
RESEARCH ARTICLE

An operational machine learning approach to predict
mosquito abundance based on socioeconomic and landscape
patterns

Shi Chen . Ari Whiteman . Ang Li . Tyler Rapp . Eric Delmelle .

Gang Chen . Cheryl L. Brown . Patrick Robinson . Maren J. Coffman .

Daniel Janies . Michael Dulin

Received: 11 February 2019 / Accepted: 14 May 2019

� Springer Nature B.V. 2019

Abstract

Context Socioeconomic and landscape factors influ-

ence mosquito abundance especially in urban areas.

Few studies addressed how socioeconomic and land-

scape factors, especially at micro-scale for mosquito

life history, determine mosquito abundance.

Objectives We aim to predict mosquito abundance

based on socioeconomic and/or landscape factors

using machine learning framework. Additionally, we

determine these factors’ response to mosquito

abundance.

Methods We identified 3985 adult mosquitoes (ma-

jority of which were Aedes mosquitoes) in 90

sampling sites from Charlotte, NC, USA in 2017.

Seven socioeconomic and seven landscape factors

were used to predict mosquito abundance. Three

supervised learning models, k-nearest neighbor

(kNN), artificial neural network (ANN), and support

vector machine (SVM) were constructed, tuned, and

evaluated using both continuous input factors and

binary inputs. Random forest (RF) was used to assess

individual input’s relative importance and response to

mosquito abundance.
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Results We showed that landscape factors alone

yielded equal or better predictability than socioeco-

nomic factors. The inclusion of both types of factors

further improved model accuracy using binary inputs.

kNN also had robust performance regardless of inputs

(accuracy[ 95% for binary and[ 99% for continu-

ous input data). Landscape factors group had higher

importance than socioeconomic group (54.4% vs.

45.6%). Landscape heterogeneity (measured by Shan-

non index) was the single most important input factor

for mosquito abundance.

Conclusions Landscape factors were the key for

mosquito abundance. Machine learning models were

powerful tools to handle complex datasets with

multiple socioeconomic and landscape factors to

accurately predict mosquito abundance.

Keywords Socioeconomic gradient � Landscape
heterogeneity � Mosquito abundance � Machine

learning � Urban ecology

Abbreviations

VBD Vector-borne diseases

POP Population size factor

INC Income factor

EMP Employment rate factor

EDU Education status factor

DEN Population density factor

PRI Home sale price factor

VCR Violent crime rate factor

TRE Tree canopy factor

GRS Grass factor

BLD Building factor

ROD Road factor

SHI Shannon index

SMP Simpson index

kNN k-Nearest neighbor

ANN Artificial neural network

SVM Support vector machine

GLM Generalized linear model

RF Random forest

NMDS Non-metric multidimensional scaling

TP True positive

TN True negative

FP False positive

FN False negative

RMSE Root mean squared error

Introduction

Mosquitoes are the most important vector for human

health and responsible for many vector-borne diseases

(VBD) of human and other animals around the world

including malaria (vectored by Anopheles spp.), West

Nile disease (by Culex spp.), dengue fever, zika

disease, and yellow fever (these three vectored by

Aedes spp.,WHO 2018a, b). A fundamental concept

underlying the transmission of infectious diseases is

the epidemiology triad. Vector mosquitos connect the

three components of the triad which are: pathogens,

the environment, and hosts (Gordis 2013; WHO

2018a). While the pathology, etiology, and physiology

sides of many VBDs have been intensively investi-

gated and are comprehensively understood, the closely

coupled and highly heterogeneous human–environ-

ment–mosquito system has yet to be fully studied.

Socioeconomic status has been identified and

recognized as a critical factor for both individual and

population health (Winkleby et al. 1992; Adler and

Ostrove 1999; Hawe and Shiell 2000; Rael et al. 2016;

Younsi and Chakroun 2016). Socioeconomic devel-

opment and disparity are closely associated with the

human host’s nutrition status and risk of infectious

diseases (Leigh 1993; Dowd et al. 2009), many of

which are VBDs. For example, studies have shown

that socioeconomic disparity are strongly associated

with Dengue fever risk in India (Khormi and Kumar

2011); Malaria risk in Brazil (Kikuti et al. 2015; Lana

et al. 2017) and Uganda (Tusting et al. 2016); and

potential risk of VBD in Baltimore/DC (Dowling et al.

2013; LaDeau et al. 2013; Little et al. 2017) as well as

in the southeastern US (Obenauer et al. 2017).

Socioeconomic inequality, disparity, and gradient

are profound in urban areas, which draws attention to

urban health in the complex, human–environment

coupled system (Wu et al. 2011; Rydin et al. 2012;

Eder et al. 2018; Fournet et al. 2018; Whiteman et al.

2018). Urban ecosystems usually feature a high level

of landscape heterogeneity (Wu 2014), which could

influence vector mosquito population dispersion and

abundance, hence affecting VBD risk such as Malaria

and West Nile across different landscapes (Norris

2004; Ruiz et al. 2007; Johnson et al. 2008; Ozdenerol

et al. 2008; Foley et al. 2009; Gottdenker et al. 2014;

Cushman and Heuttmann 2010, Drew et al. 2011, Li

et al. 2014; Roiz et al. 2015, Homan et al. 2016; Eder

et al. 2018; ). However, there is lack of consensus how

123

Landscape Ecol



socioeconomic and landscape patterns together deter-

mine mosquito abundance and the risk of VBD.

Geospatial techniques are frequently used in study-

ing heterogeneous landscapes in urban ecology (Shao

and Wu 2008; Cushman and Heuttmann 2010, Drew

et al. 2011). Satellite imaging, remote sensing, and

geographic sampling are utilized in spatial modeling

of mosquito population management and VBDs such

as Malaria and Chikungunya (Keating et al. 2003;

Linard et al. 2009; Le Comber et al. 2011; Unlu et al.

