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Abstract—Most of existing change detection methods could be
classified into three groups, the traditional pixel-based change
detection (PBCD), the object-based change detection (OBCD), and
the hybrid change detection (HCD). Nevertheless, both PBCD and
OBCD have disadvantages, and classical HCD methods belong
to intuitive decision-level fusion schemes of PBCD and OBCD.
There is no optimum HCD method as of yet. Analyzing the com-
plementarities of PBCD and OBCD method, we propose a new
unsupervised algorithm-level fusion scheme (UAFS-HCD) in this
paper to improve the accuracy of PBCD using spatial context
information through: 1) getting the preliminary change mask with
PBCD at first to estimate some parameters for OBCD; 2) deriv-
ing the unchanged area mask to eliminate the areas without
changes, reducing error amplification phenomenon of OBCD; and
3) obtaining the final change mask by means of OBCD method.
Taking flood detection with multitemporal SAR data as an exam-
ple, we compared the new scheme with some classical methods,
including PBCD, OBCD, and HCD method and supervised man-
ual trial-and-error procedure (MTEP). The experimental results
of flood detection showed that the new scheme was efficient and
robust, and its accuracy sometimes can even exceed MTEP.

Index Terms—Change detection, object-based, pixel-based,
SAR images, unsupervised change detection.

I. INTRODUCTION

C HANGE detection is a process for identifying changes in
a region by comparing its images taken at different times

[1]. With the rapid increase of image spatial resolution and the
expansion of the monitoring scope, the image change detection
techniques are becoming increasingly important and difficult,
especially for SAR images with the presence of speckle [2]–[5].
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The process of change detection can be divided into prepro-
cess and discrimination phase [6]. With different discrimination
phases most of change detection methods may be divided into
three initial groups: the traditional pixel-based change detection
(PBCD), the object-based change detection (OBCD), and the
hybrid change detection (HCD) [7], [8]. In addition, there were
some complex approaches that incorporate more sophisticated
algorithms, such as Markov random field [9]–[11], spectral
clustering [12], or ensemble learning [13].

The discrimination process of PBCD consists of two steps
[6]: deriving the difference image (DI) pixel by pixel, and
segmenting DI to get the change mask. The first step is straight-
forward in change detection process, but the second step is
still a classic problem [14]. Traditional PBCD methods are rel-
atively simple, fast, and straightforward. In practice, PBCD
methods are still the most commonly used methods for auto-
mated change detection [15], [16]. However, PBCD techniques
only take individual pixels as their basic units without consid-
ering the spatial context [8]. Therefore, the accuracy of PBCD
may be impaired and the problem becomes even worse due to
image noise [14]. The results of PBCD strategies may often be
limited when applied to very-high-resolution (VHR) imagery
and SAR images [2], [17].

Unlike PBCD, OBCD techniques are based on image-
objects, which are groups of pixels in the image and display
meaningful objects in the scene [8]. OBCD methods need to
extract the objects in the images and use the target objects to
achieve the final change detection result [7]. The discrimina-
tion process of OBCD consists of deriving image-objects by
segmenting the multitemporal images and comparing image-
objects at different times. Recent studies have demonstrated
that OBCD can provide improvements over PBCD espe-
cially when high spatial resolution imagery is used [18], [19].
Unfortunately, the performance of recent computer-aided seg-
mentation algorithms was highly dependent on the specified
task and no single algorithm was appropriate under all condi-
tions [7]. Thus, a “trial-and-error” approach was typically used
to optimize the parameters [20]. The existing automatic image
classification and feature extraction techniques were not sat-
isfied within the practical requirements of applications, and it
is mandatory to invest further efforts to develop an effective
automated solution [21].

Furthermore, there was an error amplification phenomenon
with OBCD [6]. Since, the number of unchanged pixels is
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often much larger than that of the changed pixels, if the fea-
ture extraction process is performed on the unchanged areas,
the feature extraction error of each temporal image would
be accumulated and amplified during the change detection
process. This could result in false alarms. Image classifica-
tion and feature extraction are time-consuming efforts and the
parameter estimation of the extracted features is also expen-
sive [22]. Therefore, feature extraction of the unchanged areas
not only seriously affected the efficiency of the algorithm, but
also obviously reduced its accuracy. Although PBCD can be
found in some commercial software, while OBCD is still in the
developing stage [23].

