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With rapid urbanization and economic development, the world has been experiencing an unprecedented
increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy con-
sumption and GHG emissions is a common interest shared by major developed and developing countries,
actions to enable these global reductions are generally implemented at the city scale. This is because
baseline information from individual cities plays an important role in identifying economical options for
improving building energy efficiency and reducing GHG emissions. Numerous approaches have been
proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-
to-date review of the broad categories of energy models for urban buildings and describes the basic
workflow of physics-based, bottom-up models and their applications in simulating urban-scale building
energy use. Because there are significant differences across models with varied potential for application,
strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of
challenging issues associated with model preparation and calibration.
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1. Introduction

Over the past several decades, the world has experienced un-
precedented urban expansion, which was primarily due to the
rapid population growth and migration from rural to urbanized
areas [1]. Although global urban land is about only 0.45—3% of the
world's total land area [2—4], global urban population has increased
from 2.29 billion in 1990 to 2.86 billion in 2000, and to 3.96 billion
in 2015. Meanwhile, the percentage of urban population to total
population increased from 42.9% in 1990 to 51.6% in 2000, then to
54% in 2015. It is projected that urban population will continue to
grow, accounting for approximately 66.4% of the world's population
by 2050 [1].

While rapid urbanization motivates economic and social
development, it also leads to significantly increased energy con-
sumption and greenhouse gas (GHG) emissions. For instance, in
2008, only half of the world's population lived in urbanized areas;
however, they consumed almost 67% of global energy [5,6]. This
proportion is projected to increase to 73% by 2030 [7]. In the United
States (U.S.) alone, the electric power consumption was reported to
increase from 4050 kWh per capita in 1960 to 12,988 kWh per
capita in 2013, a growth of over 200% or 4.16% per year [8]. As over
80% of world energy is currently being derived from fossil fuel re-
sources such as oil, coal, and natural gas, this rapid increase in
energy consumption may lead to economic vulnerability (e.g.,
external supply shocks) for countries importing these resources,
eventually increasing the risk that climate change poses to the
global community. In order to address these issues, efforts have
been made to emphasize on exploring new energy sources,
developing renewable energy resources and infrastructure, and
improving energy use efficiency [9—14].

In response to these challenges, many countries have proposed
and/or developed plans for reducing energy consumption and GHG
emissions, including the two largest carbon emitters, China and the
U.S. The Chinese government proposed the 13th five-year plan
(2015—2020), which calls for a 15% reduction in energy consump-
tion per unit of GDP, and a 18% reduction in carbon emissions per
GDP by 2020 [15,16]. The Obama administration in the U.S. pro-
posed a GHG emissions reduction goal that used the 2005 emission
level as the baseline, i.e., a 17% reduction by 2020 and a 26—28%
reduction by 2025 [17]. In order to meet the goals, several new
emission standards have been proposed to reduce emissions from
power plants and vehicles. Efficiency standards were also updated
frequently for buildings and appliances [17—20]. Similarly, the Eu-
ropean Union has developed goals for reducing energy consump-
tion and GHG emissions. Compared to 1990, the level of GHG
emissions is expected to be reduced by 20%, 40% and 80—95% in
2020, 2030, and 2050, respectively [21]. Furthermore, at least 20%—
27% of energy consumption is expected to be from renewable en-
ergy, and energy efficiency will increase by 20% and 27% in 2020
and 2030, respectively [21].

While the goals of reducing GHG emissions are often set at the
national level, major actions have to be taken at the city scale. This
is mainly because the city's relatively rich energy use information
can facilitate the identification of economically efficient options for
enhancing energy efficiency and thereby reducing GHG emissions
of the region to which the city belongs [22]. In fact, many munici-
palities, particularly in North America and Europe, have set goals of
reducing GHG emissions that are more aggressive than those
mandated by the state or federal governments. For instance, the
City of Boston proposed a reduction goal of 25% by 2020 and 80% by
2050; the numbers for the City of New York and the City of San
Francisco were set to 80% and 40% by 2050 and 2025, respectively.
Boston, Chicago, Los Angeles and 17 other U.S. municipalities have
joined the City Energy Project aiming at reducing building energy

consumption and GHG emissions [23]. Copenhagen, Bristol, and
Vaxjo are leading more than 6,000 European cities, which have
signed up the Covenant of Mayors, a voluntary commitment to cut
28% in CO, emissions, 8% more than the EU's climate action target
for 2020 [24—26].

The major sources of GHG emissions in the U.S. for example, are
electricity generation (30%), transportation (26%), industry (21%),
residential and commercial heating (12%), and agriculture (9%) [27].
Although emissions characteristics of industry and transportation
sectors vary inconsistently across cities, electricity and gas usages
remain mainly accountable for emissions from buildings in cities
with their usages particularly susceptible to climate feedbacks
[28—34]. Residential and commercial buildings account for over
40% of the total energy consumption and over 72% of electricity
consumption in the U.S [35]. In order to effectively manage and
reduce building energy use and GHG emissions, it is essential to
understand not only the current status of building energy use, but
also the historical energy use and its future trends. Therefore,
numerous energy modeling approaches have been proposed in
recent decades to analyze building internal energy flows and ulti-
mately the origins of the energy consumption at the city level.

The aim of this paper is to provide an up-to-date review of
urban-scale building energy modeling, including both top-down
and bottom-up approaches. We also assess their key purposes,
strengths and limitations with the highlights on recent progresses
in temporal resolution improvement and model calibration. The
comprehensive knowledge of modeling assumptions and their ef-
fects on prediction outcomes will provide essential guidance to
researchers in the field of buildings energy analysis who explore
modeling approaches suitable for their specific purposes. For
instance, the spatial and temporal resolution of a model is pivotal to
its application to performance evaluation at the national or local
scale. In addition, we take, as an example, the physics-based
bottom-up approach, one of the most popular energy modeling
approaches to explain its basic procedures (modeling preparation,
calibration, validation, and simulation) for energy simulation. As
there are significant differences across models taking the approach,
their strengths and weaknesses are also analyzed in this review.
Finally, we put forward several issues and challenges associated
with modeling inputs and calibration, suggesting possible solutions
for using physics-based bottom-up models to simulate urban
building energy use.

2. Urban building energy modeling approaches

Urban building energy models take two distinct approaches:
top-down and bottom-up. The top-down models treat a group of
buildings as a single energy entity, where energy consumption is
often estimated at the building sectoral level without considering
differences among individual buildings or end-uses. In contrast,
bottom-up modeling approaches focus on individual buildings and
end-uses, so that energy consumption is modeled for individual
end-uses within the buildings, which can be aggregated to the
urban, state, regional, or national scale. An overview of urban
building energy modeling approaches is shown in Fig. 1, and the
characteristics of all reviewed models are summarized in Table 1.
The following sections provide detailed discussions.