2011; Boone et al. 2012; Reiner et al. 2013; Delmelle

et al. 2016; Ruiz-Moreno 2016; Whiteman et al.

2018). While these studies provide valuable insights,

several drawbacks still exist in current literature. First,

the collection sites for mosquitoes usually did not

cover a broad socioeconomic gradient. Second, micro-

scale landscape heterogeneity was not comprehen-

sively studied especially in the context of VBD. Adult

mosquitoes have relatively short flight distance (usu-

ally a few 100 m) during its adult lifespan (Hemme

et al. 2010), so micro-scale landscape is more relevant

to local mosquito population and VBD risk than meso-

and macro-scale landscape (Townsend et al. 2001,

2006). While the concept of landscape is generally

associated with the environment in the epidemiology

triad (Rydin et al. 2012), landscape itself is also

influenced by human (host) activies, especially in

urban landscape.

Compared with commonly used parametric meth-

ods, machine learning does not depend on a specific

man-made hypothesis. Machine learning methods can

handle complex data structures (e.g., non-normality,

heteroscedasticity) in landscape ecology studies and

implicit interactions among input factors (Fielding

1999; Baltensperger and Huettmann 2015; Humphries

et al. 2018). The complicated nonlinear interactions

between socioeconomic, landscape factors, and mos-

quito population in this study are difficult to measure

and model appropriately using more commonly used

hypothesis-driven parametric models (e.g., choice of

order of the interaction, Jopp et al. 2011). Machine

learning methods search in the (usually) high-dimen-

sional data space, identify potential patterns which are

generally difficult for parametric method to recognize,

and let the data speak for themselves without assigning

or relying on specific a priori hypothesis (Fielding

1999; Lantz 2015; Lesmeister 2015; Burger 2018;

Humphries et al. 2018). Currently, the power of more

recently developed data-driven machine learning

techniques (especially supervised classification meth-

ods) has yet to be unleashed in landscape ecology and

VBD (Lary et al. 2014; Cianci et al. 2015; Humphries

et al. 2018; Young et al. 2018).

The objectives of this study are to: (i) identify and

quantify the potential association between socioeco-

nomic and/or landscape factors and relative mosquito

abundance (encoded as high/low) across Charlotte, the

largest city in North Carolina with large socioeco-

nomic disparity and landscape heterogeneity, and (ii)

develop an operational and robust machine learning

model to assess potential VBD risk across Charlotte’s

broad socioeconomic and landscape gradient. Math-

ematically, this question could be written as finding

the following mapping (f) from inputs (Xsocio and/or

Xland) to an output (Y, a 0 or 1 binary value) for a given

sampling site i:

Yi ¼ f Xsocio i;Xland ið Þ; i 2 1; 90½ �;where:

Xsocio i ¼ POP; INC;EMP;EDU;DEN;PRI;VCR½ �i

Xland i ¼ GRS; TRE;BLD;ROD;DIV ; SHA; SMP½ �i

Yi ¼ 0 or Yi ¼ 1

We build three commonly-used supervised learning

models, including k-nearest neighbor (kNN), artificial

neural network (ANN), and support vector machines

(SVM), to quantify the association between mosquito

abundance and socioeconomic, landscape as well as for

both factors combined. We compare the model perfor-

mance with different input factors. We also compare the

machine learning methods’ performance with that of a

more commonly adopted traditional logistic regression

model. Results derived from this study will advance our

ability to identify areas with high mosquito abundance

andhigh riskofVBDswithinhighlyheterogeneousurban

landscapes. This approach will better inform interven-

tions designed to reduce the transmission of VBD in

urban areas through advancement of public health

programs, education of the public, and policy changes.

Materials and methods

Mosquito collection and data processing

Charlotte, the largest city in North Carolina with more

than 800,000 inhabitants distributed unevenly across a
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highly heterogeneous landscape. Charlotte is one of

the fastest growing cities in the US with an accumu-

lated growth rate of 59.6% over the past decade.

Nevertheless, Charlotte also has one of the highest

rates of poverty and lowest rates of social-economic

mobility in the US (Chetty et al. 2014). Such fast paced

growth combined with high poverty make Charlotte

the city with 10th highest income inequality in the

entire US (The World Bank 2015). The greater

Charlotte area has been consistently infested with

various species of mosquitoes (especially during

summer month hence when we sampled mosquitoes)

with approximately 1000 reported mosquito-borne

disease cases between 2004 and 2016 (Hall et al.

2018). Worse still, many cases have been largely

underreported so the risk is likely much higher (Hall

et al. 2018). Thus, there is public health need to

accurately quantify and predict mosquito abundance

across the city’s socioeconomic gradients and hetero-

geneous landscapes.

We collected mosquito samples with gravid traps

during a 12-week long sampling period (starting early

June till late August) in 2017 at 90 pre-identified sites

across the city. The 12-week long period covered the

most active mosquito season in Charlotte (Whiteman

et al. 2018). Gravid traps had higher sensitivity to lure

bloodmeal-taken female mosquitoes to oviposit, thus

the sample size in gravid trap was more relevant to

potential VBD risk, as female mosquitoes cannot

oviposit without first biting and taking bloodmeal. The

90 sampling sites were selected to ensure covering a

vast majority of the broad socioeconomic gradient in

Charlotte with minimal spatial autocorrelation (Del-

melle et al. 2016, Whiteman et al. 2018).

Seven socioeconomic factors associated with

mosquito presence/abundance and potential VBD risk

were included in this study: population size at

sampling site (POP), average household income

(INC), employment rate (EMP), education status

(percent with at least bachelor’s degree, EDU),

population density (DEN), average home sale price

(PRI), and violent crime rate (VCR). These seven

factors were selected from a broader collection of

more than 15 socioeconomic factors using a variable

selection technique described in our previous study

(Whiteman et al. 2018).

