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A B S T R A C T

Forest ecosystems are subject to recurring fires as one of their most significant disturbances. Accurate mapping of
burn severity is crucial for post-fire land management and vegetation regeneration monitoring. Remote-sensing-
based monitoring of burn severity faces new challenges when forests experience both fire and non-fire dis-
turbances, which may change the biophysical and biochemical properties of trees in similar ways. In this study,
we develop a Disturbance Weighting Analysis Model (DWAM) for accurately mapping burn severity in a forest
landscape that is jointly affected by wildfire and an emerging infectious disease – sudden oak death. Our ap-
proach treats burn severity in each basic mapping unit (e.g., 30 m grid from a post-fire Landsat image) as a linear
combination of burn severity of trees affected (diseased) and not affected by the disease (healthy), weighted by
their areal fractions in the unit. DWAM is calibrated using two types of inputs: i) look-up tables (LUTs) linking
burn severity and post-fire spectra for diseased and healthy trees, derived from field observations, hyperspectral
sensors [e.g., Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)], and radiative transfer models; and ii)
pre-fire fractional maps of diseased and healthy trees, derived by decomposing a pre-fire Landsat image using
Multiple Endmember Spectral Mixture Analysis (MESMA). Considering the presence of tree disease in DWAM
improved the overall map accuracy by 42%. The superior performance is consistent across all three stages of
disease progression. Our approach demonstrates the potential for improved mapping of forest burn severity by
reducing the confounding effects of other biotic disturbances.

1. Introduction

Forest fires directly transform living and dead organic matter to
charred or blackened residues in the short term (Kokaly et al., 2007;
Lewis et al., 2007) and over the long term they affect the structure,
function, and spatial patterns of ecological succession (Turner et al.,
1998; Metz et al., 2013; Chen et al., 2015b). Building accurate
knowledge of the spatial distribution of fire extent and particularly burn
severity is crucial in planning and executing post-fire land management
activities (Keeley, 2009; Quintano et al., 2017). Over the past decade,
the term burn severity has gained popularity to represent the degree of
environmental change (typically the loss of organic matter on the soil
surface) caused by a fire (Key and Benson, 2006; Keeley, 2009). Both
short-term (e.g., about within one year following the fire) and long-
term (e.g. up to ten years) impacts of fire on local environment have

been assessed to understand the direct loss of vegetation by combustion
and longer term recovery, respectively (Key and Benson, 2005; Lentile
et al., 2006; Roy et al., 2006). To date, there have been numerous
studies about burn severity estimation across forest biomes worldwide
(e.g., Díaz-Delgado and Pons, 2001; French et al., 2008; Hall et al.,
2008; Miller et al., 2009). Due to rapid environmental change and in-
tensive human interventions, burn severity mapping is increasingly
challenged by compound disturbances in forest ecosystems; with in-
creasing frequency forest landscapes are being impacted by emerging
infectious diseases or other forms of disturbance prior to fire occurrence
(Bright et al., 2013; Hultquist et al., 2014; van Mantgem et al., 2013).
Because pre-fire disturbances also cause the loss of organic matter, es-
timating burn severity may introduce high uncertainties without
properly considering the compound effects of multiple disturbances
(Chen et al., 2017).
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Remote sensing is effective to assess fire effects on forest ecosystems
at local, regional and continental scales (e.g., Chen et al., 2018; Hudak
and Brockett, 2004; Lentile et al., 2006; Quintano et al., 2013;
Veraverbeke et al., 2012). It is especially suitable for monitoring large
and topographically complex landscapes that are logistically unfeasible
with traditional field surveys (Chuvieco et al., 2007; Chen et al.,
2015a). Remote sensing models to estimate burn severity are typically
categorized into two groups: empirical and physical models. Specifi-
cally, classic empirical models rely on statistical regression (e.g., linear
regression) or machine learning (e.g., random forests) to link sample
field measurements of burn severity with remotely sensed data, e.g.,
spectral bands and indices (band combinations), such as Normalized
Burn Ratio (NBR; López-García and Caselles, 1991), differenced Nor-
malized Burn Ratio (dNBR; Key and Benson, 2006), and relative dif-
ferenced Normalized Burn Ratio (RdNBR; Miller and Thode, 2007).
Such models are relatively easy to implement and interpret. However,
their performance depends highly on the reliability and sufficiency of
field samples and is site-specific, which reduce their generality across
complex geographic conditions (De Santis and Chuvieco, 2007). More
recently, researchers took advantage of spectral mixing analysis to re-
trieve forest burn severity at the sub-pixel level from medium- or
coarse-resolution, and even high-resolution imagery. For instance, the
classic Multiple Endmember Spectral Mixing Analysis (MESMA; Roberts
et al., 1998) has been used to derive non-photosynthetic vegetation
fraction (NPV) or char fractions, which serve as an explanatory factor to
estimate burn effects in forests (e.g., Fernandez-Manso et al., 2016;
Meng et al., 2017; Quintano et al., 2017). While the spectra used in
MESMA are typically from image sampling, they can also come from a
radiative transfer model, as was true in Painter et al. (1998, 2003) and
Sonnentag et al. (2007). Physical models attempt to address such lim-
itation by simulating the physical interactions between radiation and
burned canopies. A typical example is the use of radiative transfer
models. Chuvieco et al. (2006) were the first to apply radiative transfer
models, i.e., PROSPECT (Jacquemoud and Baret, 1990) and Kuusk
(Kuusk, 2001) reflectance models, for burn severity estimation. De
Santis et al. (2009) successfully simulated the spectra of burned ca-
nopies at 30m resolution by integrating the leaf-level PROSPECT with
the canopy-level GeoSail (Verhoef and Bach, 2003) models.

