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A B S T R A C T

Forest ecosystems have been increasingly affected by a variety of disturbances, including emerging infectious
diseases (EIDs), causing extensive tree mortality in the Western United States. Especially over the past decade,
EID outbreaks occurred more frequently and severely in forest landscapes, which have killed large numbers of
trees. While tree mortality is observable from remote sensing, its symptom may be associated with both disease
and non-disease disturbances (e.g., wildfire and drought). Species distribution modeling is widely used to un-
derstand species spatial preferences for certain habitat conditions, which may constrain uncertain remote sen-
sing approaches due to limited spatial and spectral resolution. In this study, we integrated multi-sensor remote
sensing and species distribution modeling to map disease-caused tree mortality in a forested area of 80,000 ha
from 2005 to 2016. We selected sudden oak death (caused by pathogen P. ramorum) as a case study of a rapidly
spreading emerging infectious disease, which has killed millions of oak (Quercus spp.) and tanoak (Lithocarpus
densiflorus) in California over the past decades. To balance the needs for fine-scale monitoring of disease dis-
tribution patterns and satisfactory coverage at broad scales, our method applied spectral unmixing to extract
sub-pixel disease presence using yearly Landsat time series. The results were improved by employing the
probability of disease infection generated from a species distribution model. We calibrated and validated the
method with image samples from high-spatial resolution NAIP (National Agriculture Imagery Program), and
hyperspectral AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensors, Google Earth® imagery, and
field observations. The findings reveal an annual sudden oak death infection rate of 7% from 2005 to 2016, with
overall mapping accuracies ranging from 76% to 83%. The integration of multi-sensor remote sensing and
species distribution modeling considerably reduced the overestimation of disease effects as compared to the use
of remote sensing alone, leading to an average of 26% decrease in detecting disease-affected trees. Such in-
tegration strategy proved the effectiveness of mapping long-term, disease-caused tree mortality in forest land-
scapes that have experienced multiple disturbances.

1. Introduction

Forests play a pivotal role in regulating the energy and mass ex-
change between terrestrial ecosystems and the atmosphere (Likens
et al., 1981). However, environmental disturbances, including those
caused by emerging infectious diseases (EIDs) of plants, are beginning
to impact the biodiversity, structure, and functioning of forest ecosys-
tems in new ways (Anderegg et al., 2013). Especially over the past
decade, EID outbreaks occurred more frequently and severely in forest
landscapes, which have contributed to unprecedented tree mortality

(Asner, 2013; Boyd et al., 2013; Wingfield et al., 2015; Chen and
Meentemeyer, 2016).

Remote detection of EID-caused tree mortality can be an efficient
and accurate method to scale up field measurements to the landscape
scale (Chen and Meentemeyer, 2016; Hultquist et al., 2014; Kelly et al.,
2004; Liu et al., 2007). Mapping pathogen-related disturbances allows
stakeholders to prioritize management actions at particular locations of
concern, often over large areas (e.g., Meentemeyer et al., 2015). Suc-
cessful detection relies on the fact that infected trees show distinct
spectral, spatial and/or temporal symptoms, which may be related to
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Fig. 1. Study area located in the Big Sur ecoregion on the western flank of the Santa Lucia Mountains in California. The Landsat TM (Thematic Mapper) image is from
a false color composite using bands 4 (NIR), 3 (Red) and 2 (Green). The AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) image is from a false color
composite using bands 51 (NIR), 33 (Red), and 22 (Green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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declines in chlorophyll/water content in foliage, leaf discoloration,
defoliation, or treefall gaps [see a review by Chen and Meentemeyer,
2016]. For example, blister rust (caused by pathogen Cronartium ribi-
cola) can turn the needles of eastern white pines into yellow then rusty
red (Hatala et al., 2010). Oak trees appear to be ‘freeze-dried’ because
of sudden oak death, which is caused by pathogen Phytophthora ra-
morum (Kelly and Meentemeyer, 2002). Today, sudden oak death has
reached epidemic levels in many forests of the Pacific U. S. Coast,
killing large numbers of oak and tanoak trees. Similar to EID-caused
tree mortality mapping, there is a plethora of literature on remote de-
tection of tree mortality, caused by environmental disturbances of
drought (Brodrick and Asner, 2017; Byer and Jin, 2017; Paz-Kagan
et al., 2017), outbreaks of insects (Bright et al., 2012; Fassnacht et al.,
2014; Meddens et al., 2013; Pasquarella et al., 2017; Rullan-Silva et al.,
2013), invasive species (Ghulam et al., 2014; Rocchini et al., 2015;
Skowronek et al., 2017), and wind (McDowell et al., 2018; Negrón-
Juárez et al., 2018). However, studies have rarely investigated how to
identify tree mortality relevant to specific causes if multiple dis-
turbances jointly occur in the same region. This is particularly true for
areas affected by EIDs. The outbreak of EIDs is typically chronic stress
spanning years to decades, which possibly overlaps with discrete
events, such as severe drought and wildfire, co-occurring in the same
region. Damaged trees that are caused by different disturbance types
may exhibit similar (i.e., subtle discrepancies in) spectral or spatial
symptoms, challenging the use of popular remotely sensed datasets,
such as Landsat and MODIS data. While recent high-spatial and high-
spectral resolution imagery has demonstrated the potential to uncover
the subtle discrepancies to improve disease mapping (e.g., Hatala et al.,
2010; Meddens et al., 2011; Vaughn et al., 2018), these data types re-
main costly and are scarce in spatial coverage hindering long-term
monitoring of EID-caused tree mortality in any particular region of
interest.