Orthophotos of Charlotte in 2016 (most recent as of

the study) were provided by the Mecklenburg County

Public Health Department through publicly accessible

GIS portal. Land cover types of the sampling sites

(30 m radius from the centroid of each site, repre-

senting potential natural flight distance of Aedes spp.,

the dominant mosquitoes in the study region) were

analyzed and quantified from the remote-sensing

images by Fragstats 4.0 (McGarigal et al. 2012)

software. 30 m radius was selected to reflect potential

dispersion distance of adult female Aedes mosquitoes

(Hemme et al. 2010), which are the dominant

mosquito in Charlotte and North Carolina in general.

Four critical patch types that were important to

mosquito presence/abundance and potential human-

mosquito interactions were included: tree canopy

(TRE), grass (GRS), building (BLG), and road

(ROD); all quantified as percentage in the 30 m radius

area of the sampling site using Fragstats 4.0 software.

Water and bare soil were excluded in this study

because the majority of sites did not have these two

patch types. Since the main focus of this study is to

investigate micro-scale landscape and its influence on

mosquito abundance, it is therefore appropriate to

disregard waterbodies and focus on areas with human

residents in this study. In addition to patch area,

Shannon–Wiener diversity index (SHA) and Simpson

index (SMP) were calculated for each site to quantify

micro-scale landscape diversity (patch types), which

could affect mosquito abundance. Additionally, land-

scape division index (DIV) was calculated to estimate

the probability that two mosquitoes might overlap in

their geographic locations (Jaeger 2000), hence DIV

could influence mosquito reproduction and population

dynamics. A detailed list and description of input/

output factors can be found in Table S1.

Detailed sampling and mosquito collection proce-

dures were reported in our previous study (Whiteman

et al. 2018). Since the factors’ numeric ranges varied

substantially, factors that were not bounded between 0

and 100 percent were first scaled between 0 and 100

percent using the following feature scaling equation

for further analyses. This process could avoid potential

overriding from a few factors that had large absolute

numbers (e.g., INC, PRI). Besides, feature scaling

involved only linear transformation, which preserved

the overall shape and property of original data

distribution.

x0i ¼
xi � xmin

xmax � xmin
; i 2 1; 90½ �
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The final complete dataset had 90 rows (represent-

ing 90 sampling sites), 7 columns of socioeconomic

factors (coded as POP, INC, EMP, EDU, DEN, PRI,

and VCR), 7 columns of landscape factors (TRE,

GRS, BLD, ROD, DIV, SHA, and SMP), and 1

column of mosquito abundance (number of mosqui-

toes in each site, coded as MOS). The complete list of

descriptions of these factors are provided in Table S1.

Quantifying association

within and between socioeconomic and landscape

factors

We calculated Pearson correlation coefficients

between each pair of socioeconomic and landscape

factors to identify and quantify their associations

(independent of mosquito abundance) and then deter-

mined potential substantial interaction between

socioeconomic and landscape factors. This step was

necessary to determine potential interaction terms in

the more commonly used hypothesis driven paramet-

ric models such as logistic regression, but not required

for machine learning, since most machine learning

models handled interactions among input factors

intrinsically (Humphries et al. 2018).

Modeling association between socioeconomic

and/or landscape factors and mosquito abundance

Three common supervised classification machine

learning models: k-nearest neighbors (kNN), artificial

neural network (ANN), and support vector machine

(SVM) were built and tuned to quantify the association

between socioeconomic and/or landscape factors and

mosquito abundance (Lantz 2015; Lesmeister 2015;

Burger 2018). Among many other recently developed

classification models, these three were chosen because

of their popularity, maturity, and practicality (with

existing and stable analysis package in R). The input

factors (socioeconomic and landscape factors) and

response variable (mosquito abundance) were both

dichotomized into binary values (any value smaller

than themedian of the factor would be assigned with 0,

otherwise 1), and left untreated (raw continuous input

data were fed into the model). The two sets of input

data reflected availability and quality of the input data:

the original continuous input factors (both socioeco-

nomic and landscape) were (in theory) more

informative but costly to collect, and places of interest

that we wanted to predict mosquito abundance (usu-

ally socioeconomically disadvantaged) might not have

such detailed data. In comparison, binary input data

were much easier to achieve and derive, at a cost of

losing information. However, as shown later in result

section, we should not assume original continuous

input data were naturally better than dichotomized

binary in predicting mosquito abundance. Mosquito

abundance was expressed as either ‘‘high’’ (coded as 1,

Yi = 1) or ‘‘low’’ (coded as 0, Yi = 0) comparing to the

median value. This would create an operational

criterion for public health officers and general public

to efficiently estimate relative mosquito abundance in

a given site. For each type of the models, three sets of

inputs were used as inputs: seven socioeconomic

factors alone, seven landscape factors alone, and all

socioeconomic and landscape factors combined. In

summary, we had a total of 18 combinations of

different models and inputs, factorized by three types

of machine learning model (kNN, ANN, or SVM),

three sets of input factors (socioeconomic factor alone,

landscape factor alone, or combined), and two types of

input factors (binary or continuous).

For kNN, the predicted value of mosquito abun-

dance (classifier) was based on its surrounding

‘‘neighbors’’ in the reduced-dimensional space (usu-

ally 2-dimensional) whose ‘‘identity’’ (i.e., 0 or 1

value, corresponding to low and high levels of

mosquito abundance) were already known. The value

of k indicated number of neighbors to determine the

classification. For example, k = 1 indicated that the

predicted outcome value (high/low mosquito abun-

dance) is governed solely by its single nearest

neighbor. In general, larger k value (e.g., k = 15)

could reduce the influence from random noise, at a

cost of making the boundary of the neighbors less

apparent. In this study, we tested a wide range of

values, k = 1–15, to bracket the potential optimal

k value and identify the most accurate prediction in

kNN models.