2.1. Top-down approaches

The top-down approaches typically represent energy con-
sumption by establishing a long-term relationship between the
sector's energy use and the associated major drivers [e.g. changes in
gross domestic product (GDP), energy price, population, household
size, technologies and practices, weather condition, etc.]. The
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Fig. 1. Hierarchy of the urban building energy modeling approaches.

advantage of this broad category is that it often employs energy-
economy interactions, thus being capable of modeling energy use
under various socio-economic scenarios. It also allows for taking
into consideration both socio-demographic and market economic
factors. Additionally, the top-down approaches typically use rela-
tively straightforward methods for implementation by relying on a
limited set of input information, such as aggregated socio-
economic data. As the emphasis is given to the energy-economy
interaction, detailed information about the types of energy-
consuming technologies utilized in the subject buildings and
their detailed energy consumption data are usually not required.
Due to its simplicity, the top-down approaches have been widely
used for estimating urban energy consumption. One of the earliest
attempts was made by Hirst [36] to model city-scale annual

residential energy use in the U.S. using an econometric regression
model. In particular, multiple socio-economic variables were
selected and applied in this model to estimate household energy
consumption. Other driving factors including demographic and
technological characteristics were also considered in their model.
The socio-economic variables of the model capture the change in
social policies and human behavior, whereas the technological
variables reflect the difference in the efficiency of various end-uses.
Nesbakken [37] tested the sensitivity of energy use to household
income and energy prices in Norway based on an econometric
model. Similarly, Bentzen and Engsted [39] simulated energy con-
sumption for Denmark using a simple regression model. Both
studies discovered a tightly coupled relationship between energy
consumption and income and energy price.

Table 1
Characteristics of top-down and bottom-up approaches.

Approaches Advantages Limitations Literature

Top-Down 1) Both long-term socio-demographic and 1) Past energy-economy interactions used to Hirst et al. (1977) [36]

Models market economic effects considered predict future energy consumption Nesbakken (1999) [37]

2) Detailed technology description and actual 2) Long term historical data required Ozturk et al. (2004) [38]

energy consumption not required Bentzen & Engsted (2001) [39]

3) Limited input information often with 3) Lack in technological details Zhang (2004) [40]

aggregated economic data Thuvander (2005) [41]
Labandeira et al. (2005) [42]
Lowe & Oreszczyn (2010) [43]

Bottom-Up: 1) Both socio-demographic and 1) Billing, weather, and/or survey data required Tonn & White(1988) [44]; Douthitt (1989) [45];
Statistical marketeconomic effects considered Fiebig et al. (1991) [46]; Parti and Parti (1980)
Models 2) Simulation of energy use at end-use and/or 2) A larger number of sampling subjects [47]; Sorooshian & Kerwin (1984) [48]; Pratt

building level required et al. (1993) [49]; Cetin et al. (2014) [50]; Cetin
3) Variations in individual end uses considered  3) Possible multicollinearity to be addressed & Novoselac (2015) [51]; Bauwens et al. (1994)
[52]; Lafrance & Perron (1994) [53]; Aydinalp-
4) Simulation results highly dependent on Koksal & Ugursal (2008) [54]; Lins et al. (2002)
historical consumption trend; prediction well [55]; Park et al. (1991) [56]
outside of bounds of training data not reliable Peng et al. (1992)[57]
Aydinalp et al. (2002) [58]; Aydinalp et al.
(2003) [59]; Aydinalp et al. (2004) [60]

Bottom-Up: 1) Socio-demographic and economic 1) Detailed physical and technological measures  Cerezo et al. (2014) [61]; Dickson et al. (1996)
Physics-Based information not required required [62]; Shorrock et al. (1991) [63], Shorrock &
Models 2) Simulation of energy use at different 2) Socio-demographic and market economic Dunster (1997a &b) [64]; Shorrock et al. (2005)

temporal scales
3) Variations in individual end uses considered

trends not captured
3) Intensive computational effort required

[65]; Johnston (2003) [66]; Johnston et al.
(2005) [67]; Boardman et al. (2005) [68];
Natarajan & Levermore (2007) [69]; Firth et al.
(2010) [70]; Farahbakhsh et al. (1998) [71];
Snakin (2000) [72]; Hirsch (1998) [73]
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In addition to economic variables, physical factors such as
weather/climatic conditions have also been incorporated in some
of the top-down models. Summerfield [43] compared the total
residential energy consumption of the U.K. in 1970 and tempera-
ture variations. Multivariate linear regression was used to analyze
the relationship between household energy consumption, outdoor
temperature, and energy price. Their findings revealed that, with a
temperature increase of 7 °C in the heating season, the average
household delivered energy dropped about 1 MWh/year. Zhang
[40] incorporated climate variation to calculate and compare resi-
dential energy consumption in China, Japan, USA, and Canada. In
their study, the consumption of electricity, coal gas, liquefied pe-
troleum gas, and natural gas were jointly used to estimate overall
residential energy consumption. Labandeira [42] also demon-
strated the importance of utilizing various factors, including de-
mographic, economic, and climate variables, to estimate detailed
building energy consumption in Spain. Their research employed
seven regression models to estimate the consumption of electricity,
natural gas, propane, automotive fuel, public transport, and food.

2.2. Bottom-up approaches

The bottom-up approaches, which represent energy consump-
tion based on detailed end-use information, can be categorized into
two types: statistical versus physics-based methods. The former
usually takes building energy use values from sample buildings to
analyze the relationship between end-uses and total energy use.
The statistical method is similar to the top-down approach in terms
of its ability of incorporating socioeconomic factors [74]. However,
the method uses more detailed and often disaggregated data,
which typically represent energy consumption data for individual
buildings. The second, physics-based method simulates energy
consumption based on the physical characteristics of individual
buildings, such as building geometry, non-geometric features (e.g.,
heating, ventilation and air conditioning (HVAC) systems, usage
patterns, and building envelope), and user characteristics.