HCD refers to the use of two or more methods for change
detection [7], [8], combining pixel-based, and object-based
schemes. Some hybrid algorithms successfully reduced noisy
changes, as well as the small and spurious changes introduced
by the inconsistent delineation of objects [2], [24]. In [14],
PBCD was used to identify changed pixels and followed by
OBCD to determine the nature of changed pixels. In general,
HCD methods combine PBCD with OBCD based on infor-
mation fusion theory [25]–[29]. However, those HCD methods
belong to an intuitive decision-level fusion scheme and usually
the disadvantages of PBCD and OBCD both exist simulta-
neously. There is no so-called HCD method yet. Also, fully
automated HCD methods are rare. Since multiple steps are
involved in HCD, it remains uncertain how the final changes are
affected by the combinations of pixel-based and object-based
schemes [8].

Automated detection of flooded areas in SAR images auto-
matically remains a very challenging task. Over the past
decades, several studies used SAR data to map flood bodies
with different techniques, but fully automated, time efficient,
accurate, and stable flood extracting algorithms are scarce [30].
Recently, fully automated flood extraction algorithms, termed
M1 and M2a [30], an enhanced version of M2a, termed M2b
[31], have been proposed. In order to overcome the shortcom-
ings of M2b when dealing with a nonbimodal histogram, an
automated flood detection method M3 was proposed [32]. Both
M2b and M3 are composed of the same sequence of steps,
namely optimization of water distribution, thresholding, region
growing, and change detection [32]. In fact, M2b falls into
the OBCD method, whereas M3 falls into the HCD method.
However, the performance of them is limited by the error
amplification phenomenon and the image objects extracting
process.

In this paper, we propose a totally different algorithm-level
fusion framework based on the mutually complementary char-
acteristics of PBCD and OBCD. There is no error amplification
phenomenon within the unchanged areas. The detecting accu-
racy has been increased effectively using the spatial context
information. Taking flood change detection with multitemporal
SAR images as an example, we found out that the new unsuper-
vised method is robust and sometimes even more accurate than
the supervised manual trial-and-error procedure (MTEP).

This paper is organized as follows. Section II describes a new
algorithm-level fusion scheme. In Section III, the new change
detection framework is verified with simulated and real mul-
titemporal SAR images, including a pair of Radarsat-1 SAR

images and a pair of ERS-2 SAR images. Section IV concludes
this paper and gives a prospect for future studies.

II. METHODOLOGY

PBCD and OBCD are mutually complementary in three
aspects. 1) The spatial context is often ignored by PBCD [33],
but not by OBCD [34]. 2) PBCD is simple and fast. In contrast,
OBCD is more complex and time-consuming due to image
segmentation [35]. 3) The precision of PBCD depends on seg-
mentation of DI, but the precision of the result with OBCD
is independent with DI (most important). The precision of
OBCD is mainly related to the accuracy of parameter estimation
for image-objects extraction [36] and the error amplification
phenomenon.

The goal of this study is to combine PBCD and OBCD
to improve the performance of change detection. The basic
idea is first to use a PBCD algorithm to estimate the param-
eters of image objects and label the unchanged areas, and
then, an OBCD algorithm is adopted to produce a fine change
detection mask based on the parameters and the unchanged
areas estimated from the PBCD algorithms. This fusion scheme
integrates PBCD and OBCD at the algorithm level. It is con-
siderably different from the fusion at the decision-level, which
usually directly integrates change detection results of PBCD
and OBCD. Therefore, we can call this new HCD method as
unsupervised algorithm-level fusion scheme (UAFS-HCD for
short). In UAFS-HCD, the PBCD algorithm benefits from the
OBCD algorithm with the regional spatial correlation informa-
tion, whereas the OBCD algorithm benefits from the parameters
of image objects and unchanged regions mask estimated by
the PBCD algorithm. Fig. 1 shows the process diagram of
UAFS-HCD.

