta-
tistically speaking, this loss of the information about the numbers
of observations renders it impossible to estimate the uncertainty
associated with the classical estimate ϑ̂gap.

3. Numerical implementation of MLE

Use of MLE to estimate vegetation parameters ϑveg based on
the Poisson model p

(
Dlidar|ϑveg

)
is conceptually simple, but its

implementation has to tackle some practical challenges.
First and foremost, unlike LAI being a scalar, the parameters

of our model, ϑveg =
{

L(z), G(�)
}

, are functions by themselves.
As explained in Section 3.3, we chose to consider parametric and
non-parametric forms for leaf angle distribution G(�) and foliage
density profile u(z), respectively. In particular, G(�) is specified by
a pre-defined equation together with its associated parameters
�, as denoted by G

(
�; �
)

(Table 1). The estimation of the whole
function G(�) then reduces to only estimating its parameters �. In
contrast, leaf area density u(z) is chosen to be discretized and repre-
sented by its values at a list of consecutive heights u (z) = {uj}j=1,...,m

(Zhao et al., 2009). Accordingly, the parameters to be optimized
become ϑveg = [�; u1, u2, . . ., um], but this discretized version of
u(z) sometimes results in hundreds of scalars, rendering the opti-
mization problem numerically ill-posed and the MLE estimation
of u(z) unstable. To suppress this ill-posedness, we employed a
regularization method by introducing a penalty term to control
the smoothness of the discretized foliage profile u (z) = {uj}j=1,...,m

(Hansen, 1999). The particular penalty we choose is the integral
of squared differential of u(z), which leads to a penalized log-
likelihood function:

Lpen
(

G
(

�
)

, u (z) |Dlidar

)
= log p

(
Dlidar|G

(
�
)

, u (z)
)

+ �.

∫ (
du

dz

)2

dz (A4)

where � is a positive regularization parameter. A larger � will lead
to a smoother estimate of u(z). Our implemented MLE estimator is
to find those values, ϑ̂MLE =

[
�̂; û1, û2, . . ., ûm

]
, that maximize the

penalized likelihood Lpen(ϑveg = {G(�), u(z)}|Dlidar).
Second, another issue concerns tuning the smoothing param-

eters �. Although � itself is of no inferential interest, the choice
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of � matters. In the penalized likelihood of Eq. (A4), � controls
the weight given to the minimization of the roughness penalty
term relative to the minimization of the negative log-likelihood
term. A larger � gives a smoother estimate of foliage profile
ûMLE(z) =

[
û1, û2, . . ., ûm

]
. Many tools and criteria, such as gener-

alized cross-validation and generalized information criterion, have
been suggested for guiding selection of the regularization param-
eter (Konishi and Kitagawa, 1996; Ueki and Fueda, 2010). The
particular method we chose is a well-known technique called the
“L-curve” method (Hansen, 1999). The L-curve refers to the plot-
ting of the negative log-likelihood vs. the roughness penalty (i.e.,

logp
(

Dlidar|ĜMLE
(

�
)

, ûMLE(z)
)

vs.
∫ (

dûMLE(z)/dz
)2

dz), calculated
for a series of values of �. This curve always shows a characteristic
L shape. No choices of � can give a solution that corresponds to a
point below the L-curve; therefore, a good value of � is chosen as
the one corresponding to the corner of the L curve, which can be
obtained as the position with the largest curvature. This choice rep-
resents a good compromise between the two minimization terms,
as has been widely adopted.

Third, the optimization involved for maximizing the penalized
likelihood is a constrained problem because of the constraints on
the range of vegetation parameters. For example, the �L parameter
in the Dickinson’s leaf angle distribution model falls into [−1, 1];
values of foliage density {uj}j=1,...,m

have to be non-negative. These
constraints preclude direct use of fast unconstrained optimizers.
Although many constrained optimizers are available to account for
these range constraints, our preliminary trials with some of them
(i.e., the interior point, active-set, and sequential quadratic pro-
gramming algorithms) suggested that the constrained algorithms
are too computationally demanding to be effective choices for our
MLE method (e.g., often with a computation cost of ∼10 h for a
typical ground-lidar scan). As a remedy, we converted the original
constrained MLE problem in Eq. (A2) to an unconstrained one by
applying the trick of variable transformation. Specifically, we trans-
formed a variable x bounded within [a, b] to a boundless variable t
(i.e., t ∈ (−∞, ∞)) using

t = log
x − a

b − x
; x ∈ (a, b) (A5)

This transformation helps to convert the original vegetation param-
eters ϑveg = [�; u1, u2, . . ., um] to a set of boundless parameters
[t; w1, w2, . . ., wm], with regards to some meaningfully chosen
bounds a and b. The new parameterization then allows us to apply
a very efficient gradient-based unconstrained optimizer, namely,
the Polak–Ribière nonlinear conjugate gradient algorithm, to find
the MLE estimate

[
t̂; ŵ1, ŵ2, . . ., ŵm

]
MLE

. The iterative searching

for this algorithm is based on gradients, such as ∂Lpen/∂t, and
∂Lpen/∂ω, that are not always analytically available, and thus,
are numerically evaluated when necessary. The MLE estimate[
t̂; ŵ1, ŵ2, . . ., ŵm

]
MLE

is in the transformed scale and needs to be
back-transformed to the original scale using the following equa-
tion:

x = (b − a) × exp (t)
1 + exp(t)

+ a; t ∈ (−∞, ∞) (A6)

which leads to the final MLE estimate of vegetation parameters
ϑ̂MLE =

[
�̂; û1, û2, . . ., ûm

]
. The use of this unconstrained scheme

greatly speeded up the optimization and, when tested upon our
ground-laser scans, often took less than a few minutes.

Fourth, the use of the conjugate gradient optimizer tends to ren-
der our MLE estimate sensitive to the choice of initial value. This
weakness is inherent to all gradient-based optimizers, especially
for high-dimensional problems. No universal rules exist to avoid
trapping into local minima/maxima. One remedy is to choose an
initial value close to the true solution. Another one is to run the
optimization multiple times from different initial values and then

choose the best run (Zhao et al., 2008). We applied both the strate-
gies. Specifically, we took advantage of the classical Lang–Jupp
algorithm and used it to generate informative initial values for u(z).
For the Ross–Nilson function G

(
�; �
)

, we chose ten random initial
values for � and correspondingly estimated the MLE ten times to
choose the best one.
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