ANN used hidden layers to map input ‘‘neurons’’

(socioeconomic and/or landscape factors) to output

‘‘neuron’’ (mosquito abundance). Each hidden layer

further consisted of several nodes that transform and

propagate the input signal. The weighted value

associated with the edge between different layers of

nodes could be interpreted as relative importance of

the current node, conditioned on a previous layer of
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nodes and similar to the interpretation of the regres-

sion coefficient (Gunther and Fritsch 2010).

SVM tried to separate the two classes (high and low

mosquito abundance in this study) as far as possible

(i.e., maximizing margin) in the high dimensional

space (or reduced 2-dimensional space). This was

done by computing a specific SVM classifier. Hyper-

parameter tuning of these three models were shown in

supplementary material S1. Note that none of these

three models were consistently better than the other

two, and the model performance depended on the

specific dataset, model specifications, and model

tuning.

Model performance evaluation and prediction

A total of 18 machine learning models were con-

structed, tuned, and predicted against the observations.

Cross-validation was done using a 10-fold cross-

validation approach because of relatively small dataset

size. We randomly split the data into 10 equal

subsamples (each subsample contained nine sampling

sites), used 9/10 of subsamples (comprising randomly

selected 81 sampling sites) for model construction and

the remaining 1/10 (9 sampling sites) for model

validation. This process was repeated until each

subsample was used exactly once for validation

against the observation. Then root mean squared

errors (RMSE) were computed to check the validity of

the models and in general, the smaller RMSE value the

better model predicted against unseen samples.

A 2-by-2 confusion matrix (also known as the

contingency table in other disciplines such as ecology

and epidemiology) was then constructed with the four

cells (elements) representing number of true positives

(TP, corresponding to model correctly predicted high

risk site); false positives (FP, model incorrectly

predicted high risk site where it should be low risk);

false negatives (FN, model incorrectly predicted low

risk site where it should be high risk), and true

negatives (TN, model correctly predicted low risk

site). Model accuracy and its 95% confidence interval

was calculated from the confusion matrix to evaluate

model performance over all samples. Note that model

performance described accuracy across all observa-

tions and cross-validation measured accuracy on

unseen observations (i.e., predictability). This two-

step process evaluated the potential risk of model

overfitting (i.e., a model worked well on observed data

but failed to make accurate predictions on new

dataset).

Some other commonly used machine learning

performance evaluation metrics such as sensitivity

and specificity were also calculated. Intuitively, sen-

sitivity indicated how well the model could detect true

positives (correctly identified high mosquito abun-

dance sites in this study) whereas specificity quantified

how well the model did with true negatives (correctly

identified low mosquito abundance sites in this study).

Another important factor, the F1 score, balancing

precision and recall, was also computed. Ideally, a

desirable classification model (or the classifier) should

have high values (e.g., over 80%) across all these

metrics. The equations of these metrics were provided

in Supplementary Material S1.

We the used non-metric multidimensional scaling

(NMDS) to demonstrate the performance of the

optimal model (which had high accuracy as well as

low RMSE) on a 2-dimensional space, showing TP,

FP, TN, and FN of the 90 sampling sites based on their

socioeconomic and/or landscape factors.

Relative importance of socioeconomic

and landscape factors on mosquito abundance

We applied random forest (RF), another type of

commonly used machine learning model, to explicitly

assess the relative importance of continuous input

factors on mosquito abundance because RF was

designed to differentiate the relative contributions of

the inputs (i.e., an input factor was a node in the

‘‘forest’’, Liaw and Wiener 2002). Input factor’s

relative importance was quantified as the mean

decrease of Gini coefficient. The larger the coefficient,

the more contribution the factor was to mosquito

abundance, and all contributions should sum up to

unity. Then each input factor’s response curve to

mosquito abundance was constructed, conditioned on

all other input factors, using RF as well. Here, only

continuous inputs were used, and binary inputs were

not considered because we wanted to explore the

response curve and see whether there existed an

‘‘optimal’’ value of the input factor that was associated

with lowest mosquito abundance. From vector control

and disease prevention perspective, it was imperative

to know how each input factor was related to mosquito

abundance. All models were analyzed in R 3.5.0 with

additional necessary packages (R core team 2019).
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Both the original dataset and analysis codes were open

to public and freely available upon request.

Results

Association within and between socioeconomic

and landscape factors

Distributions of socioeconomic factors and landscape

factors (as well as mosquito abundance) are shown in

Figs. 1 and 2, respectively. Among socioeconomic

factors, PRI and VCR distributions were highly

skewed and asymmetric (Fig. 1; note the trapezoids

were usually asymmetric). For landscape factors, TRE

always had the highest patch coverage, followed by

GRS, BLD, and ROD within 30 m radius of sampling

sites. The distributions were not as highly skewed as

DIV, SHA, and SMP. The distribution of MOS was

also highly skewed: the majority of sites had relatively

low mosquito abundance while a few had high

abundance, in concordance with the 20–80 rule (also

known as the Pareto principle, i.e., a few sites having

high abundance of mosquitoes). These results showed

non-normality of many of the socioeconomic, land-

scape factors and mosquito abundance which can be

problematic for hypothesis-driven models.

Pearson correlations between socioeconomic and

landscape factors were calculated and shown in Fig. 3.

Within the socioeconomic factor group, POP and

DEN, INC and EDU/PRI, EDU and PRI were highly

positively associated (using 0.5 as reference value).

Within the landscape factor group, TRE was highly

negatively associated with BLD/SHA/SMP, whereas

both BLD and ROD were highly positively associated

with SHA/SMP metrics. Furthermore, DIV, SHA, and

SMP were also highly correlated. These high corre-

lations indicated potential collinearity of factors,

which impeded the traditional methods (such as

GLM) to establish the accurate relations between

MOS and the two kinds of independent factors. In

addition, no socioeconomic factors had any significant

correlation with landscape factors. Such complexity in

input data (high collinearity within group of factors

but low correlation across groups) posed challenge to

GLM but could be solved by data-driven machine

learning methods.