The process of UAFS-HCD is divided into six parts:
1) inputting reference image and flood image; 2) PBCD; 3) esti-
mating parameters of the image objects; 4) deriving unchanged
area mask; 5) OBCD; and 6) outputting final change mask.

It is worth noting that our scheme is flexible and a large
number of PBCD and OBCD methods can be included in
this framework. Therefore, different change detection strategies
with different demands of precision and efficiency can be cus-
tomized within its usage. The details of the main process steps
of UAFS-HCD are described below by taking flood detection
with multitemporal SAR data as an example.

A. Pixel-Based Change Detection

1) Obtaining Difference Image: This step is to simply gen-
erating DI using the multitemporal images through pixel by
pixel comparison. For the registered multitemporal images, DI
can be obtained by different approaches, such as image differ-
encing, image ratio, or regression analysis [7]. If the input data
are multispectral images, DI will form a spectral change vec-
tor [37]. If the resolutions of images are very high, a multiscale
analysis method can be adopted [38].

For flood detection with multitemporal SAR images, a
change detection measure based on the likelihood ratio and
statistical properties of SAR images is well suited for change
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Fig. 1. Process diagram of our HCD scheme.

Fig. 2. Initial transition point tInit and the smaller transition point tExt from
simulated SAR images in Section III. (a) Local amplification of the normalized
histogram of DI. (b) Ratio curve of the histogram of DI with tInit makred with
a circle and tExt marked with a rectangle.

detection [16]. With F and R representing the matrix of
pixel values in the flood and reference images, respectively,
the difference matrix DI(i, j), according to DI, is defined
as [16]

DI(i, j) =

∑
(m,n)∈Vij

R(m,n)∑
(m,n)∈Vij

F (m,n)
+

∑
(m,n)∈Vij

F (m,n)∑
(m,n)∈Vij

R(m,n)

(1)

where V defines the neighboring pixels of the pixel (i, j), in
a w × w window for reducing the effect of speckle noise (a
typical value for w is 3). Afterward, the value scope of DI(i, j)
is rescaled to the range of 0–255.

2) Deriving Initial Change Mask: There are numerous
methods for segmenting DI, such as thresholding method, mul-
tiscale method, active contour model, and Markov random field
techniques [39]–[42]. Among them, thresholding is very widely
used. After all, there are only two classes in DI: changed parts
and unchanged parts. The classic thresholding method aims to
find the optimum threshold with the least errors in the resulting
change detection [7].

For flood detection with multitemporal SAR images, the
histogram of DI hDI(k) can be seen as a combination of a
high peak area and an oscillating area. The high peak denotes
the unchanged part, whereas the oscillating area represents
the changed part (see Fig. 2). Therefore, the transition point
between these two areas can be taken as the threshold to clas-
sify the changed and unchanged parts [16]. The ratio of the

histograms r(k) at two adjacent gray levels can be used to find
this transition point

r(k) = hDI(k + 1)/hDI(k) (2)

where k ∈ [k0, 255), and k0 is the gray level according to the
maximum value of hDI(k). For different threshold values with
ranges from k0 to 255, r(k) is calculated accordingly. During
the process, once r(k) is larger than 1 [16], then let

tInit = {k|(r(k) ≥ 1} (3)

where tInit is the transition point and it is just the initial thresh-
old for DI. The initial mask of flood regions MInit is derived
by thresholding DI with tInit

MInit =

{
1, DI(i, j) ≥ tInit
0, DI(i, j) < tInit.

(4)

MInit can be used to estimate the parameters of image
objects in the original images.

B. Estimating Parameters of Image Objects

If the parameters of image objects are estimated correctly,
it will be very easy and accurate to extract image objects
for OBCD. In the initial change mask, the connected com-
ponents may correspond to core areas of image objects, so
it is a straightforward process to extract the pixels of image
objects based on the mask of core image objects, thus making
it feasible to calculate their parameters, such as statistic distri-
bution and size. For example, image objects for flood detection
with multitemporal SAR images are flooded areas. The initial
change mask consists of several connected components, which
directly correspond to the core water areas in the original flood
image.