Despite the popularity of remote-sensing-based burn severity

estimation, none of the present models explicitly account for the effects
of pre-fire disturbances on map performance. Because both fire and
non-fire disturbances (i.e., compound disturbances) may change the
biophysical or biochemical properties of trees in similar ways (e.g.,
damaging tree structure or reducing foliage water content; Hultquist
et al., 2014), pre- and post-fire spectral differences for the trees affected
by non-fire disturbances are possibly different from their healthy
counterparts. Uncertainties are further introduced if such non-fire dis-
turbances affect forests at multiple stages showing various symptoms,
leading to a weak relationship between spectral reflectance and burn
severity. The negative impact of forest disease on burn severity esti-
mation was recently confirmed by Chen et al. (2017), who employed
PROSPECT and GeoSail to map burn severity in a forest that had been
affected by an emerging infectious disease – sudden oak death – prior to
fire occurrence. Their results revealed a significant overestimation of
burn effects by ignoring tree damage caused by the disease.

The main goal of this study is to develop a remote-sensing-based
model to map burn severity in forest landscapes, aiming to reduce the
effects of tree damage caused by pre-fire disturbances. Here, we used
sudden oak death as an example of a pre-fire disturbance that has
caused widespread tree mortality in the Big Sur, California ecoregion
before the studied Basin Complex Fire occurred in 2008 (Chen et al.,
2015a). In model development, it is assumed that the final burn effect
for a basic mapping unit (e.g., 30m grid) is a linear combination of
burn severity of two tree classes (i.e., trees affected and not affected by
the disease), weighted by their areal fractions. To achieve the research
goal, we also asked two specific questions in model development and
assessment: (i) whether (and if yes, how much) the estimation of forest
burn severity can be improved by incorporating pre-fire, disease-caused
tree mortality? And (ii) how differently does the new model perform at
the early, middle, and late stage of disease progression?

2. Study area

Our study site (centered at 36°16′ N, 121°44′W) is located in the Big
Sur ecoregion on the western flank of Santa Lucia Mountain of
California with a total area of 28,383 ha (Fig. 1). The area has a Med-
iterranean-type climate and a rugged landscape dissected by steep
slopes and drainages with elevations ranging from sea level to 1571m

Fig. 1. Study area located in the Big Sur ecoregion on the western flank of the Santa Lucia Mountains in California. The Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS) image is from a colour composite using bands 195 (red), 52 (green) and 31 (blue). The Landsat TM image is from a colour composite using
bands 7 (red), 4 (green) and 3 (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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within 5 km of the coast (Meentemeyer et al., 2008). The area is
dominated by a range of tree species: (i) mixed coniferous forest,
composing of ponderosa pine (Pinus ponderosa), sugar pine (Pinus lam-
bertiana), Jeffrey pine (Pinus jeffreyii), coulter pine (Pinus coulteri), and
Santa Lucia fir (Abies bracteata), which are located on upper elevation
slopes and rocky ridges; and (ii) mixed oak woodland consisting of
coast live oak (Quercus agrifolia), Shreve's oak (Q. parvula), bay laurel
(Umbellularia californica), and madrone (Arbutus menziesii), which were
found on moister slopes, giving way to riparian corridors of redwood-
tanoak forest at lower elevations. Since the mid-1990s, an invasive
pathogen Phytophthora ramorum causing the disease – sudden oak death
– has led to extensive tree mortality in the study area mainly found in
two plant communities – mixed oak and redwood-tanoak forests (Rizzo
et al., 2005). The disease involves a multi-year progress especially
under a suitable temperature and rainfall conditions, girdling a tree
over years or making the tree more susceptible to attack by other pa-
thogens or insects (Chen et al., 2015b). In 2008, a wildfire – the Basin
Complex Fire – was ignited by a dry lightning storm in late June and
burned over 65,942 ha of federal, state and private lands. The total cost
of containment action was around $77.2 million mainly due to the
sheer size of the fires, the ruggedness of the terrain and the extremely
dry conditions (USDA Forest Service, 2008). The Basin Complex Fire
affected forest landscapes, which had and had not been damaged by
sudden oak death.

3. Data and pre-processing

3.1. Field data

A solid network of long-term sudden oak death monitoring plots
(500m2 each) in Big Sur was established in years 2006 and 2007 to
understand the responses of forest communities (e.g., host mortality) to
the invasion of sudden oak death (Meentemeyer et al., 2008). The plots
were distributed in a stratified-random manner among two dominant
tree types-redwood and mixed-evergreen within the study area. A Pa-
nasonic SXBlue real-time differential GPS (Geneq, Montreal) was ap-
plied for collecting plot positions, with an average accuracy of 1m or
less. A total of 61 plots were revisited after the wildfire in September
and October 2008. Among these plots, 42 had been affected by sudden
oak death, and 19 had not. The affected plots evenly covered the three
stages of disease progression from early, middle, to late stages.