Association between socioeconomic and/

or landscape factors and mosquito abundance

During the field sampling season in 2017, we collected

and identified a total of 3645 Aedes albopictus (the

Asian tiger mosquito), the dominant species of

mosquito in Charlotte. Others were A. trisariatus

(n = 203), A. vexans (n = 41), A. japonicus (n = 39),

Culex restuans (n = 41), and C. pipiens (n = 16).

Highly degraded samples were sent to the

Fig. 1 Scaled distribution

of socioeconomic factors

across 90 sample sites
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Fig. 2 Scaled distribution

of landscape factors and

mosquito abundance across

90 sample sites. The

horizontal line between two

trapezoids indicates mean

value for the factor. The

more asymmetric the line lie

between the two trapezoids,

the more skewed the factor

distributes (i.e., non-

normality). Non-normality

is a common challenge to

hypothesis-driven model

(GLM)

Fig. 3 Correlation between

socioeconomic and

landscape factors.

Using ± 0.50 as reference

value, there is no significant

correlation between any pair

of socioeconomic and

landscape factor. However,

there are a lot of significant

correlations within

socioeconomic or landscape

factor group, indicating high

collinearity within these two

groups, which is considered

as another potential problem

in hypothesis-driven

parametric models such as

logistic regression
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biosystematics unit of the Walter Reed Army Institute

of Research for further identification using PCR. A.

aegypti (the native yellow fever mosquito) was not

present in Charlotte, indicating that it had been

completely replaced by its invasive counterpart, A.

albopictus which had first appeared in the city in the

1980s. These Aedes vector mosquitoes are responsible

for several endemic vector-borne diseases in this

region, such as Dengue fever, Eastern equine

encephalitis, and La Crosse encephalitis. In addition,

they could be potential vectors for traveling-related

disease such as Zika to spread locally in this region.

Model performance (measured by model accuracy

and 95% confidence interval from each of the confu-

sion matrix associated with specific model/input) was

quantified and summarized in Tables 1 and 2, for

binary and continuous input, respectively.

For binary input, the highest model accuracy was

obtained in kNN (k = 1, accuracy[ 95%) using both

socioeconomic and landscape factors as inputs, fol-

lowed by SVM using both factors as inputs (accu-

racy[ 90%), and ANN using both factors as inputs

(accuracy[ 80%). In general, including landscape

factors alone performed equally well or slightly better

than socioeconomic factors alone across all models

(i.e., green bars were almost always higher than red

bars in Fig. 4 in all four panels). The only exception

was in model specificity in SVM model (lower right

panel in Fig. 4) where landscape factors alone resulted

in slightly worse performance than socioeconomic

factors alone. Nevertheless, including both groups of

factors resulted in substantial increase in model

performance in all four metrics across all three

machine learning models (i.e., blue bars always higher

than either red or green bars in Fig. 4 in all four

panels). This finding highlighted the importance of

landscape heterogeneity on mosquito abundance.

However, it was unexpected using parametric model

such as logistic regression, as Pearson correlation

didn’t detect any significant correlation between

socioeconomic and landscape factors groups, hence

interaction terms would not be included. There existed

some implicit interaction that were critical to mosquito

distribution, and such interaction could be identified

by machine learning methods, which did not rely on a

priori hypotheses.

Comparing across the three machine learning

methods, kNN performed the best with regard to

model accuracy, F1 value, and sensitivity, followed by

SVM and ANN (Fig. 4). This implied that if we

wanted to build a machine learning model with high

predictability on high mosquito abundance alone

(measured by sensitivity) or overall abundance (both

high and low mosquito abundance, measured by

accuracy and F1 value), kNN (with k = 1) would be

the optimal one to start with. For model specificity,

kNN was not much ahead of SVM. Nevertheless, from

the mosquito population and VBD risk estimation

perspective, high mosquito abundance sites should be

given higher priority and attention, thus model sensi-

tivity was a more important measurement than speci-

ficity. Consequently, we reckoned that kNN was the

most appropriate supervised machine learning method

to predict mosquito abundance based on both socioe-

conomic and landscape factors/inputs in Charlotte,

with 0–1 binary inputs. Thus, kNN model with

socioeconomic and landscape factors as inputs

reached optimal predictability (97.7% accuracy) for

use in an urban landscape without a need for further

fine-tuning.

When continuous input values (only scaled but not

ditchotomized) were used, kNN remained to be highly

accurate. Using landscape factors alone yielded 100%

accurate prediction of mosquito abundance over 90

sampling sites, shadowing already very good 94%

accuracy using socioeconomic factors alone.

Table 1 Model accuracy and 95% confidence interval, binary input

Model/input Socioeconomic Landscape Socioeconomic ? landscape

kNN 0.78 (0.68–0.86)** 0.79 (0.69–0.87)*** 0.98 (0.92–1.00)***

ANN 0.69 (0.58–0.78)*** 0.69 (0.58–0.78)*** 0.81 (0.71–0.89)***

SVM 0.70 (0.59–0.79)*** 0.76 (0.65–0.84)*** 0.91 (0.83–0.96)***

*p\ 0.05; **p\ 0.01; ***p\ 0.001; these p-values were derived from the confusion matrices and not from the actual models

directly

123

Landscape Ecol



Landscape factors continued to be an equally well or

better group of predictors (input factors) than socioe-

conomic alone for kNN (100% vs. 94%), ANN (66%

vs. 66%), and SVM (77% vs. 65%). It was also worth

noting that while kNN performed better using

continuous inputs, ANN and SVM actually had

slightly less optimal performance when fed with

continuous inputs.