In fact, flood objects and the core water areas in the origi-
nal SAR image have the same statistic properties. Backscatter
intensity depends greatly on radar parameters (frequency, polar-
ization, and incidence angle) and the geometric and electrical
characteristics of the target [43]. Microwaves are generally
rather well reflected by the water surface and do not almost
penetrate into the water and the backscatter is mainly a func-
tion of the electrical properties and the surface roughness as
compared to radar wavelength [44]. The dielectric constant
of the water varies by temperature, salinity, and frequency
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[45]. However, the dielectric constant of the water is relatively
low for floods of freshwater, and the wind variation is not of
extreme importance in generating surface roughness especially
for longer wavelengths because surface roughness is too small
to have much influence on backscatter at longer wavelengths.
Therefore, for the most part, the scattering surface of flood is
low, thus providing little backscatter and dark imagery [31].
On the other hand, the presence of suspended sediments in
high concentration will not significantly influence the radar sig-
nal. Furthermore, the backscatter variability on a homogeneous
surface is mainly due to speckle and in theory the probabil-
ity distribution function (pdf) of backscatter originating from a
homogeneous is a Gamma pdf [43].

Since flood objects in SAR flood image will keep the same
Gamma pdf in theory, it is reasonable to estimate its pdf from
the core water areas and to use the estimated pdf to finish the
following OBCD process. It is worth noting that we do not
need to choose the largest connected component from these
core water areas for estimating the pdf of flood objects, because
noise cannot dramatically affect the pdf of the flood objects.

More exactly, the pdf of flood objects in images can be esti-
mated from MInit because MInit can provide most of the
flooded pixels in the flood image. With MInit, it is very easy
and straightforward to extract the pixels in the flood image cor-
responding to MInit = 1 and compute their histogram h(l),
which is the estimated pdf of flood objects, with l representing
the pixel values [either digital number (DN) or σ0 in decibel,
the radar reflectivity per unit area in ground range].

C. Estimating Unchanged Area Mask

An unchanged area mask should be estimated before pro-
cessing the OBCD step. Because of the error amplification
phenomenon, any processing step of the OBCD within the
unchanged areas is unnecessary, time wasting, and in fact
harmful [6].

The unchanged area mask can be estimated by extending the
initial change mask derived by PBCD. “Meaningless changes”
and “real changes” are often mixed together in the global his-
togram. Even if the threshold is selected by MTEP [16], it
would still bring some false and missed alarms. Obviously, to
decrease missed alarms, a smaller threshold should be cho-
sen. With the smaller threshold, DI is segmented and the
unchanged area mask and extended change detection mask can
be obtained simultaneously. The extended change mask ensures
the missed alarm is lower than that of the initial change mask.
Although in the extended mask, there are more false alarms than
that of the initial change mask, which could be removed by
the subsequent OBCD procedure by using the spatial context
information.

For flood detection with multitemporal SAR images, the tran-
sition point in (3) is chosen to separate the high peak and the
oscillating area of the histogram of DI into the changed and
unchanged parts [16]. In fact, the high peak is composed of a
more abrupt high peak and some oscillating parts, which belong
to changed parts. Therefore, in order to derive the unchanged
area mask, the most obvious oscillating part, which belongs to

changed parts, can be used to find a small transition point than
tInit in (3)

tExt = {k|max(r(k)), k0 < k < tInit} (5)

where tExt is the smaller transition point.
Some figures from the simulated SAR images in Section III

were presented here to illustrate how to find the smaller tran-
sition point tExt. Fig. 2(a) shows the local amplification of the
normalized histogram of DI, and Fig. 2(b) shows its ratio curve
calculated by (2). The initial transition point tInit marked with
a circle in Fig. 2(b) surely separates the high peak from the
changed parts, but this high peak still has a long tail contain-
ing some oscillating areas which belong to the changed parts.
Among these oscillating parts, the most obvious oscillating part
is the most important one and must not be ignored. Therefore, a
small transition point tExt is chosen by (5) to greatly retain the
real changes. In Fig. 2(b), we mark the small transition point
tExtwith a rectangle. The extended flood mask of water regions
MExt is derived by thresholding DI with tExt

MExt =

{
1, DI(i, j) ≥ tExt

0, DI(i, j) < tExt.
(6)

The unchanged area mask M̄Ext is the logical inverter of
MExt

M̄Ext =

{
1, if MExt = 0
0, if MExt = 1.