The bottom-up statistical method simulates urban building
energy use based on long-term historical data including energy
consumption and economic indicators, such as GDP [74]. Urban
area is one of the most important variables for urban building en-
ergy use modeling as urban area is a key measure to evaluate the
size of a city and also served as a parameter to calculate energy
consumption. The past and current urban areas information ob-
tained from government sources can serves as baseline data for
undertaking a statistical simulation of the total size of future urban
areas. The major limitation is that as statistical urban areas are
simulated, the spatial variation of urban areas cannot be deter-
mined. In contrast, the physics-based model is not considered to be
capable of simulating urban areas, given that the model utilizes as
inputs existing technological knowledge, such as building type,
building area, building geometry and non-geometry information.
Nevertheless, the physics-based model can address such limitation
by incorporating information of past and current spatial variations
in urban area and building areas obtained from GIS techniques.
Future urban area is then simulated with a spatially explicit model,
such as the Cellular Automata model [75].

2.2.1. Statistical methods

The bottom-up statistical method used for urban energy
modeling projects energy consumption based on billing informa-
tion, survey data, and socio-economic variables. While there are
many possible approaches in this category, they can be classified
into three groups: (a) regression analysis, (b) conditional demand
analysis, and (c) neural network analysis.

The regression analysis employs data about historical energy

use and socio-economic forces to predict future energy consump-
tion. Sensitivity analysis is used to determine the influence of major
forces, followed by goodness-of-fit tests to assess model perfor-
mance. Tonn and White [44] proposed 30 different regression
models to examine the relationship between electricity use and
wood fuel use, equipment and lighting, heating, and indoor tem-
perature in Hood River, Oregon. In their study, occupant behavior
was also considered using data obtained from 300-question sur-
veys. Several of the regression models achieved high performance
with R? over 0.8. They also found that ethical consideration of en-
ergy consumption was more important than economic variables for
the prediction of energy use, showing that ethical motivations,
including what they call “rural ethic”, “conservation ethic”, and
“voluntary simplicity ethic”, had major effects on building energy
use [44]. In addition, Douthitt [45] developed a model based on
around 370 data records of fuel price, fuel consumption, climate
conditions, and building prototypes with around 370 data records
all collected from Canada to simulate the energy use of space
heating. The author found a positive, statistically significant cor-
relation between energy use and the subsidies provided to low-
income households. In addition, to identify regional energy con-
servation potential, change point models have been proposed and
widely used [76,77]. For instance, Raffio [78] developed a regres-
sion model with three “energy signature” coefficients, including
weather independent energy use, the building heating or cooling
coefficient, and the building balance-point temperature, from
which the building characteristics and coefficients were identified.
To give an example, weather independent energy use associates
with hot-water heater retrofits via lowering the setpoint, replacing
low-efficient, and fixing leaks, and the variation in the balance
point temperatures associates with the preferred temperature at
which a household switches between cooling and heating. Build-
ings that have high heating or cooling coefficients are significantly
influenced by weather and thus can be a target for energy efficiency
retrofits. In the model, the coefficients were used to identify
average, best, and worst energy performers and to examine how
the building energy performance has developed over time, all of
which can be used to evaluate energy savings potential.
Conditional demand analysis (CDA) is another powerful statis-
tical technique for modeling building energy use. Unlike typical
regression analysis, CDA runs regression based on end-use appli-
ances belonging to each building and requires very detailed infor-
mation about appliance ownership (e.g., unit energy consumption
and utilization rate) and/or building characteristics (e.g., popula-
tion, conditioned area, heating method). Such detailed information
are often obtained from building owner surveys and utility data.
Model performance is strongly correlated with the number of
variables employed. An early CDA approach was taken by Parti and
Parti [47] for analyzing residential electricity use in San Diego. In
their study, a regression method was used to estimate the utiliza-
tion rate of of residential appliances (e.g. dishwasher, freezer, and
TV set) and thus to project the level of energy consumption, based
on surveys of 5,286 households and utility provided monthly
electric billing data. Aigner et al. [48] applied the CDA approach for
modeling energy consumption of end-uses at the fine temporal
resolution of one hour. They obtained 15-minute level data from
more than 100 households, developing 24 regression models to
estimate energy use of appliances in each hour of the day. In order
to generate realistic results, they imposed restrictions, such as the
use hours of dishwasher, cooking, and laundry. Another important
work was done by Pratt [49] who conducted an examination of
almost 300 houses in the End-Use Load and Consumer Assessment
Program (ELCAP) for residential homes in the Pacific Northwest.
Cetin [50] and Cetin and Novoselac [51] studied the use patterns of
residential appliances and HVAC systems of several hundred



W. Li et al. / Energy 141 (2017) 2445—2457 2449

households. They found significant differences between single
family and multi-family homes and between user-dependent and
user-independent appliances. Fiebig [46] revised the standard CDA
model in a conditional coefficient framework using utility meter
data. This work considered the household variation in energy-use
intensity of different appliances. In particular, using utility meter
data obtained from 348 households as the benchmark they found
that the revised CDA model is a significant improvement over the
standard approach. Other popular mathematical approaches, such
as Bayesian analysis, have also been successfully applied to inte-
grate meter data into the CDA approach for urban-scale energy
modeling [52]. The CDA approach has also been widely used in
estimating energy use at various scales. Lafrance and Perron [53]
analyzed the electricity consumption of the residential sector in
Quebec, Canada, using a CDA regression method with electricity
billing data and appliance information, as well as other inputs, such
as heating equipment, weather conditions, and water heater char-
acteristics obtained from almost 100,000 households. The study
revealed that electricity consumption was highly dependent on
household dwelling types (single family, duplexes, triplexes,
buildings with 4—9 apartments and buildings with over 10 apart-
ments). The CDA approach was found to effectively represent ur-
ban-scale heating energy use for residential buildings using
multiple sources, including wood, electricity, and gas. The approach
has also been applied to a national-level residential energy use
analysis in Canada [54]. Based on the residential energy use data
collected from 8,000 households in 1993, Aydinalp-Koksal and
Ugursal [54] proposed three CDA models to represent the resi-
dential energy consumption of electricity, gas, and oil in Canada.
Additional variables, such as burning efficiency of natural gas or oil,
average indoor temperature, conditioned area, number of occu-
pants, number of windows, and other building-related variables,
were also included in their analysis to improve model accuracy. In a
case study for residential buildings in Brazil, Lins [55] proposed a
CDA model based on the monthly energy consumption data
collected from over 10,000 households. They indicated significant
differences in energy use across the study areas, demonstrating the
importance of considering regional differences and appliance
ownership for robust predictions. In their study, electricity con-
sumption for lighting and refrigeration, for example, accounted for
61.8% and 41.9% of total consumption in North and South Brazil in
1989.