Burn severity at the plot level was recorded using the Composite
Burn Index (CBI; Key and Benson, 2005) for five forest strata: (1)
substrate layer, measured as changes to coarse woody debris, soil, duff,
and leaf litter; (2) herb layer, changes or responses of vegetation<1m;
(3) shrub layer, changes in vegetation higher than 1m but< 5m; (4)
intermediate-sized tree layer, any trees higher than 5m but standing
under the dominant trees; and (5) dominant tree layer (Metz et al.,
2011). In this study, all the CBI values were converted to geometrically
structured CBI (GeoCBI) values (maximum: 2.83, minimum: 0.56,
average: 2.00, and standard deviation: 0.42). Proposed by De Santis and
Chuvieco (2009), GeoCBI (ranging from 0.0–3.0) simulates burn se-
verity with a ‘top-down’ view, to be consistent with remote sensing
observations. GeoCBI accounts for the contribution of each forest
stratum using its Fraction Cover (FCOV) as the weighting factor (see Eq.
(1)).
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where FCOV is calculated and characterized as the percentage of ve-
getation coverage with respect to the total size of the plot area, m is the
identification of each stratum, and n is the number of strata.

3.2. AVIRIS imagery

The AVIRIS image mosaic (from seven transects) at the 3m re-
solution was acquired on September 24, 2008, immediately following
the containment of the Basin Complex Fire for rapid assessment. AVIRIS
is an imaging spectrometer that measures 224 contiguous spectral
bands in the range of ~360 nm to ~2500 nm with an average band-
width of 10 nm (Green et al., 1998). The images were geometrically
corrected, radiometrically calibrated, and were made available at the
JPL's website (http://aviris.jpl.nasa.gov). Atmospheric correction was
performed using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) module, which is available in the ENVI software
package (ITT Visual Information Solutions, Colorado, USA). FLAASH
uses the physics-based radiative transfer model MODTRAN 5 to perform
atmospheric correction, which needs flight and sensor metadata (i.e.,
sensor type, scene center latitude/longitude, average ground elevation,
sensor altitude, and flight date and time), as well as assumed or mea-
sured atmospheric parameters (i.e., atmosphere model, aerosol model,
and atmosphere water vapor) to generate apparent surface reflectance
spectra from radiance data (Berk et al., 2006). In our study, flight and
sensor metadata are available with the image. To simulate atmospheric
conditions, Mid-Latitude Summer (MLS) was selected as an atmosphere
model (Matthew et al., 2002), as AVIRIS data were acquired in Sep-
tember (temperature around 210 °C) at the latitude 36°N. Also because
our study area is not strongly affected by urban or industrial sources,
the rural aerosol model was selected (Shettle and Fenn, 1979). In order
to compute apparent surface reflectance using radiative transfer equa-
tions in MODTRAN 5, the column water vapor amount for each pixel
was determined using the 1135 nm water vapor absorption feature
(Kruse, 2004). To mitigate topographic effects as the study area is a
mountainous region, a Terrain Agular Bin method (TAB; Wen et al.,
2014) was applied to correct for topographic effects using a 30m re-
solution digital elevation model (DEM) derived from the data collected
by Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) as part of the Global Digital Elevation Model Version 2 (GDEM
V2) project (ASTER GDEM Validation Team, 2011).

3.3. Landsat imagery

Two cloud-free Landsat-5 Thematic Mapper (TM) scenes (path 43,
row 35) were acquired on May 13, 2008, and September 2, 2008, from
the USGS Landsat Surface Reflectance High-Level Data Products
(Schmidt et al., 2013) to represent pre- and post-fire forest conditions in
the study area. The images have solar zenith angles of 26.6° and 36.2°,
and solar azimuth angles of 124.7° and 135.9°, respectively. The data
were downloaded via the U.S. Geological Survey Landsat data portal
and had been geometrically, radiometrically, and topographically cor-
rected before being made available online. In this study, we used six TM
bands (1–5, and 7).

4. Methods

Our Disturbance Weighting Analysis Model (DWAM) includes three
major steps (Fig. 2): (i) development of GeoCBI-spectrum look-up tables
(LUTs), (ii) pre-fire fractional mapping, and (iii) burn severity mapping.
To facilitate the succeeding model description and discussion, we de-
fined the trees not affected by sudden oak death as ‘healthy trees’, and
those affected as ‘diseased trees’, regardless of the burn effects. The
overall methodological flow is briefly described in this paragraph. In
step (i), we developed two LUTs linking burn severity as measured by
GeoCBI with spectra for healthy and diseased trees, respectively. To do
so, we used two spectral libraries: one was developed by De Santis and
Chuvieco (2009), and the other one was derived from the post-fire
AVIRIS data. In step (ii), we mapped fractional cover of healthy and
diseased trees prior to fire occurrence, which was completed by ap-
plying the spectral unmixing MESMA model to the pre-fire Landsat TM
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image. The AVIRIS data acquired outside of the fire scar was used to
construct a spectral library consisting of healthy trees, diseased trees,
and soil. In step (iii), we estimated burn severity (in 30m grids) as a
linear combination of burn severity of healthy and diseased trees,
weighted by their areal fractions in each grid.

Finally, we evaluated DWAM performance using field-measured
GeoCBI data. In order to further understand the effects of disease pro-
gression on DWAM performance, we mapped disease infection at the
early, middle, and late stages, and analyzed the relationship between
infection stages and model performance. For the purpose of compar-
ison, we also assessed burn severity with the traditional spectral-index-
based approach, e.g., NBR, dNBR and RdNBR, which used both pre- and
post-fire imagery.