(7)

Obviously, MExt has a smaller under-detection rate and
a larger over-detection rate than that of MInit. The next
OBCD process will be done within MExt and try to suppress
the over-detection rate using spatial-contextual information. It
is worth noting that within the unchanged area mask there
is no error amplification phenomenon any longer. That is
to say, spatial contextual information can be used success-
fully with error amplification phenomenon being suppressed
simultaneously.

D. Object-Based Change Detection

1) Obtaining the Image Objects: In UAFS-HCD, the
OBCD procedure differs from the classic OBCD in two aspects.
1) The feature extraction is only performed within the areas
labeled by the extended mask MExt, and it not only signif-
icantly saves the processing time, but also avoids the error
amplification phenomenon in the unchanged areas. 2) Since the
parameters have derived from the PBCD procedure, there is
no need to estimate the parameters of image objects with any
trial-and-error approach.

A flooding area in SAR images is a connected region with
similar low gray values. Therefore, the water mask MFlood in
the flood image can be derived from region growing [46] in
the flood image within MExt. Two procedures are required
to accomplish this process and we can use the parameters
estimated previously.



3490 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 7, JULY 2015

1) First, the seeds of “open water” in the flood image should
be extracted. This procedure is similar to the algorithm
in [32]. The abscissa value corresponding to the mode of
h(l) can be selected as the threshold, with which the flood
image is thresholded to get the seeds of “open water” [32].
For UAFS-HCD, the main difference is that all the seeds
from outside MExt or inside the unchanged area mask
M̄Ext will be eliminated, which can save the processing
time and reduce the over-detection rate at the same time.

2) Second, the seeds of water areas in the flood image are
dilated using the region growing approach [46] until an
optimal tolerance level is reached. Obviously, the opti-
mal tolerance level will provide the maximal similarity
between h(l) and the histogram of water regions after
region growing which can be denoted by ĥ(l). Therefore,
the optimal tolerance level can be derived by calculating
similarity measure between h(l) and ĥ(l). Since h(l) and
ĥ(l) are one-dimensional (1-D) histograms, Kullback–
Leibler (KL) distance [47] is very fit for calculating
similarity measure between them

κ(h, ĥ) =
∑
l

h(l) log
h(l)

ĥ(l)
(8)

where κ(h, ĥ) is KL distance, h(l) is the estimated pdf
of flood values in flood image, ĥ(l) is the histogram of
water regions after region growing in flood image, and l
represents the pixel values (either DN or σ0 in decibel). If
the tolerance level for region growing is too small or too
large, h(l) and ĥ(l) will be very different, so the KL dis-
tance will be a very large positive value. For the optimal
tolerance level, h(l) and ĥ(l) are very similar, so the KL
distance will be very close to zero. Therefore, the lowest
value of KL distance corresponds to the nearest distance
between ĥ(l) and h(l), and also corresponds to the opti-
mal tolerance level. With the optimal tolerance level, the
mask of flood areas MFlood is derived by region growing
in the flood image [32].

2) Detecting Changes: With classified image objects,
change detection can produce straightforward results by com-
paring the image objects before and after change. It is worth
mentioning that error propagation in UAFS-HCD has been
reduced due to using the unchanged area mask.

For flood detection with multitemporal SAR images, the
mask of permanent water bodies MRef in the reference image
can be derived by region growing with the same unchanged area
mask and the same parameters as before, such as the thresh-
old for deriving seeds and the optimal tolerance level for region
growing. Finally, the final flood mask will be derived by remov-
ing the mask of permanent water from the computed flood
extent in the flood image [32]

MFinal = MFlood −MRef . (9)

In UAFS-HCD, PBCD provides the exact parameters of
image objects and the unchanged mask for OBCD, whereas
OBCD can give the final change mask by using spatial contex-
tual information. There is no error amplification phenomenon

in the area labeled by the unchanged mask and the “trial-and-
error” approach for optimizing the parameters of image objects
is unnecessary. Therefore, it is reasonable for UAFS-HCD to
provide more accurate results robustly and efficiently, which
will be verified in the next section with simulated and real
multitemporal SAR images.