In addition to the conventional and CDA-based regression
methods, artificial neural networks (ANN) is another statistical
approach frequently used for modeling building energy consump-
tion at the city scale [79,80]. Aydinalp [58] applied ANN for
modeling energy consumption in Canadian residential buildings, in
which different ANN models were developed for estimating energy
use of appliances, lighting, and cooling. In order to improve model
performance, 55 variables including information about appliances,
heating system, and population were considered. Overall, energy
consumption and meter data from 741 households were used for
model training with the remaining information of 247 households
used for validation. Compared with an engineering model [R*:
0.780, CV (coefficient of variation): 3.463], the best ANN model
achieved a substantially higher performance with R? of 0.909 and
CV of 2.094 [58,59]. Aydinalp [60] extended the ANN model
developed by Aydinalp [58] to predict space heating and domestic
water heating energy use in Canada. Following a similar procedure,
two separate ANN models were developed, achieving an R? value of
0.91 and 0.87, respectively.

2.2.2. Physics-based methods
The physics-based bottom-up methods simulate building en-
ergy use based on the physical characteristics of the subject

buildings and the thermodynamic principles that govern how a
building interacts with the environment. The approach does not
require knowledge of socioeconomic factors and can also be
completed without the use of historical energy consumption data.
It is the only type of modeling approach that does not require
historical data. However, one major limitation is the requirement
for intimate knowledge of a large number of physical parameters.
They include a full suite of information, such as building shape,
glazing, orientation, thermal properties of buildings envelope,
types and performance characteristics of HVAC systems, ventilation
rates, thermostat set points, occupancy rates and schedules, inter-
nal loads, etc. The collection of basic physical parameters therefore
may take more than 30% of overall energy modeling effort in this
case [61]. Since the physics-based methods simulate energy use
with the combination of building physical data, survey data, and
climate condition data, they can be used not only for modeling of
existing buildings but also for assessing the performance of future
infrastructure that is yet to be constructed. This feature makes the
methods promising to predict future urban-scale energy con-
sumption and thus appropriate to be used in energy models that
forecast GHG emissions and provide support for informed decision-
making. In addition, the physics-based methods simulate building
energy use based on the physical characteristics of individual end
uses at the annual, monthly, daily, hourly or in some cases, sub-
hourly scales. In addition, energy models taking the physics-
based approach are capable of assessing the impact of energy ef-
ficiency improvements [81,82]. Building energy performance is
known to be strongly associated with solar exposure, weather
condition, buildings morphological characteristics, and buildings
structure. These parameters are all needed to be set at the early
design phase of energy modeling to provide relevant information
and support for potential users. Passive solar design that considers
solar energy capture and usage is already integrated into physics-
based models to improve energy efficiency and overall net energy
use. Major components of the passive solar design include opti-
mizing building envelope, building shape, building-to-sun orien-
tation, building shading devices and thermal mass. These physics-
based models consider all of these components as major input
parameters for modeling building energy use [83].

One of the most widely used physics-based models for projec-
ting building energy consumption at the city scale is the Building
Research Establishment's Domestic Energy Model (BREDEM)
[62,63,84]. The model is updated annually, acting as a key part of
the Government's Standard Assessment Procedure in the U.K [85].
The BREDEM modeling framework have been extended to other
physics-based models to simulate residential energy use. They
include the Building Research Establishment's building model for
energy studies (EREHOMES) developed by Shorrock and Dunster
[64,65,86], the Johnston model developed by Johnston [66] and
Johnston [67], the UK Carbon Domestic Model (UKDCM) developed
by Boardman [68], the DECarb model developed by Natarajan and
Levermore [87], and the Community Domestic Energy Model
(CDEM) developed by Firth [70]. While these models employ the
same BREDEM modeling framework, they exhibit significant dif-
ferences. In particular, buildings are categorized into from 47 house
prototypes in the CDEM model, 1000 categories in the BREHOMES
model, 20,000 dwelling types in the UKDCM model, and 8064
building prototypes for 6-year bands in the DECarb model. Given
the complex and often unknown relationship between energy
consumption and various input data, it is necessary to explore
uncertainty in energy modeling. However, among the five models,
only CDEM has been tested with uncertainty analysis. Firth [70]
identified key input parameters and their corresponding sensi-
tivity for the urban building energy models. In addition, different
baselines are used for modeling energy consumption. The UKDCM,
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DECarb and Johnston model use 1996 as the base year for pre-
dicting energy use up to 2050. The BREHOMES model uses 1993 as
the base year for projecting energy use to 2050 [65], and the CDEM
model has been used only for estimating energy use in 2001 based
on the climate data between 1971 and 2000.

In addition to the BREDEM model, the physics-based approach
has been taken by the Canadian Residential Energy End-Use Model
(CREEM) to evaluate the impact of different energy efficiency
strategies on energy use and carbon dioxide emissions in Canada
[71]. In the CREEM model, 8,767 houses were classified into 16
prototypes based on building types (single-detached, single-
attached), space heating fuels, building age (pre-1941, 1941—-1960,
1961—-1977, post-1977) and regional location (Western Canada,
Prairies, Central Canada, Atlantic Canada) to simulate annual en-
ergy use under two scenarios: the R-2000 standards and the NECH
standards [88]. The CREEM model has been considered effective in
assessing the reduction of residential energy use and emission from
different energy efficiency measures. The major limitation of this
model is that it only considers single-detached and single-attached
houses, meaning almost 40% residential buildings, including multi-
family apartments, condos, duplexes, townhouses, and high-rise-
apartment are ignored.

Another energy model used to assess heating energy efficiency
and GHG emissions was proposed in Finland by Snakin [72]. The
model employs statistical data, such as fuel and energy use, de-
mographic variables, and building parameters to explore energy
conservation options and alternative heating and fuel choices. All
dwellings are aggregated into several groups based on basic
building type, heating type, fuel and energy sources, and building
age. Although the model is useful in identifying potential im-
provements in heating energy efficiency, it does not consider
behavioral and temporal variations arising from the characteristics
of occupants and equipment usage, which reportedly have signifi-
cant impacts on energy use [74,89].