4.1. Development of GeoCBI-spectrum LUTs

4.1.1. LUT for healthy trees
A spectral library for healthy trees was derived from a research

project by De Santis and Chuvieco (2009), who studied forest burn
severity in the Mediterranean ecosystem, where our study area is also
located. Here, we did not use data from our study mainly due to the fact
that only 11 healthy plots were covered by the AVIRIS image, pre-
venting the extraction of meaningful LUT relating spectra and GeoCBI.
The spectral library was developed using two radiative transfer models

PROSPECT (Jacquemoud and Baret, 1990) and GeoSail (Verhoef and
Bach, 2003) in two steps: (i) at the leaf level, the PROSPECT model was
used to simulate spectra for brown (damaged by fire) and green (un-
damaged) leaves, where the input values included leaf structural
parameter, chlorophyll a+b, equivalent water thickness, dry matter
content, and brown pigments content (De Santis et al., 2009). (ii) The
output of the PROSPECT model, together with a series of canopy
parameters (substratum type, geometry, and illumination) (De Santis
et al., 2009), was used as inputs for parameterizing the GeoSail model,
scaling up the spectral library from the leaf to the canopy level. A LUT
was built to link 30 reference spectra with burn severity GeoCBI values
from 0 to 3 (De Santis et al., 2009). To facilitate the application of the
LUT to Landsat TM bands, each of the spectra in the LUT was convolved
to the Landsat spectral resolution, using a Gaussian model with a full
width at half maximum (FWHM) appropriate for the TM band spacing
(Mutanga et al., 2015).

4.1.2. LUT for diseased trees
We built a LUT for diseased trees by taking advantage of the AVIRIS

data acquired in our study area (see Section 3.3). We overlaid field-
measured plots on the AVIRIS image and extracted GeoCBI values from
the plots and the corresponding spectra from the image. This in-
formation was used to create a LUT linking 39 spectra with 39 GeoCBI
values in diseased forests. Among a total of 42 plots identified to be

Fig. 2. Methodological workflow used in this study.
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affected by sudden oak death in the field (Section 3.2), three plots were
removed because they were not covered by the AVIRIS image. Subse-
quently, the spectra in the LUT were convolved to the Landsat TM
spectral resolution following the same method as described in Section
4.1.1.

4.2. Pre-fire fractional mapping

4.2.1. Spectral library
We constructed a spectral library for pre-fire fractional mapping.

Here, we applied AVIRIS data to identify endmembers for green vege-
tation (GV) and non-photosynthetic vegetation (NPV), representing
healthy and diseased trees, respectively. Because the AVIRIS sensor was
flown after fire occurrence, endmember extraction was conducted in
the areas outside the fire scar. Specifically, we applied the Pixel Purity
Index (PPI; Boardman et al., 1995) algorithm to identify a pool of po-
tential endmember pixels in the AVIRIS image. PPI is an iterative pro-
cess, in which every pixel is repeatedly projected onto a random vector
selected through the n-dimensional scatter plot (n= 224 in our study),
and pixels are considered pure if they consistently fall into the tails of
the calculated histograms. After the initial assessment, the number of
endmembers was further reduced using the three techniques proposed
by Roberts et al. (2003), Dennison and Roberts (2003), and Dennison
et al. (2004): Count based Endmember Selection (CoB), Endmember
Average RMSE (EAR), and Minimum Average Spectral Angle (MASA).
To do so, we selected the endmembers that modeled the greatest
number of endmembers within their classes using CoB. When EAR was
considered, we chose endmembers that yielded the lowest RMSE within
each class. In addition, we identified the endmembers with the lowest
average spectral angle when MASA was taken into account. The final
endmembers were selected to satisfy all of the three criteria: highest
COB, lowest EAR and lowest MASA. Using the Visualization and Image
Processing for Environmental Research (VIPER) Tools package (Roberts
et al., 2007), we developed a spectral library, including 6 spectra for
GV, 5 spectra for NPV, 6 spectra for soil, and 1 spectrum for shade.
Finally, all the AVIRIS spectra were convolved to the Landsat TM
spectral resolution.

4.2.2. Fractional mapping
Using the endmember spectral library and the MESMA model, we

decomposed each pixel in the pre-fire Landsat image into GV (healthy
tree), NPV (diseased tree), soil, and shade fractions. The parameters for
calibrating MESMA included minimum and maximum allowable frac-
tion values for each class, maximum shade fraction, and RMSE. In this
project, we chose −0.05 and 1.05 for minimum and maximum allow-
able fraction values, respectively, 0.8 for maximum allowable shade
fraction value, and 0.025 for maximum allowable RMSE, following the
recommendations by Dennison and Roberts (2003). Here, the minimum
and maximum possible values were allowed to be slightly< 0 or
slightly> 1, because the precision of sub-pixel fraction estimation is
typically limited by the Modular Transfer Function (MTF) of Landsat
sensor; and the spectral signal for a given pixel is partially influenced by
the land cover of surrounding pixels (Forster, 1985; Townshend et al.,
2000). While multiple models met the above-mentioned criteria, the
model with the lowest RMSE was selected. Then, the MESMA derived
three types of fractional (GV, NPV, and soil) maps. Finally, three re-
lative abundance images of non-shade endmembers with values ranging
from 0 to 1 were obtained. We employed VIPER to complete the
MESMA procedures (Roberts et al., 2007).

4.3. Burn severity mapping

Burn severity mapping was carried out using the post-fire Landsat
TM image based on an assumption that burn severity in each pixel
(covered by a mixture of healthy and diseased trees) is a linear com-
bination of burn severity for two tree classes – healthy and diseased

trees, weighted by their areal fractions. To determine the burn severity
value for each class, it is also assumed that the spectral reflectance of
each burned pixel is the linear combination of reflectance spectra of
burned canopies from healthy and diseased trees, weighted by their
areal fractions (Eq. (2)).