III. RESULTS AND DISCUSSION

Some PBCD, OBCD, and HCD algorithms proposed
recently have been used here to assess the capability of the
proposed UAFS-HCD approach. Specifically, the flood extent
results are compared with those of the other four methods: the
supervised MTEP [16] based on a log-ratio detector and the
analysis of the DI, which consists of finding the threshold value
that minimizes the overall errors; the change detection thresh-
old selection method based on the histogram ratio (donated by
“Xiong algorithm”) [16]; the M2b method [31]; and the M3
method [32]. As discussed in Section I, M2b [31] belongs to the
OBCD methods, M3 [32], in fact, is a HCD algorithm, Xiong
algorithm and MTEP [16] both are PBCD methods, and only
MTEP [16] is a supervised method. All of the parameters used
in UAFS-HCD were optimized automatically.

The number of over-detected pixels (OP), the number of
under-detected pixels (UP), and overall errors (OE) are adopted
to evaluate the three methods.

Some simulated data sets and real SAR data sets acquired by
distinct sensors have been chosen to validate the effectiveness
of the proposed approach including a pair of Radarsat-1 SAR
images [32] and a pair of ERS-2 SAR images [16].

A. Simulated Images

We first tested our scheme using simulated images in order
to objectively assess the performances in a controlled environ-
ment. The ground truth image (500× 500 pixels) is shown in
Fig. 3(c), in which two different backscatter intensities are cho-
sen, one relatively bright (σ0 is −10 dB) for the background
and one relatively dark (σ0 is −22 dB) for the six round flood
objects. The ground truth image and the background image
were degraded by speckle noise that satisfies a Gamma dis-
tribution [48] to derive the simulated image pairs, the flood
image and the reference image, respectively. Several simulated
image pairs with different noise levels measured by equiv-
alent number of looks (ENL) [49] were used to feed these
algorithms.

At first, we compared the proposed method with the other
algorithms on one simulated image pair (ENL = 5). Fig. 3(a)
and (b) shows the flood image and the reference image when
ENL = 5. The results obtained from the various methods are
listed in Table I and shown in Fig. 3(d), (e), (g), and (h),
respectively.

Fig. 3(i) shows the ratio curve of the histogram of DI and
two important thresholds used in the proposed algorithm for
estimating flood parameters and for estimating unchanged area
mask. Fig. 3(h) suggests that the proposed method can generate
accurate results, which is also confirmed by Table I. The pro-
posed method is characterized by 24 over-detected pixels and
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Fig. 3. Simulated images and results (the black pixels show the detected floods): (a) Flood image. (b) Reference image. (c) Ground truth. (d) Change detection
map with MTEP [16]. (e) Change detection map with Xiong algorithm [16]. (f) Histogram of flood image, which is not bimodal; therefore, the assumption of
M2b does not hold [31]. (g) Change detection map with M3 [32]. (h) Change detection map with the proposed method. (i) Ratio curve of the histogram of DI (the
threshold for estimating flood parameters and the threshold for estimating unchanged area mask are marked with a circle and a rectangle, respectively).

TABLE I
EVALUATION OF FLOOD EXTENT RESULTS (SIMULATED SAR IMAGES)

OP, the number of over-detected pixels; UP, the number of
under-detected pixels; OE, the number of overall errors.

696 under-detected pixels (with 720 total errors, i.e., a 0.288%
total error detection rate), which is very similar to MTEP, the
only supervised manual method, with 185 over-detected pixels
and 220 under-detected pixels.

Comparing the proposed method with the Xiong algorithm,
a PBCD method, we can see the under-detected flood pix-
els decreased from 898 with Xiong algorithm to 696 with
the proposed method and the over-detected flood pixels also
decreased from 46 with the Xiong algorithm to 24 with the
proposed method.