In the U.S., numerous models have been developed for modeling
building energy use. DOE2 is a popular physics-based model
developed by Hirsch & Associates, along with the Lawrence Ber-
keley National Laboratory [73]. It simulates energy consumption
using building geometric (e.g. envelope, building geometry, areas,
glazing), non-geometric (e.g. HVAC system, occupancy schedule,
usage patterns), and environmental (e.g. weather data) parameters.
The DOE2 model can represent most building features, such as
shading, envelope, building mass, the dynamics of different heating
and cooling controls, and the impact of natural lighting on thermal
demands. Therefore, it has been widely used to provide accurate
predictions of individual end uses (e.g. lights, HVAC systems, etc.)
and of whole-building use. However, challenges remain, because
using DOE2 requires an in-depth understanding about the model,
its underlying assumptions, and its interface, as well as significant
professional training and skills. To address this issue, a graphical
user interface, Quick Energy Simulation Tool (eQUEST), has been
developed. eQUEST combines the building creation wizard, the
energy use calculation wizard, and the modeling results graphical
display module based on an enhanced DOE2.2 model [90,91]. The
eventually projected energy use is directly presented in the
graphical display module, and can also be downloaded for a more
detailed analysis. Heiple and Sailor [92 ] used eQUEST for simulating
energy use intensity of 18 building prototypes in Houston, TX to
project citywide building energy use by incorporating information
about building floor space, number of floors. Moreover, Zhou and
Gurney [91] modeled energy use and CO, onsite emissions of
Indianapolis/Marion County, IN by coupling the energy use in-
tensity of 30 building prototypes from eQUEST with information on
floor areas and floor numbers from GIS dataset.

Another most widely used energy simulation engine is

EnergyPlus [93], which builds on the most powerful features of
DOE2. Compared to DOE2 and eQUEST, EnergyPlus has a refined
temporal resolution of energy modeling (sub-hourly) and
improved modeling principles to integrate dynamic solvers that
take into account the thermodynamics of the building and building
systems (building shell and HVAC system). Cerezo Davila [24], for
example, employed EnergyPlus to simulate building energy use
intensity of different building types, generating building energy use
at high spatial and temporal resolution for the city of Boston.
Several other studies have simulated building energy use by
incorporating passive design and solar energy features. Hachem
et al. [94] investigated the potential of electricity generation by
building-integrated photovoltaic (BIPV) systems for single family
housing units in Canada. In particular, they proposed an integrated
design methodology for residential neighborhoods to be consid-
ered at the early stages of the housing design process. In particular,
several important parameters, such as the orientation and shape of
housing units and unit density, were used as inputs for EnergyPlus.
Hachem also [95] explored the impact of key design parameters on
both energy use and GHG emissions of a large-scale solar com-
munity. In this study, building energy performance, neighborhood
types, street design specifications, and the relative location of
commercial centers to residential areas were all included as design
parameters to account for their combined effects and interactions.
The study simulated building energy use for individual neighbor-
hoods prototypes within the vicinity of Calgary, Alberta in Canada,
highlighting the importance of adopting high-energy efficiency
measures at the early stage of energy modeling. In addition, Nault
et al. [96] proposed a new meta-model for evaluating the perfor-
mance of the early design neighborhood project utilizing simple
geometry and irradiation based parameters. Their results suggest
that the proposed method has the potential to be used as an
essential engine in the early design phase.

2.3. Geospatial techniques in top-down and bottom-up approaches

With the advances in geospatial techniques, the need for inte-
grating such techniques in building energy use study is gaining
much importance. This is mainly because geospatial techniques
could be integrated with energy use models to provide support for
estimating and investigating spatial and temporal variations of
urban building energy use.

Geospatial techniques can be integrated with the top-down
approaches to downscale urban building energy use from the city
level to the group or individual building level. For example, Torn-
berg and Thuvander [41] developed a GIS-based urban energy
model to decompose the total consumption of electricity and gas at
the individual building stock level in the city of Goteborg, Sweden.
While energy use was presented at the building group level, its
detailed spatial pattern allows for informed decision-making in
government and real estate management contexts. Delmastro et al.
[97] took Centro Residenziale Europa of Turin as an example,
evaluating the demand for heating in the buildings based on the
actual energy consumption data. Enabling geo-referencing and
representing building blocks, GIS techniques served as a crucial tool
to distribute energy consumption, emissions, and energy saving
information across the study area.

Geospatial techniques have also been commonly used in the
bottom-up models to upscale building energy use from the indi-
vidual building level to the city scale. The bottom-up models, which
allow for simulating energy use at individual level with a high
temporal resolution, can represent, if combined with geospatial
techniques, the energy use of hundreds, thousands, or even more
buildings at the city and regional scales. Mastrucci et al. [98]
introduced a GIS-based bottom-up statistical approach for
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estimating citywide residential building energy consumption. In
their study, the GIS database of the Rotterdam city served as the
major information source for representing residential buildings
throughout the entire city. Having started with modeling energy
use for individual buildings, geospatial techniques are now being
used to generate building energy use at the city level and thus to
provide a support for investigating the spatial variation of citywide
building energy use. Ma and Cheng [99] integrated the GIS tech-
nique with data mining methodology to model building energy use
intensity for 3,640 multi-family residential buildings in the City of
New York. In their study, the site energy use intensity was esti-
mated with prepared features, such as building, demography,
economy, and education, using support vector regression, artificial
neural network, and elastic net. Based on the estimated site energy
use intensity, citywide energy use was generated in combination
with geospatial technique. Mattinen et al. [100] integrated a bot-
tom-up approach and a GIS technique for modeling and visualizing
the energy consumption and GHG emissions of residential sectors.
Specifically, the bottom-up approach was taken to estimate energy
use and GHG emissions of individual residential buildings, in which
the GIS technique was employed for mapping building energy uses
in the whole residential sector and visualizing the spatial pattern of
these estimates. Yu et al. [101] proposed an improved two-step
floating catchment area approach to estimate building energy use
and reflect its heterogeneity within the city. Building energy use
was estimated using the GIS data and technique, in combination
with tax lot data, such as building type and floor area. With the
spatial data of the whole city, the building energy use of the entire
city was generated with energy deficit and surplus areas identified
to support the planner's decision making [101]. Fonseca and
Schlueter [102] introduced an integrated model of dynamic de-
mand prognosis in a geospatial framework for characterizing the
spatial and temporal patterns of building energy use in city dis-
tricts. In particular, the two bottom-up approaches, statistical and
physics-based, were integrated to determine the spatial and tem-
poral variability of energy services in both standing and future
residential, commercial, and industrial buildings. In the study,
geospatial techniques served as tools to map building energy use
from individual buildings to the whole city district.

Recently, studies have been conducted to model urban building
energy use by coupling bottom-up physics models with GIS tech-
niques. Zhou and Gurney [91] modeled urban building energy use
and CO; emissions for Indianapolis-Marion County, IN through
integrating their energy use model, eQUEST, with GIS techniques. In
their study, several important datasets, including building footprint
and building parcel data, were prepared and processed using a
geospatial technique that allows the investigation and visualization
of citywide building energy use and its spatial and temporal vari-
ations. Gurney [90] modeled CO, emissions down to each indi-
vidual building, further examining the spatial variation of entire
urban landscape of building emissions with the support of geo-
spatial techniques. Davila et al. [24]| developed an Urban Building
Energy Model (UBEM) to estimate the citywide hourly energy de-
mand at the building level. The EnergyPlus model was used, instead
of eQUEST, to simulate energy use intensity for each individual
building, in combination with geospatial techniques, which were
employed to calculate final building energy use and to upscale the
energy use to the city level.