= × + ×Reflectance Spectrum F Spectrum Fi j
i j

, Healthy Healthy Diseased Diseased

(2)

where spectrumHealthy
i represents the ith spectrum (range: 1 to 30) from

the reference spectra in the healthy tree LUT (Section 4.1.1), FHealthy is
the pre-fire fraction of healthy trees in the pixel area (Section 4.2),
spectrumDiseased

j represents the jth spectrum (range: 1 to 39) from the
reference spectra in the diseased tree LUT (Section 4.1.2), and FDiseased
is the pre-fire fraction of diseased trees in the pixel area (Section 4.2).

To determine the two optimal spectra (one for healthy trees and one
for diseased trees), we evaluated all 1170 spectral combinations
(30×39). Each of the calculated reflectance spectra from Eq. (2) was
compared with the reflectance of the corresponding Landsat pixel (at
the same location) using the Spectral Angle Mapper algorithm (SAM;
Kruse et al., 1993). Here, SAM measures the similarity (i.e., angle)
between the calculated and the observed spectral reflectance across
Landsat TM bands. SAM has proven effective in forest burn severity
assessment due to its simplicity and insensitivity to differences in illu-
mination (De Santis et al., 2009). The optimal spectra were chosen
when the simulated reflectance reached the highest similarity with the
observed reflectance, among all the tested spectral combinations.
Consequently, the corresponding GeoCBI values were derived from the
two LUTs. The estimated burn severity for each pixel area is the linear
combination of burn severity of healthy and diseased trees, weighted by
their areal fractions (Eq. (3)). This is based on an assumption that the
actual burn severity from a burned plot should be aggregated using the
same proportions of healthy and diseased trees.

= × + ×Burn severity GeoCBI F GeoCBI FHealthy Healthy Diseased Diseased (3)

where GeoCBIHealthy represents burn severity of healthy trees, GeoC-
BIDiseased represents burn severity of diseased trees, FHealthy is the frac-
tion of healthy trees within each pixel, and FDiseased is the fraction of
diseased trees within each pixel.

For model calibration and validation, Leave-One-Out-Cross-
Validation (LOOCV) was applied due to the limited number of field-
measured diseased plots (39 plots). Specifically, for each round of
evaluation, one observation was left out for model performance eva-
luation (computing RMSE), while the remainder was used for building
the diseased tree LUT.

4.4. Infection stage mapping

Depending on the invasion stages of sudden oak death, an infected
forest landscape may show three major symptoms (Meentemeyer et al.,
2008; Chen et al., 2015a): (i) early-stage (host trees retaining their
dried foliage and fine twigs for one year or more), (ii) middle-stage
(some older mortality with host trees losing fine crown fuels and sur-
face fuels beginning to accumulate for 1–3 years), and (iii) late-stage
(host trees being dead for over 4 years and causing gaps due to trees
falling over). To understand the infection stages in the studied forest
landscape at the time of fire occurrence, we employed the sudden oak
death-caused tree mortality maps from a previous project (He et al.,
under review). In that project, MESMA was used to extract NPV frac-
tions from Landsat TM annual time series. The results were refined
using Species Distribution Modeling (SDM) that simulated the statistical
probability of sudden oak death dispersal patterns over space and time,
leading to annual map accuracies from 74.24% to 82.50%. In our study,
we referenced the annual disease maps and divided the diseased trees
into three infection stages following three criteria: (1) all of the trees
that had been killed in or prior to 2005 were identified as the late stage;
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(2) the infection that occurred in 2006 and 2007 was identified as the
middle stage; and (3) the newly detected infection in 2008 was iden-
tified as the early stage. The mapping result was validated using field-
measured data, with overall accuracy, producer's accuracy, user's ac-
curacy, and kappa statistic reported in this study.

4.5. Burn severity assessment with NBR, dNBR and RdNBR

For the purpose of comparison, we calculated popular remote sen-
sing spectral indices (i.e., NBR, dNBR and RdNBR) for burn severity
estimation. Particularly, dNBR and RdNBR take into consideration the
pre- and post-fire spectral reflectance, which are also used in DWAM.
To do so, we applied the following equations to calculate these indices
(López-García and Caselles, 1991; Key and Benson, 2006; Miller and
Thode, 2007).

=
−

+
NBR B B

B B
4 7

4 7 (4)

= −− −dNBR NBR NBRPre fire Post fire (5)

=
−− −

−

RdNBR NBR NBR
ABS(NBR /1000)

Pre fire Post fire

Pre fire (6)

where B4 and B7 are the spectral reflectance of band 4 (near infrared,
NIR) and band 7 (short wave infrared, SWIR) of Landsat TM, respec-
tively. Then, we developed linear regression models linking individual
spectral indices with GeoCBI, with R2 and RMSE reported.

5. Results

5.1. Spectral libraries

The average spectral reflectance for burned trees (a – healthy; b –
diseased) is presented in Fig. 3. We also divided burn severity into five
main intervals, i.e., GeoCBI ∈ [0, 1.0), [1.0, 1.5), [1.5, 2.0), [2.0, 2.5],
and (2.5, 3.0]. In most cases, the reflectance curves show similar pat-
terns for both diseased and healthy trees (Fig. 3), where wildfire re-
duces forest spectral reflectance with the increase of burn severity from
the visible to the near-infrared portion of the spectrum. However, burn
severity leads to a higher variation of spectral reflectance in healthy
trees than in diseased trees, particularly when GeoCBI values are larger
than 1.0 (Fig. 3). In the shortwave infrared portion of the spectrum, the
patterns are different. For diseased trees, varying levels of burn severity
result in noticeable differences in reflectance curves. However, for
healthy trees, the spectral reflectance corresponding to two medium-
high burn severity intervals (GeoCBI ∈ [1.5, 2.0), [2.0, 2.5]) show si-
milar reflectance. In the same shortwave infrared portion, we further
found a stronger effect of medium-low burn severity [GeoCBI ∈ [1.0,

1.5)] on diseased trees than healthy trees, resulting in lower spectral
reflectance.