Since socioeconomic and landscape factors com-

bined showed the highest model accuracy, we

Table 2 Model accuracy and 95% confidence interval, continuous input

Model/input Socioeconomic Landscape Socioeconomic ? landscape

kNN 0.94 (0.88–0.98)*** 1.00 (0.96–1.00)*** 1.00 (0.96–1.00)***

ANN 0.66 (0.55–0.75)*** 0.66 (0.56–0.75)*** 0.67 (0.56–0.76)***

SVM 0.65 (0.54–0.75)*** 0.77 (0.67–0.85)*** 0.73 (0.63–0.82)***

*p\ 0.05; **p\ 0.01; ***p\ 0.001; these p-values were derived from the confusion matrices and not from the actual models

directly

Fig. 4 Comparison of model performance of three machine

learning models with different sets of binary input variables.

Dashed red line indicates 80% metric value and is chosen to

reflect excellent model performance in this study. Having both

socioeconomic and landscape factors as input usually yield

excellent model performance (accuracy, F1, sensitivity, and

specificity) for three machine learning models. (Color

figure online)
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evaluated four models’ predictability based on the two

factors combined as input with 10-fold cross-valida-

tion. RMSE of these models with binary inputs were

0.57 ± 0.13, 0.69 ± 0.07, and 0.67 ± 0.14 (mean ±

S.D.) for kNN, ANN, and SVM, respectively, using

binary inputs; and 0.67 ± 0.10, 0.72 ± 0.11, and

0.67 ± 0.13 for kNN, ANN, and SVM, respectively,

using continuous inputs.

Based on these results, kNN not only had the

highest model accuracy using either continuous or

binary input type, but also performed the best in cross-

validation with the smallest RMSE value among all

three machine learning methods. Consequently,

kNN’s predictability on new dataset was the optimal

among the three models as well. Practically, when

tested on another year of data captured in the future or

at another location, kNN should perform consistently

well on the new dataset (with fine-tuning of model

parameters). Predictability of the other three types of

model did not differ much based on their RMSE

values.

Individual input factor’s contribution

and relationship to mosquito abundance

We showed individual input factor’s contribution

(relative importance) to mosquito abundance in Fig. 6,

derived from the mean decrease in Gini coefficient

using RF model. In general, landscape factors (labeled

in red) were of more importance than socioeconomic

factors. Seven landscape factors had a total of 54.4%

contribution on mosquito abundance, while seven

socioeconomic factors had only 45.6%. This finding

was consistent from the previous section that land-

scape factors alone yielded equally well or better

performance in predicting mosquito abundance than

socioeconomic factors alone (Figs. 4 and 5). We

suggested that the reason was landscape factors were

actually an interplay between host socioeconomic

development and ambient environment, hence land-

scape factors should include some information regard-

ing socioeconomic factors. Besides, micro-scale

landscape heterogeneity (the Shannon–Wiener diver-

sity index, SHA), was the single most influential factor

(9.56%) for mosquito abundance and was far ahead of

the second most influential factor (violent crime rate,

7.77%). Thus, we confirmed again that landscape

factors, especially landscape heterogeneity,

substantially influenced mosquito abundance at their

micro-scale landscape.

Individual input factor’s response curves (condi-

tioned on all other input factors) were provided in

Fig. 7. In general, negative contribution meant that

mosquito abundance was negatively impacted. For

instance, SHA, the most influential factor, had an

optimal value (around 65–70%) that minimized the

contribution (i.e., the ‘‘saddle’’ portion on SHA plot

panel of Fig. 7). This indicated that at around 65–70%

SHA, mosquito population size should be minimal.

However, larger ([ 70% SHA) or smaller (espe-

cially\ 40% SHA) were both associated with higher

mosquito abundance. Therefore, larger landscape

diversity did not necessarily result in lower mosquito

abundance. Similarly, GRS (grass coverage) also had a

saddle point (Fig. 7) around 40% GRS, indicating that

an optimum of 40% GRS coverage was associated

with the least mosquito abundance in Charlotte-

Mecklenburg County. All these results shed light to

more appropriate landscape design and urban planning

with regard to potential mosquito infestation.

In conclusion, we showed that micro-scale land-

scape factors, especially landscape heterogeneity, was

the key to accurately predict mosquito abundance. The

non-normality, high within-group collinearity, and

low between-group correlation in observed data all

pose technical challenges to derive accurate model

using conventional hypothesis-driven parametric

methods. Supervised machine learning models, espe-

cially kNN, were able to provide robust and accurate

predictions of mosquito abundance across socioeco-

nomic gradients in heterogeneous urban landscapes

such as in Charlotte. These insights, such as the

nonlinear responses of mosquito abundance to land-

scape and socioeconomic factors, can be used to guide

landscape design and urban planning in large

metropolitan areas.

Discussion

In this study, we have demonstrated that landscape

factors were important to mosquito abundance and

was further intermingled with socioeconomic dispar-

ity. These associations could be detected and quanti-

fied by machine learning, especially supervised

learning models. These models provide powerful tools

that can identify potential hidden connections inside
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complicated datasets that are usually undetectable by

traditional methods. For instance, there is no signif-

icant correlation between socioeconomic and land-

scape factors (i.e., Pearson correlation

coefficient[ 0.5), and our previous study using

logistic regression (continuous response, Whiteman

et al. 2018) showed no model improvement by adding

landscape factors atop socioeconomic factors. How-

ever, these two groups of factors are synergistic with

regard to mosquito abundance, as revealed by all three

types of machine learning models used in this study

(kNN, ANN, and SVM, comparing model accuracy

among three sets of input factors).

Furthermore, these supervised learning models not

only help identify hidden interactions between differ-

ent factors, but also provide high accuracy especially

using kNN. In addition, our proposed models use

socioeconomic and landscape factors as inputs, which

are not as dynamic as other commonly-used environ-

mental factors such as temperature and humidity

reducing the costs of monitoring and data collection.