3. Procedures in physics-based bottom-up models

While numerous approaches have been proposed for modeling
buildings energy use, the physics-based bottom-up models have
become most popular due to their high temporal resolution. These
models are capable of supporting the development and evaluation

of new technologies installed to improve buildings energy effi-
ciency. Fig. 2 shows the general procedures of using physics-based
bottom-up models for simulating urban building energy use. In
particular, several aspects of the building environment need to be
considered in model preparation, including information on build-
ings geometry (e.g. shape, and window opening ratio), buildings
non-geometry (e.g. construction, material, and occupancy
schedule), and weather conditions (e.g. temperature, wind, and
solar radiation) [25]. Moreover, such models need to be calibrated
before being applied for final energy modeling.

3.1. Model preparation

Buildings geometry generally consists of building shape, floor
area, height, and roof characteristics. If not known, it requires
multiple sources of data collection using GIS and remote sensing
techniques [24,25]. In recent years, the citywide GIS data has
become more easily accessable to the public. In the U.S. local gov-
ernment agencies (typically the Department of Urban Planning and
the Department of Transportation) collect data on building foot-
prints. The data is often available online for large cities and is
downloadable free of charge. Total building floor area can be
calculated by combining the GIS database of building footprints and
buildings height information from LiDAR (Light Detection and
Ranging) data which use remote sensing techniques. In addition,
county assessors' databases contain building parcel data, which
provides information on building type, age, heating system, and
other building characteristics.

Compared with buildings geometry data, buildings non-
geometry data are relatively difficult to collect. As there are thou-
sands or even hundreds of thousands of buildings in a large city, it is
impractical to collect non-geometry data for all buildings [24].
Therefore, it is necessary to use building prototypes to represent
different groups of similar buildings throughout the study area. In
general, building prototypes can be defined using several param-
eters, such as building shape, size, age, thermal properties, etc.
Shimoda [103] simulated residential energy use in Osaka, Japan
with 20 identified building prototypes. In particular, based on
building shape and floor area, 1,128 residential buildings were
classified into 10 types of detached homes and 10 types of multi-
family houses. Mastrucci [98] estimated residential energy sav-
ings for the city of Rotterdam, Netherland with 26 building
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Fig. 2. Flow chart of urban building energy modeling using the physics-based bottom-
up model.
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prototypes. Specifically, based on building shapes, they classified
buildings into detached homes, semi-detached homes, rowhomes,
maisonette, flat-galerij, and flat-portiek types, which were further
classified based on building age into 26 building prototypes [104].

The methods of heating have also been considered in defining
building prototypes. For their urban energy model, Heiple and
Sailor [92] defined 11 commercial building types and 2 residential
building types using building shape and age information, followed
by further categorization into 30 building prototypes according
their heating methods (primary heating, electric or non-electric).
In addition to the above studies conducted at the urban level,
works have been done also at the regional and national level. For
instance, Dascalaki [105] modeled residential energy use in
Greece by grouping 2,514,161 buildings into 24 building pro-
totypes based on building shape, age, and four climate zones.
Famuyibo [106] pointed out the importance of representing con-
struction methods and thermal variations in buildings prototype
classifications. Mata [107] proposed an approach to grouping
buildings into building prototypes based on building shape, age,
climate conditions, and heating systems, demonstrating its
effectiveness in cases of four European countries, that is, France,
Germany, Spain and the U.K.

In additional to buildings geometry and non-geometry data,
weather data is another important input for energy modeling.
Several different weather datasets have been commonly used
[108]. Typical weather data includes important weather param-
eters, such as air temperature, wind speed and direction, solar
radiation, and humidity, which have direct impacts on buildings
energy demand. The Test Reference Year (TRY) is one of the
earliest hourly weather datasets derived from weather data
(1948—-1975). It includes most of important weather parameters,
such as dry- and wet-bulb temperature, pressure, wind speed
and direction [109]. However, it does not provide solar radiation
information. Energy models using the TRY data thus need to
calculate solar radiation itself before determining the final en-
ergy use. In order to overcome the limitation, the Typical
Metrological Year (TMY) weather database was generated by the
National Climatic Data Center (NCDC) and Sandia National Lab-
oratory (SNL) in 1981. The TMY database include 12 months of
hourly weather data with each monthly weather data selected
from those between 1952 and 1975 to represent the average
conditions over the period of study. Solar radiation information
was included in TMY data for 234 locations throughout the U.S.
(26 locations with observed solar radiation data, and 208 loca-
tions with calculated solar radiation data) [110]. More recently,
the TMY3 dataset produced by the National Renewable Energy
Laboratory (NREL)'s Electric Systems Center provides data for
1,020 locations with their solar radiation information coming
from satellite data. The TMY4 dataset will rely on climate rean-
alysis data and satellite data to provide all weather parameters,
enabling a wide range of weather data unrestricted to the loca-
tion of weather stations.

Besides weather data available in the U.S., weather data have
also been made available in other countries and widely used in
modeling energy use. For example, the International Weather Files
for Energy Calculation (IWEC) developed by ASHRAE covers 3,012
worldwide locations outside the U.S. and Canada. The ASHRAE has
also collaborated with the White Box Technologies to provide web
access to the ASHRAE IWEC2 datasets by county or region. In
addition, the WATSUN data developed by the WATSUN Simulation
Laboratory and the University of Waterloo cover 49 locations in
Canada [111]. Moreover, the European Test Reference Year
(ETRY) weather data have been created using the TMY methodol-
ogy from NCDC with SNL providing weather data for European
locations [112].

3.2. Model calibration, validation and simulation

Energy modeling consists of dozens, even hundreds or thou-
sands of input variables, depending on the model under consider-
ation. Model performance relies heavily on the professional
experience and judgment of the users and the quality of inputs
provided. This consideration, combined with variabilities in
building use, occupancy rates, plug loads and other sources can lead
to significant differences between the predicted energy use from a
model and the actual consumption. In an event where significant
differences are observed, the calibration of the employed energy
model through adjusting the input parameters becomes crucial.
Two statistical indices, the mean absolute error (MBE, Equation (1))
and the coefficient of variation of root mean square error (CVRSME,
Equation (2)), have been widely used for evaluating the model
performance, as recommended by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers [113], International
Performance Measure and Verification Protocol [114], and the
Federal Energy Management Program [115] (see Table 2). The two
indices are given by

S Si— M
Z]i:]si

MBE = (1

S (8- My)? /i
CVRMSE = S (2)

where, S and M are the monitored and modeled energy use for each
model instance i, and j is the total number of data recorded (the size
of j is 12 for monthly simulation and 8,760 for hourly simulation).