To facilitate calculating pre-fire fractions for healthy and diseased
trees, we extracted 6 GV, 5 NPV, and 6 soil endmembers (see methods
in Section 4.2.1), with their spectra shown in Fig. 4. We found a high
intra-class spectral variability among GV endmembers, possibly due to
the high variety of tree species types (e.g., mixed oak woodlands and
mixed coniferous forests) in the study area. In contrast, the spectral
signatures from disease-affected trees (i.e., NPV reflectance) and soil
are relatively homogeneous.

5.2. Fraction maps

The shade normalized fraction maps corresponding to the three
endmembers – GV, NPV, and soil are illustrated in Fig. 5, where light
colors represent high fractions and dark colors show low fractions. High
values in the NPV fraction map mainly distribute along the west coast,
which is consistent with the findings by Chen et al. (2017), who used
one-meter resolution KOMPSAT-2 satellite data to map sudden oak
death-caused tree mortality over the same area. However, a small
portion of high-value pixels were observed to spread all over the region,
suggesting an overestimation of disease occurrence by only using NPV
as the proxy of disease-caused tree mortality.

5.3. Burn severity maps

We generated two types of burn severity maps. For the first one, we
assumed that all the trees were in the similar, healthy conditions prior
to fire occurrence (i.e., the fractions of disease-affected trees were as-
signed value ‘0’ in DWAM). For the second one, we considered the
disease effects using the proposed model DWAM. For simplicity pur-
poses, the resulting burn severity maps were named as non-DWAM map
(not considering disease) and DWAM map (considering disease). Both
maps are dominated by moderate (1.5≤GeoCBI < 2.5) to severe
burns (2.5≤GeoCBI≤ 3.0). While severe burns dominate the non-
DWAM map with a spatial coverage of 78.9% (Fig. 6a), they only ac-
count for 27.3% in the DWAM map (Fig. 6b), in which moderate burns
dominate (66.6%).

We further compared field-measured and estimated GeoCBI values
using two scatter plots in Fig. 7. Similar to the findings as illustrated in
Fig. 6, ignoring the effects of disease on burn severity modeling caused
an evident overestimation with a relatively large error (RMSE=0.62;
Fig. 7a). Using the proposed model, we were able to reduce the error
(RMSE) to 0.36, a 42% decrease (Fig. 7b). We also found that the
proposed DWAM can reduce the overestimation of burn severity in both
moderately and severely burned plots (Fig. 6).

Table 1 provides summary statistics (area, percentage, minimum,
maximum, mean, median and standard deviation) of the estimated burn

Fig. 3. Average spectral reflectance corresponding to the main intervals of GeoCBI for (a) healthy and (b) diseased trees. Healthy tree spectra were derived from De
Santis and Chuvieco (2009).
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severity at three levels (low, moderate and high) using non-DWAM and
DWAM. Overall, DWAM considers that the majority of the area was
subject to moderate burn severity, while the area is considered to be
heavily burned with non-DWAM.

5.4. Infection stage map

The overall accuracy of mapping the stages of sudden oak death
infection is 69.84%, with a Kappa coefficient of 0.58 (Fig. 8). As pre-
sented in Table 2, the producer's accuracies of diseased forest across the
three progression stages are high (early-stage: 81.81%, middle-stage:
81.25%, late-stage: 85.71%), while the corresponding user's accuracies

are relatively lower (early-stage: 64.28%, middle-stage: 76.47%, late-
stage: 54.54%). This indicates a slight overestimation of disease infec-
tion. Trees may have been affected by both sudden oak death and other
disturbances (e.g., drought and strong wind). Especially at the late
stage, tree gaps may be filled with trunks, branches, leaves and/or low-
level, live vegetation (e.g., shrubs). The symptom of infestation was not
as apparent as that at the early-middle stages (see a review by Chen and
Meentemeyer, 2016), increasing uncertainties in disease mapping. Al-
though the disease progression map contains errors, it did not affect
burn severity modeling in our study and serves as valuable baseline
data for assessing the performance of our model across stages of disease
progression.

Fig. 4. The extracted endmember spectra for green vegetation (GV), non-photosynthetic vegetation (NPV), and soil. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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5.5. Performance of NBR, dNBR and RdNBR

We compared field-measured GeoCBI values with those estimated
by NBR, dNBR, and RdNBR using scatter plots in Fig. 9. In most cases
(except the middle-stage infestation), dNBR and RdNBR that account
for the spectral difference between pre- and post-fire conditions reveal
better fitting performance and smaller errors than NBR that uses only
post-fire data across stages of disease progression. The performance of
dNBR and RdNBR are comparable. While dNBR shows a better agree-
ment (higher R2 and smaller RMSE) with GeoCBI at the early stage of
infestation, RdNBR offers a relatively better solution in burn severity
estimation at the middle and late stages (Fig. 9).