The M2b method is based on the assumption that a flood
image contains a relatively high number of pixels with low
backscatter values, exhibiting a bimodal histogram. Since, in
this case, the histogram of the flood image is not bimodal, as
shown in Fig. 3(f), the assumption of M2b method does not
hold any more. Obviously OBCD algorithms cannot provide
accurate results robustly when some assumptions do not hold,
whereas the proposed method is a very robust algorithm without
any assumption on the histogram of the flood image.
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Fig. 4. Overall accuracy as a function of noise level measured by ENL.

M3, a kind of HCD method, has 3880 over-detected pix-
els in this case that is mainly due to the error amplification
phenomenon. With the help of the unchanged area mask, the
number of over-detection pixels for the proposed method has a
sharp decrease.

Furthermore, in order to examine the robustness of differ-
ent methods to noise levels, several simulated image pairs
with different ENL ranging from 1 to 7 were generated inde-
pendently and the overall accuracy for quantitative evaluation
was adopted. The overall accuracy is calculated as the ratio
between the number of pixels that are correctly detected and
the total number of pixels. Fig. 4 shows the overall accuracy as
a function of noise level measured by ENL.

As we can see, the curve of the proposed method is generally
above the curve of the Xiong algorithm at different noise level,
which means the proposed algorithm can robustly improve
PBCD accuracy using spatial context information.

M3 tends to be affected by speckle noise more easily and the
curve drops more quickly with the increasing of noise level,
which was also due to the error amplification phenomenon.
Comparatively, the proposed method achieved relatively robust
results with an unchanged area mask, which suppressed the
error amplification phenomenon effectively.

Fig. 4 suggests that the overall accuracy of the proposed
method is above all the unsupervised methods at different noise
level. More surprisingly, when ENL = 7 the proposed method
even overcame MTEP, the supervised manual method. It is
worth noting that it is impossible for the Xiong algorithm to
overcome MTEP.

B. Radarsat-1 SAR Images

Fig. 5(a) and (b) shows a pair of real multitemporal SAR
data set made up of two image (C-band and HH polarization),
which are acquired by Radarsat-1 SAR sensor over some lakes
near the city of Ottawa, Canada, in July and August 1997,
respectively [50]. The flooding event caused a rise in the sur-
face of lakes, leading to changes in their areas. The ENL of

the two images computed according to [51] is 12.5 and 12.6,
respectively. The available ground truth shown in Fig. 5(c)
was obtained by integrating prior information with photograph
interpretation [32].

The quantitative and qualitative change detection results
obtained from different methods in this case are listed in
Table II and shown in Fig. 5(d)–(h), respectively. Fig. 5(i)
shows the ratio curve of the histogram of DI. The thresholds
for estimating flood parameters and for estimating unchanged
area mask are also marked in Fig. 5(i).

Based on Fig. 5, we can observe that the change detection
results obtained from the proposed method are very similar to
that of MTEP. As shown in Table II, the best result obtained
is given by the MTEP method and is characterized by 1222
over-detected pixels and 1912 under-detected pixels. The per-
formance of the proposed method is pretty good with 797
over-detected pixels and 2726 under-detected pixels (with 3523
total errors, i.e., a 3.48% total error detection rate), which is
better than that of Xiong algorithm with 3292 under-detected
flood pixels and 665 over-detected pixels.

M2b had the worst result (with 6625 overall errors), which
is due to the fact that it is very difficult to extract the
image objects accurately and automatically from the origi-
nal SAR images without enough information about the image
objects.

M3 derived a better result than M2b, but it had 1793 over-
detected pixels in this case which was mainly due to the error
amplification phenomenon. With the help of the unchanged area
mask, the number of over-detection pixels for the proposed
method had a sharp decrease.

Among the unsupervised methods, the proposed method
derives the best result in accuracy, especially for the per-
centage of over-detected flood pixels which decrease to some
extent.

C. ERS-2 SAR Data Set

Fig. 6(a) and (b) shows a pair of real multitemporal SAR
data set made up of two C-band SAR images acquired by ERS-
2 before and after floods over the city of Bern, Switzerland
on April 20 and May 25, 1999, respectively. The pixel size of
the images is about 12.5 m. The ENL of the two images con-
sidered is 10.89 and 9.26, respectively [50]. Fig. 6(c) shows
the ground truth of the change detection map that is manually
created with a visual interpretation [16]. Fig. 6(d) and (f)–(h)
shows the change detection maps achieved by MTEP, Xiong
algorithm, M3, and the proposed method, respectively. Fig. 6(i)
shows the local amplification of ratio curve from the histogram
of DI with two marked thresholds. The results are also tabulated
in Table III.