Numerous studies have been conducted on the calibration of
building energy models. Among them, four main approaches have
been widely applied, including: 1) manual calibration with the
assistance of iterative and pragmatic intervention, 2) manual cali-
bration using graphic representations, 3) the special test and
analytical approach, and 4) the mathematical approach [116].
Manual calibration relies on the modeler's professional experience,
as input parameters are manually modified based on the user's
knowledge and expert judgment. For example, Pan [117] developed
a building energy model based on a range of survey-collected data
(building geometry, operating schedules, historical utility data), in
which the CVRMSE of electricity and gas was 24.9% and 64.4%
respectively before calibration, which was significantly higher than
the acceptable criteria. Based on the energy consumption analysis
and on-site survey, they modified inputs for internal loads, occu-
pancy schedule, and HVAC system, and eventually, the monthly
CVRMSE of electricity and gas in 2004 dropped to 4.71% and 8.92%,
respectively. Such kind of calibration approach has been widely
accepted and applied in numerous studies [117—122].

Rather than comparing the modeled value with the monitored
value as in the case of iterative manual calibration, time-series and
scatter plots can be generated with the graphical representation
technique to illustrate model fit. One early attempt by Haberl and
Bou-Saada [123] analyzed hourly differences between estimated
and monitored energy uses using a 3D plot, in which the modeled
data, the reference data and their difference were the three corre-
sponding axes. The study found the technique highly effective in
adjusting time-associated variables, such as occupancy schedules.
Bronson [124] calibrated hourly building energy use using 3D
graphics. Calibration signature analysis is another type of graphic-
based calibration method, in which a signature is defined as the
normalized graphical representation of the discrepancies between
modeled and monitored energy uses. The approach was first
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Table 2
Calibration criteria in buildings energy use modeling.
Index ASHRAE Guideline 14 [113] IPMVP [114] FEMP [115]
Monthly MBE (%) 5 20 5
CVRMSE (%) 15 - 15
Hourly MBE (%) 10 5 10
CVRMSE (%) 30 20 30

introduced by Kandil and Love [125] for energy model calibration. A
two-step calibration instruction has also been provided by Liu and
Liu [126] for simplifying energy model calibration using calibration
signatures. They developed an office building energy model, cali-
brated it with monitored data, and conducted the second calibra-
tion based on a calibration signature to identify variables to modify.
The calibration signature approach can effectively improve the
modeling accuracy of heating and cooling energy use with multiple
HVAC systems as it can help users assess the impact of input vari-
ables by indicating a set of parameters that need to be modified.

While manual calibration approaches have proved effective in
improving the accuracy of building energy models, it can be time-
consuming to perform. It is thus worth to consider calibrating en-
ergy models with the assistance of computers and multiple
analytical and mathematical methods. One promising approach is
to calibrate energy models based on special tests and analytical
methods, such as the Primary and Secondary Term Analysis and
Renormalization method (PSTAR). The PSTAR was initially devel-
oped by Subbarao [127], and was later revised by Burch [128] and
Balcomb [129]. The method concerns hourly building energy
modeling and performance analysis using a short-term monitoring
data. In PSTAR, buildings energy consumption is considered as the
sum of heat flows with the primary and secondary terms defined by
a re-normalization approach.

Automatic calibration approaches can also be taken based on
either mathematical methods or analytical methods. One example
is applying the Bayesian method to calibrate building energy
models. As the uncertainty of input parameters can significantly
influence model performance, such prior uncertainty is considered
and reconciled in a Bayesian calibration method through probabi-
listic sensitivity analysis that matches modeled and monitored
energy uses [130—132]. Optimization techniques provide another
solution for automatic calibration. In this case, energy models are
coupled with optimization methods to achieve automatic calibra-
tion [133], in which an objective function, defined as discrepancies
between modeled and monitored energy uses, is utilized to cali-
brate the model. One example is the universally feasible statistics-
based calibration method proposed by Sun and Reddy [134]. In
their model, the impact of input parameters on building energy use
was analyzed, followed by reorganization of all input parameters
based on recognition analysis and eventual model calibration using
mathematical optimization. This method was revised by Farhang
and Ardeshir [135] and also by Taheri [ 136] with the improvements
in the selection process of the parameters. Several other mathe-
matical methods and softwares, such as Monte Carlo and GenOpt,
have also been applied to the optimization technique-based auto-
matic calibration [116,137]. Although the effectiveness of coupling
energy modeling with optimization techniques has been proven, it
also brings other challenging issues, such as increased computa-
tional burden and analytical complexity. For example, simulation
and data analysis need to be conducted for both energy modeling
and optimization procedures.

In order to reduce model complexity and thus to improve effi-
ciency, the meta-modeling approach has been proposed by Eisen-
hower [133] for building energy modeling and calibration. The first
step of this approach is data sampling, in which only a limited

number of parameters, not all of them, are selected as samples to be
used in the simulation and optimization procedures. As meta-
modeling works with the essential characteristics of a building
under consideration, it can be considered as one of the fastest
methods [133].

3.3. Challenges

While the physics-based bottom-up methods have proven to be
effective and received great popularity, some challenges remain,
especially in the preparation and calibration of models. Specifically,
Typical Meteorological Year (TMY) has been widely utilized as
weather data in the models for energy use simulation. While the
TMY data is freely available in many regions globally, it is simulated
weather data, so that it does not typically match the actual year-to-
year weather data, not presenting extreme weather events and
future weather predictions. Urban heat island effects and other
local microclimatic phenomena, which are likely to cause high
variation of urban weather patterns within a city, are not provided
either [138,139]. Therefore, improvements should be made in col-
lecting high-density weather data through direct observations and
generating spatially-varied data that take into account spatial
patterns within cities.