6. Discussion

6.1. Assessment of burn severity mapping

The evaluation of DWAM and non-DWAM maps (Fig. 7) suggests an
overestimation of burn severity if pre-fire disease disturbances are not
considered in modeling. In fact, the comparison between the two maps
is equivalent to the comparison between our model and the physical
simulation model proposed by De Santis et al. (2009). This is because
when disease fractions are treated as zeros, DWAM only relies on the
spectral library and LUT developed for healthy trees, using the same
inputs and procedure as those in De Santis's radiative transfer modeling
framework (De Santis et al., 2009). Their framework has proven ef-
fective in areas that did not contain intensive disease disturbances (e.g.,
De Santis et al., 2010). However, in our study site, the high spectral

Fig. 5. Fraction maps of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil derived from the pre-fire Landsat image, where values range from low
(black tone) to high (light tone). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Burn severity maps (a) without considering the effects of sudden oak death, and (b) considering the disease effects using DWAM.
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Fig. 7. Comparisons between field-measured and estimated GeoCBI (2,4,6,8) without considering the effects of sudden oak death, and (1,3,5,7) considering the
disease effects using DWAM across all the infected plots, and the plots at the early-, middle-, and late-stage infection, respectively.
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similarity between diseased and burned tree patches (Hultquist et al.,
2014) can possibly confuse the development of one single, accurate LUT
linking burn severity and spectra, because a portion of diseased trees
(burned or not) may be treated as being affected (or more severely
affected) by fire. This is evidenced in Table 1, where the non-DWAM
map contains 78.9% of severe burns (GeoCBI ∈ [2.5, 3.0]); but the same
level of burn severity only accounts for 27.3% in the DWAM map that
has a higher estimation accuracy. Further because forest landscapes
typically show various symptoms corresponding to different stages of
disease progression (Meentemeyer et al., 2008), the relationship

between spectra and burn severity becomes complicated as such re-
lationship may vary from one disease-affected area to another. It is
therefore meaningful and effective, as demonstrated in our study, to
develop separate spectral libraries and LUTs for healthy and diseased
trees in burn severity estimation.

Spectral mixture analysis (SMA) has been recently introduced in
burn severity estimation (e.g., Veraverbeke et al., 2014; Quintano et al.,
2017). So far, the main strategy is decomposing post-fire optical ima-
gery (typically using MESMA) to extract NPV or char fractions at the
sub-pixel level, which are statistically linked to burn severity. Although

Table 1
Summary statistics of the estimated burn severity using non-DWAM and DWAM.

Burn severity Area
(ha)

Percentage
(%)

Minimum Maximum Mean Median Standard deviation

Non-DWAM Low 60.5 0.7 0.00 1.00 0.74 1.00 0.33
Moderate 1720.8 20.4 1.50 2.45 2.07 2.30 0.39
High 6691.5 78.9 2.50 3.00 2.71 2.75 0.11

DWAM Low 509.6 6.1 0.00 1.49 1.31 1.40 0.23
Moderate 5627.7 66.6 1.50 2.49 2.21 2.27 0.22
High 2314.1 27.3 2.50 2.99 2.62 2.60 0.09

Fig. 8. Forest disease infection map showing early-, middle-, and late-stage disease progression.
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DWAM also utilizes SMA and MESMA, our model differs from the others
by incorporating fractions of two broad tree classes (diseased and
healthy trees) from pre-fire imagery. The fractions are used to identify
the optimal spectrum for each of the two tree classes, and consequently,
burn severity is estimated using the GeoCBI-spectrum LUTs. While this
strategy is not as straightforward as directly extracting NPV or char
fractions (e.g., Quintano et al., 2017), we circumvent the challenge of
potentially obtaining large errors in post-fire image decomposition,
because the disturbed trees by sudden oak death and fire demonstrate
similarities in spectral reflectance (Hultquist et al., 2014).

Our model takes advantage of both pre- and post-fire Landsat ima-
gery to quantify disease effects. This strategy is similar to several em-
pirical approaches in the way that differentiates pre- and post-fire
spectral indices, e.g., dNBR (Key and Benson, 2006) and RdNBR (Miller
and Thode, 2007). While these spectral indices are able to capture the
spectral variation caused by pre-fire disturbances, it becomes proble-
matic to establish a robust statistical relationship between burn severity
and the extracted spectral differences. For trees not affected by sudden
oak death, the difference between pre- and post-fire spectral reflectance
has been found to be positively correlated with burn severity, although
such relationship may not significant in diseased tree patches (Chen
et al., 2015b). Based on the calculation of dNBR and RdNBR in this
study, we found that DWAM explained 51% of the variance in all the
data, while each of the dNBR- and RdNBR-based models explained 29%
(Fig. 7 versus Fig. 9). It is also true for the three stages of disease
progression, suggesting that DWAM can better capitalize on the pre-
and post-fire imagery to fit the data than using the spectral-index-based
approach in our study area. As Metz et al. (2011) and Chen et al. (2017)
pointed out, sudden oak death-caused increases in surface fuels may
reduce a tree's resistance to fire and in turn lead to high burn severity.
This suggests that with the occurrence of sudden oak death, the pre- and
post-fire spectral differences for diseased trees are possibly smaller than
those of their healthy counterparts, possibly underestimating burn se-
verity (Fig. 9). Uncertainties are further introduced by various symp-
toms of tree mortality corresponding to multiple stages of infection,
leading to a weak statistical relationship between spectral indices and
burn severity. This is particularly true for the early or middle stage of
infestation, where the pre- and post-fire spectral similarity is higher
than that at the late stage. Finally, the spectral-index-based approach is
empirically-based, which typically requires new field data for model
training at a new site or human interventions for determining the
thresholds of burn severity classes (Eidenshink et al., 2007). Field data
in our model are mainly used for developing GeoCBI-spectrum LUTs.
Our model has the potential to be directly used in an area having si-
milar tree species types and disturbances, i.e., similar LUTs, as ours.
However, the spectral-index-based approach is more mature and has
been widely used at regional to national scales, such as the United
States' MTBS (Monitoring Trends in Burn Severity) program (https://
www.mtbs.gov). Thorough evaluations on DWAM are expected before

our model is applicable to large areas.