Thus, machine learning models are able to accurately

estimate and predict mosquito abundance across broad

socioeconomic gradients and heterogeneous land-

scapes, especially in an urban area, and they can

provide integrated evidence for public awareness of

VBD risk and decision-making around VBD control

efforts. In this study we have evaluated feasibility of

machine learning models, and they can be readily

applied to predict mosquito abundance in other

locations, too. While the model has used 90 sampling

sites in Charlotte, we demonstrate its ability to predict

mosquito abundance in other locations as long as their

socioeconomic and landscape factors are quantified.

Fig. 5 Comparison of model performance of three machine learning models with different sets of continuous input variables. Dashed

red line indicates 80% metric value and is chosen to reflect excellent model performance in this study. (Color figure online)
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Further insights could be gained on which factor

combinations would yield high mosquito abundance,

thus helping design more effective mosquito/VBD

surveillance and control programs across Charlotte.

Among all three supervised learning models that we

have built, ANN is the most explicit and straightfor-

ward. It has an explicit model structure and resembles

a structure equation model. However, a structure

equationmodel usually does not involve a hidden node

or a hidden layer and it is still considered a parametric

method. The actual biological interpretation of these

hidden layers and nodes are generally unclear and

hidden layer/nodes are assigned ad hoc. Machine

learning models are data-driven, often much more

complicated to build and test, and they rely on specific

codes with fine-tuned parameters (also known as

hyperparameters in machine learning field, e.g.,

k value in kNN model, number of layers and nodes

in ANN, and kernel specification in SVM) that require

experience to operate.

From a practical mosquito population/VBD

surveillance perspective, it is more important for

public health officers and the general public to know

where high mosquito abundance will be (i.e., ‘‘hot-

spot’’) in a heterogeneous landscape (Fournet et al.

2018), rather than knowing the exact population size,

which might be less accurate secondary to over-fitting.

Thus, our modeling framework was able to deal with

different needs and input data quality (continuous or

binary, representing more accurate but hard-to-collect

surveillance or easier to retrieve relative information).

We suggest that machine learning (data-driven

method) is not meant to completely replace traditional

hypothesis-driven methods, just like frequentist and

Bayesian methods should be synergistic and not

mutually exclusive. For example, while this study

has focused on machine learning methods, model

accuracy is actually evaluated with the hypothesis-

driven method (e.g., calculations from confusion

matrix). While machine learning methods can provide

additional insights (and sometimes more intensive

scrutiny) of the data, they rely on researchers to make

the judgement regarding their validity and inter-

pretability. We should not treat machine learning

methods as a self-contained autonomous and auto-

matic data processor, especially in the field of

landscape ecology where many aspects of model

implementation need careful calibrations. Instead, we

recommend using machine learning in conjunction

with hypothesis-driven method. For instance, in this

study we have computed individual factor’s response

to mosquito abundance based on machine learning

method (Fig. 6), and specific hypotheses can be

proposed and tested to further investigate such non-

linear responses.

Future direction for this study will be applying the

proposed machine learning models across multiple

years and in different locations. We have

Fig. 6 Individual input

factor’s contribution to

mosquito abundance. SHA

(Shannon diversity index)

indicates the landscape

(landcover) type

heterogeneity at micro-scale

landscape (in 30 m radius of

sampling site), it does not

mean diversity of

mosquitoes
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demonstrated the effectiveness of machine learning

models on predicting mosquito abundance, but their

robustness is yet to be validated. Although kNN

achieves the optimal model performance in this study

with both socioeconomic and landscape factors inputs,

other models with different set of input might outper-

form kNN based on new observed dataset. Besides,

environmental factors, especially temperature fluctu-

ation within micro-climate (at spatial resolution

relevant to mosquito activity, Chen et al.

2013, 2015) and host-level interventions such as

hygiene (Degroote et al. 2018), could also be incor-

porated to complete the epidemiology triad and model

potential VBD risk. The ultimate goal is to work

Fig. 7 Individual input factor’s response curve to mosquito

abundance. The order of the input factor reflects its relative

importance as shown in Fig. 5. Positive Y-axis value means

positively associated with mosquito abundance (i.e., increasing

mosquito abundance) while negative Y-axis value indicates

negative association (more relevant to mosquito control)
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toward a more effective surveillance system for VBD

risk especially in urban areas (Eder et al. 2018;

Fournet et al. 2018). We will also investigate and

understand the detailed mechanism of individual

factor’s response to mosquito abundance, and propose

corresponding vector-control strategies.
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Linard C, Ponçon N, Fontenille D, Lambin EF (2009) Risk of

malaria reemergence in southern France: testing scenarios

with a multiagent simulation model. EcoHealth 6(1):135

Little E, Biehler D, Leisnham PT, Jordan R, Wilson S, LaDeau

SL (2017) Socio-ecological mechanisms supporting high

densities of Aedes albopictus (Diptera: Culicidae) in Bal-

timore, MD. J Med Entomol 54(5):1183–1192

McGarigal K, Cushman, SA, Ene E (2012) Fragstats v4: spatial

pattern analysis program for categorical and continous

maps. http://www.umass.edu/landeco/research/fragstats/

fragstats.html

Monaghan AJ, Sampson KM, Steinhoff DF et al (2018) The

potential impacts of 21st century climatic and population

changes on human exposure to the virus vector mosquito

Aedes aegypti. Clim Change 146(3):487–500

Norris DE (2004) Mosquito-borne diseases as a consequence of

land use change. EcoHealth 1(1):19–24

Obenauer JF, Andrew JT, Harris JB (2017) The importance of

human population characteristics in modeling Aedes

aegypti distributions and assessing risk of mosquito-borne

infectious diseases. Trop Med Health 45(1):38

Osorio L, Garcia JA, Parra LG et al (2018) A scoping review on

the field validation and implementation of rapid diagnostic

tests for vector-borne and other infectious diseases of

poverty in urban areas. Infect Dis Poverty 7(1):87

Ozdenerol E, Bialkowska-Jelinska E, Taff GN (2008) Locating

suitable habitats for West Nile Virus-infected mosquitoes

through association of environmental characteristics with

infected mosquito locations: a case study in Shelby County,

Tennessee. Int J Health Geogr 7(1):12

R Core Team (2019) R: a language and environment for sta-

tistical computing. R Foundation for Statistical Comput-

ing, Vienna

Rael RC, Peterson AC, Ghersi BM, Childs J, Blum MJ (2016)