Although most studies have so far focused on energy modeling
of past or present performance, the prediction of energy use in
future climate scenarios can inform decision making by govern-
ments and private sectors [140]. Given that building energy use is
highly correlated with surrounding climate conditions, climate
change may have a significant impact on building energy con-
sumption [141]. Huang and Gurney [142] analyzed the relationship
between climate change and building energy consumption in 925
U.S. cities, showing a substantial increase of building energy use in
summer and a significant decrease in winter. They also reported
that the variation of the impact within climate zones is greater than
the variation across climate zones, which indicates a potential bias
arising from examining climate-zone scale variations only with a
limited number of sampled locations and also highlights the
importance of evaluating the impact of climate change at local
scales. Xu et al. [143] examined the impact of climate change on
building heating and cooling energy use in California. Their fore-
casting results indicated that over the next 100 years electricity
usage for cooling would increase by about 25% under the IPCC's
most likely carbon emission scenario (A2) and the number would
jump to 50% under the IPCC worst-case carbon emission scenario
(A1F1). Wan et al. [144] assessed the impact of climate change on
energy use in air-conditioned office buildings in subtropical Hong
Kong, reporting that, compared to its 1979—2008 numbers, average
annual building energy use would increase by 6.6% and 8.1% by the
end of 21st century under the scenarios of low and medium radi-
ative forcing levels, respectively. It follows that an accurrate rep-
resentation of future weather conditions with the consideration of
different Representative Concentration Pathways (RCP) scenarios
from Intergovernmental Panel on Climate Change (IPCC) or sce-
narios from other climate prediction methods would be essential.
As such, the top-down models, which represent long-term socio-
demographic and market economic influences, have been
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frequently employed, although they lack in technological details to
provide concrete policy suggestions.

Another challenging problem concerns model calibration.
Rigorous model calibration is a key ingredident to superior per-
formance in building energy modeling. Most of the exant studies
have used on the national average building energy use data from
U.S. EIA as the reference for model calibration. While the EIA's
survey data is easy to access, models calibrated with the data may
become unreliable as the spatial heterogeneity of energy con-
sumption may result in significant energy use variations between
specific locations and the national average. Billing data from utility
companies may be an alternative instrument for improving model
calibration, although such data is not widely available to the public.

4. Conclusions

In this paper, the top-down and bottom-up approaches for
modeling urban building energy use are summarized and their
strengths and weaknesses in a variety of applications are discussed.
This review also focuses on the popular and widely used physics-
based bottom-up models by providing a summary of the basic
procedures using these models for simulating urban building en-
ergy consumption. Given the important role that geospatial tech-
niques can play in modeling the citywide building energy use, this
review also provides a summary of studies that apply geospatial
techniques for top-down or bottom-up building energy use
modeling. Finally, this review discusses challenges associated with
model preparation and calibration.

The top-down approaches are simple to implement because of
limited input requirement for establishing building energy models.
Generally, the statistical methods are used to analyze building en-
ergy use based on market, economic and socio-demographic data.
As the data are usually collected at the regional level, the top-down
approaches are widely used for city, regional, national or other
large-scale energy use modeling. However, the advantage of the
top-down approaches comes with a price. In particular, the top-
down approaches require long-term historical data of urban-scale
energy consumption and socio-economic indicators. Modeling of
building energy use is based mainly on the long-term analysis of
the relationship between energy consumption and economic in-
dicators. Given that socio-economic and physical conditions are
likely to change over time due to, for example, new developments
within existing urban areas and climate change, significant errors
in the projection of future energy consumption may arise
[74,89,145]. In addition, the top-down approaches are also inca-
pable of representing the impact of new construction on existing
buildings. For instance, high-rise buildings can shade near-by low-
rise buildings energy use. However, such impacts cannot be fully
represented as only a limited set of variables can be used in the top-
down approaches. Moreover, the top-down approaches can only
simulate and report energy consumption at the aggregated level,
although building energy consumption is highly complex and
subject to many physical factors and individual end-uses. Thus for
those applications of energy modeling that can benefit from more
details results, the top-down approaches may not be the most ideal.

The bottom-up approaches provide a much more detailed pre-
dictions of end-use and whole-building energy consumption.
Instead of modeling the buildings sector as a whole, the approaches
address individual buildings and/or their individual end-uses. The
basic bottom-up approach is to apply statistical techniques to
establish the relationship between billing and survey data and
market economic and socio-demographic data, thus projecting
energy consumption based on the derived relationship [89]. While
the bottom-up statistical methods has gained popularity, they also
have weaknesses. For instance, the methods are not suitable for

identifying opportunities to increase building energy efficiency as
they do not allow for high temporal (e.g., hourly or sub-hourly)
energy consumption data [146,147]. Hourly or sub-hourly energy
consumption data, as compared to lower frequency data, improve
the capability of assessing the impact of energy-efficient technol-
ogies. Such high resolution data can provide timely information for
characterizing energy use patterns, so that detailed end-use energy
costs can be determined and existing problems can be identi-
fied.[148,149]. The physics-based bottom-up methods are suitable
options for high resolution data. The methods represent building
energy use solely based on detailed building information and sur-
rounding weather conditions, with no requirement for historical
data as inputs. The most distinct advantage of the physics-based
bottom-up methods is that energy use is simulated for each end-
use by fuel type at a relatively high temporal resolution (daily,
hourly, and/or sub-hourly). Consequently, the methods can provide
detailed energy use response information to establish a solid
foundation for evaluating new technologies with, for example,
improved energy efficiency in reducing building energy use.
Moreover, compared with other approaches, physics based models
can include passive solar design as a measure to improve energy
use efficiency. In these models, the shading structure and geometry
of a building can be defined all within a single energy modeling
framework. Other objects, such as contruction materials, internal
mass, and infiltration, can be easily defined directly in such physics
based model. To sum up, the top-down approaches are suitable for
analyzing and predicting aggregate-level, long-run building energy
demand based upon historical data. In contrast, the bottom-up
statistical approaches are well positioned to analyze energy de-
mand at the individual building level usually supported by utility
bill and survey data. The bottom-up physics based approaches are
the proper choice for analyzing detailed energy demand of indi-
vidual buildings or their end use services based on a detailed,
comprehensive representation of technologies. The bottom-up
physics based approaches thus allow for assessing the impact of
new technologies on buildings energy use.

With the development and broad application of geospatial
techniques, there is an increased demand for applying GIS tech-
niques in building energy use studies. Specifically, the top-down
approaches have been used to represent regional energy use in
combination with GIS techniques, which enable the allocation and
dissemination of spatial and temporal data. In addition, GIS tech-
niques have also been coupled with the bottom-up approaches to
scale up the simulated building energy use from the individual
building level to urban, regional or even national level. In addition,
given the numerous applications of the physics-based bottom-up
models, we have also reviewed their general procedures for
simulating urban building energy use found in the literature. We
hope the review presented here can open a new avenue of research
that facilitates the next generation of urban building energy use
modeling.
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