As shown in Fig. 6 and Table III, the proposed method
obtained the best result and is characterized by 64 over-
detected pixels, 322 under-detected pixels, and 386 overall
errors (i.e., a 0.30% total error detection rate). The Xiong
algorithm produced more errors (428 overall errors). The M2b
method failed in this case since the histogram of the flood image
is not bimodal, as shown in Fig. 6(f), and the assumption of the
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Fig. 5. Radarsat-1 SAR images and results (the black pixels show the detected floods): (a) Flood image. (b) Reference image. (c) Ground truth. (d) Change
detection map with MTEP [16]. (e) Change detection map with Xiong algorithm [16]. (f) Change detection map with M2b [31]. (g) Change detection map with
M3 [32]. (h) Change detection map with the proposed method. (i) Ratio curve of the histogram of DI (the threshold for estimating flood parameters and the
threshold for estimating unchanged area mask are marked with a circle and a rectangle, respectively).

TABLE II
EVALUATION OF FLOOD EXTENT RESULTS (RADARSAT-1 IMAGES)

OP, the number of over-detected pixels; UP, the number of
under-detected pixels; OE, the number of overall errors.

M2b method does not hold any longer. Comparing the proposed
method with M3 [see Fig. 6(g)], one can find the number of
under-detected pixels decreases abruptly from 464 with M3 to
64 with the proposed method due to the using of the unchanged
area mask.

TABLE III
EVALUATION OF FLOOD EXTENT RESULTS (ERS-2 IMAGES)

OP, the number of over-detected pixels; UP, the number of
under-detected pixels; OE, the number of overall errors.

It is worth noting that in this specific case the proposed
method is even better than MTEP (with 412 overall errors), the
supervised manual method. It is reasonable because the pro-
posed method can use the spatial context information but MTEP
method cannot.
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Fig. 6. ERS-2 SAR images and results (the black pixels show the detected floods): (a) and (b) ERS-2SAR images of Bern, Switzerland before and after floods.
(c) ground truth. (d) Change detection map with MTEP [16]. (e) Change detection map with the Xiong algorithm [16]. (f) Histogram of flood image, which is
not bimodal; therefore, the assumption of M2b does not hold [31]. (g) Change detection map with M3 [32]. (h) Change detection map with the proposed method.
(i) Ratio curve of the histogram of DI (the threshold for estimating flood parameters and the threshold for estimating unchanged area mask are marked with a
circle and a rectangle, respectively).

IV. CONCLUSION

This paper has presented a new unsupervised algorithm-
level fusion scheme for change detection (UAFS-HCD). In this
scheme, OBCD was used to improve the accuracy of PBCD
algorithms. On the other hand, PBCD helps to remove the
areas without any change and provides the estimated parame-
ters for extracting image objects. With the estimated parameters
and the unchanged area mask, OBCD can help to improve
the accuracy by using the neighborhood information. There
is no error amplification phenomenon within the unchanged
area mask and the over-detection rate is suppressed effec-
tively. The new scheme takes the advantages of both PBCD
and OBCD, and makes up their own deficiencies at the same
time. Using floods monitoring as an example, we validated

the effectiveness of the new scheme UAFS-HCD with simu-
lated SAR image sets at different noise level and two pairs of
real multitemporal SAR image sets. It is possible for the pro-
posed method to derive even more accurate result than MTEP,
the supervised manual method (PBCD method). In all of these
cases, the proposed method is more accurate, and robust than
the Xiong algorithm (PBCD method), M2b (OBCD method),
and M3 (HCD method). In addition, the proposed algorithm
is more efficient than M2b and M3 because there is no time-
consuming optimization of flood distribution and the seeds
within the unchanged area mask are eliminated before region
growing.

There is still some work to do, such as analyzing the sen-
sitivity of the image registration error in the new scheme and
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adapting combinations of different methods from PBCD and
OBCD in various change detection applications.
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