Disturbance, reassembly, and disease risk in socioecolog-

ical systems. EcoHealth 13(3):450–455

Reiner RC, Perkins TA, Barker CM et al (2013) A systematic

review of mathematical models of mosquito-borne patho-

gen transmission: 1970–2010. J R Soc Interface

10(81):20120921

Robertson C (2017) Towards a geocomputational landscape

epidemiology: surveillance, modelling, and interventions.

GeoJournal 82(2):397–414

Roiz D, Ruiz S, Soriguer R, Figuerola J (2015) Landscape

effects on the presence, abundance and diversity of mos-

quitoes in mediterranean wetlands. PLoS ONE 10(6):1–17

Rosenberg R, Lindsey NP, Fischer M et al (2018) Vital signs:

trends in reported vectorborne disease cases -United States

and territories, 2004-2016. Morb Mortal Wkly Rep

67(17):496–501

Ruiz MO, Walker ED, Foster ES, Haramis LD, Kitron UD

(2007) Association of West Nile virus illness and urban

landscapes in Chicago and Detroit. Int J Health Geogr

6(1):10

123

Landscape Ecol

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html


Ruiz-Moreno D (2016) Assessing Chikungunya risk in a

metropolitan area of Argentina through satellite images

and mathematical models. BMC Infect Dis 16(1):49

Rydin Y, Bleahu A, Davies M et al (2012) Shaping cities for

health: complexity and the planning of urban environments

in the 21st century. Lancet 379:2079–2108

Shao G, Wu J (2008) On the accuracy of landscape pattern

analysis using remote sensing data. Landscape Ecol

23:505–511

The World Bank (2015) GINI index (world bank estimate). The

World Bank: 1–16. http://data.worldbank.org/indicator/SI.

POV.GINI

Townsend AT (2006) Ecological niche modeling and spatial

patterns of disease transmission. Emerg Infect Dis

12(12):1822–1826

Townsend AT, Vieglais DA (2001) Predicting species invasions

using ecological niche modeling: new approaches from

bioinformatics attack a pressing problem: a new approach

to ecological nich modeling, based on new tolls drawn

from biodiversity informatics, is applied to the challenge of

predicting potential species’ invasions. Bioscience

51(5):363–371

Tusting LS, Rek J, Arinaitwe E et al (2016) Why is malaria

associated with poverty? Findings from a cohort study in

rural Uganda. Infect Dis Poverty 5(1):78

Unlu I, Farajollahi A, Healy SP et al (2011) Area-wide man-

agement of Aedes albopictus: choice of study sites based on

geospatial characteristics, socioeconomic factors and

mosquito populations. Pest Manag Sci 67(8):965–974

Whiteman A, Delmelle E, Rapp T, Chen S, Chen G, Dulin M

(2018) A novel sampling method to measure socio-eco-

logical drivers of Aedes albopictus distribution in Char-

lotte, NC. Int J Environ Res Public Health 15(10):2179

Winkleby MA, Jatulis DE, Frank E, Fortmann SP (1992)

Socioeconomic status and health: how education, income,

and occupation contribute to risk factors for cardiovascular

disease. Am J Public Health 82:816–820

World Health Organization (2018) Vector-borne disease. http://

www.who.int/heli/risks/vectors/vector/en/. Accessed 20

Oct 2018

World Health Organization (2018) Handbook for integrated

vector management. http://apps.who.int/iris/bitstream/

handle/10665/44768/9789241502801_eng.pdf. Accessed

20 Oct 2018

Wu J (2014) Urban ecology and sustainability: the state-of-the-

science and future directions. Landsc Urban Plan

125:209–221

Wu J, Jenerette GD, Buyantuyev A, Redman CL (2011)

Quantifying spatiotemporal patterns of urbanization: the

case of the two fastest growing metropolitan regions in the

United States. Ecol Complex 8:1–8

Young BD, Yarie J, Verbyla D, Huettmann F, Chapin FS (2018)

Machine learning for ecology and sustainable natural

resource management. Springer Nature, Switzerland

Young BD, Yarie J, Verbyla D, Huttmann F, Herrick K, Chapin

FS (2017) Modeling and mapping forest diversity in the

boreal forest of interior Alaska. Landscape Ecol 32:397

Younsi M, Chakroun M (2016) Does social capital determine

health? Empirical evidence fromMENA countries. Soc Sci

J 53(3):371–379

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Landscape Ecol

http://data.worldbank.org/indicator/SI.POV.GINI
http://data.worldbank.org/indicator/SI.POV.GINI
http://www.who.int/heli/risks/vectors/vector/en/
http://www.who.int/heli/risks/vectors/vector/en/
http://apps.who.int/iris/bitstream/handle/10665/44768/9789241502801_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/44768/9789241502801_eng.pdf

	An operational machine learning approach to predict mosquito abundance based on socioeconomic and landscape patterns
	Abstract
	Context
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Mosquito collection and data processing
	Quantifying association within and between socioeconomic and landscape factors
	Modeling association between socioeconomic and/or landscape factors and mosquito abundance
	Model performance evaluation and prediction
	Relative importance of socioeconomic and landscape factors on mosquito abundance

	Results
	Association within and between socioeconomic and landscape factors
	Association between socioeconomic and/or landscape factors and mosquito abundance
	Individual input factor’s contribution and relationship to mosquito abundance

	Discussion
	Acknowledgement
	References