6.2. Performance of burn severity mapping across stages of disease
progression

The results from DWAM and non-DWAM maps were both found to
be stage-dependent (Tables 3 and 4). Compared to the other two stages,
the late stage contains more trees that suffered from severe burns
(Table 3). Despite the errors in mapping stages of sudden oak death
infection, at all stages, the non-DWAM map shows a consistent bias
with the highest proportion of severely burned landscape (80.9% for
the early stage, 72% for the middle stage, and 87.4% for the late stage;
Table 3). In contrast, DWAM can reduce the overestimation of burn
severity at all the three stages, resulting in a landscape dominated by
moderate burns (Table 4). Particularly at the early and middle stages, a
large portion of the study area, which is considered as highly burned in
the non-DWAM map, is dominated by moderate burns in the DWAM
map. This suggests that DWAM is more likely to show a superior per-
formance in the areas where trees still retain fine twigs and large
branches, i.e., trees were recently affected by the disease. This is in an
agreement with our field experience and can be explained by the fact
that diseased trees were mistreated as burned trees as a result of similar
changes in biophysical or biochemical properties. Overall, forest re-
sponses to disturbances at various stages (e.g., disease progression) can
introduce different levels of uncertainties in remote assessment of burn
severity. Better understanding the spectrum-disturbance relationship,
such as constructing a stage-based spectral library, may further improve
the performance of burn severity mapping. However, such type of effort
also leads to increased workloads and high costs in data acquisition.

7. Conclusions

Forest ecosystems are facing a variety of disturbances including fires
and emerging infectious diseases. Especially when both fire and non-
fire disturbances coexist, high uncertainties are introduced to the re-
mote assessment of burn severity. In this study, we developed a new
model DWAM to accurately estimate burn severity by incorporating the
effects of pre-fire, disease-caused tree mortality. Our burn severity es-
timation has an average error of 0.36, a 42% improvement as compared
to the result without consideration of disease effects. We have further
compared DWAM with popular spectral-index-based approaches using
dNBR and RdNBR for the purpose of assessing the generalization ca-
pacity of DWAM. Our model's improvements were observed at all three
stages of disease progression. While being developed at one study site,
DWAM demonstrates several strengths making it potentially suitable for
burn severity mapping in other regions. First, we have carefully se-
lected a California study area for model development. The site features
a representative Mediterranean climate and has been widely studied for
forest disturbances, including disease and fire. Second, the model was
developed to study the general fire-disease effect. The assumptions,
input data and three model components are not tied to local environ-
ment of specific requirements. Third, DWAM has the potential to be
calibrated in areas affected by another type of disease/insect dis-
turbance, e.g., mountain pine beetle (Assal et al., 2014). The structure
of DWAM remains the same. Field observations, hyperspectral imagery,
and/or radiative transfer models can be used to build spectral libraries
and LUTs for capturing the relationship between post-fire spectra and
burn severity. However, we also note that the generalization potential
of DWAM needs to be thoroughly evaluated at independent sites to
ensure that the model is applicable to large-scale burn severity map-
ping.
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Table 3
Summary statistics of the burn severity in forests across three types of forests: early-, middle-, and late-stage disease progression in the non-DWAM map.

Burn severity non-DWAM Area (ha) Percentage (%) Minimum Maximum Mean Median Standard deviation

Early stage Low 16.8 1.1 0.00 1.00 0.71 1.00 0.34
Moderate 279.7 18.0 1.50 2.45 2.11 2.30 0.38
High 1256.5 80.9 2.50 3.00 2.70 2.70 0.10

Middle stage Low 15.3 0.7 0.00 1.00 0.75 1.00 0.32
Moderate 588.3 27.3 1.50 2.45 1.97 2.0 0.41
High 1552.5 72.0 2.50 3.00 2.71 2.75 0.11

Late stage Low 5.6 0.3 0.00 1.00 0.61 0.50 0.37
Moderate 256.4 12.3 1.50 2.45 2.04 2.20 0.39
High 1820.5 87.4 2.50 3.00 2.76 2.80 0.10

Table 4
Summary statistics of the burn severity in forests across three types of forests: early-, middle-, and late-stage disease progression in the DWAM map.

Burn severity DWAM Area (ha) Percentage (%) Minimum Maximum Mean Median Standard deviation

Early stage Low 84.3 5.4 0.00 1.49 1.25 0.39 0.29
Moderate 1056.4 68.0 1.50 2.49 2.23 2.28 0.21
High 412.9 26.6 2.50 3.00 2.60 2.58 0.08

Middle stage Low 231.1 10.7 0.00 1.49 0.34 1.40 0.18
Moderate 1408.3 65.3 1.50 2.49 2.19 2.25 0.23
High 517.5 24.0 2.50 3.00 2.62 2.60 0.09

Late stage Low 82.0 3.9 0.00 1.49 1.34 1.42 0.22
Moderate 1232.1 59.2 1.50 2.49 2.22 2.27 0.21
High 768.0 36.9 2.50 3.00 2.63 2.62 0.09
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