Species distribution modeling (SDM; a.k.a., environmental niche
modeling) has been widely used in ecology and conservation biology to
predict the statistical probability of species dispersal patterns over
space and time (Elith and Leathwick, 2009). The performance of those
modeling approaches depends on the abiotic conditions and the dis-
tribution of sampled observations, which are critical for effective model
training and validation (Václavík and Meentemeyer, 2009). Despite its
popularity, SDM may lead to high uncertainties and spurious results
without reliable knowledge of the actual species (e.g., invasive pa-
thogen) range, acquired typically through field surveys (Carneiro et al.,
2016). This becomes a critical issue for estimation of EID outbreaks in
forests, where the traditional inventory approaches are not logistically
feasible to acquire a sufficient number of pathogen distribution sam-
ples.

To effectively map EID-caused tree mortality, bridging remote
sensing and ecological SDM offers a potential solution. While such in-
tegration strategy has demonstrated to be effective in recent studies of
species modeling (e.g., Saatchi et al., 2008; K.S. He et al., 2015), remote
sensing is typically used to generate land cover and other ecological
variables (e.g., NDVI) serving as input of SDM. For EID-caused tree
mortality mapping, would it possible to apply SDM to refine remote
sensing generated maps? While remote sensing approaches are likely to
overestimate disease effects due to high spectral/spatial similarities
across the damaged trees by EID and non-EID disturbances, SDM can
provide essential knowledge informing the likelihood that certain dis-
ease disturbance may or may not occur at specific locations. This will
ultimately reduce uncertainties in remote sensing-based estimation by
providing an effective constraint to exclude the regions, where the
studied EID has a low likelihood to occur. Integrating remote sensing
and species distribution modeling particularly benefits long-term
monitoring, where EIDs demonstrate a strong spatial progression pat-
tern.

The main goal of our study was to develop a mapping method that
can capture long-term, spatiotemporal patterns of EID-caused tree

mortality in forest landscapes. The method integrated multi-senor re-
mote sensing and SDM, and was developed to study sudden oak death, a
rapidly spreading EID that has killed millions of trees in California and
Oregon since being discovered during the mid-1990s (Rizzo et al.,
2002).

2. Study area

Our study site (centered at: 36°16′ N, 121°44′ W) is located in the
Big Sur, California ecoregion on the west coast of the United States. It
covers an area of about 80,000 ha on the steepest coastal mountains
with elevations reaching 1600m within 4.5 km of the coast (Fig. 1).
This region has a Mediterranean-type climate with moderate tempera-
tures, mean monthly temperatures at sea level range from 10–13 °C in
the winter months to 16–18 °C in the summer (Davis et al., 2010). Major
forest types include mixed oak woodlands consisting of coast live oak
(Quercus agrifolia), Shreve's oak (Quercus parvula var. shrevei), California
bay laurel (Umbellularia californica), and Pacific madrone (Arbutus
menziesii), as well as mixed coniferous forests, which are composed
primarily of ponderosa pine (Pinus ponderosa), sugar pine (Pinus lam-
bertiana), Jeffrey pine (Pinus jeffreyi), coulter pine (Pinus coulteri), and
Santa Lucia Fir (Abies bracteata). They give way to riverside corridors of
redwood/tanoak (Sequoia sempervirens/Notholithocarpus densiflorus)
dominated forests at lower elevations (Davis et al., 2010). Current an-
thropogenic land use is still limited and consists primarily of isolated
houses, roads and trails, which were used primarily for recreation
within the study domain.

Sudden oak death (caused by pathogen P. ramorum) was first asso-
ciated with mortality of tanoak (Lithocarpus densiflorus) and oak
(Quercus spp.) in the San Francisco Bay region during the mid-1990s
(Rizzo et al., 2002). It was quickly introduced to California and Oregon
forests mainly by infested nursery stock (Davidson et al., 2005; Ivors
et al., 2006; Prospero et al., 2007). Following the introduction, sudden
oak death reached epidemic levels in many coastal forests and has af-
fected large, but unknown numbers of oak and tanoak trees (Rizzo
et al., 2005). Due to the aggressive transmission of the pathogen, 14
states in the U.S. imposed strict regulations for plant materials imported
from the west coast, including California and Oregon (Alexander,
2012). Globally, P. ramorum was either listed as a regulated species or
specified in national forest legislations in 68 countries (Sansford et al.,
2008; Hunter et al., 2018). Although sudden oak death is the main
disturbance in Big Sur, two other agents – drought and fire, have also
affected the forests as major disturbances. For example, the 2012–2015
severe drought in California has led to significant water losses in forest
canopies resulting in high tree mortality (Asner et al., 2016). The 2008
Basin Complex Fire, which was ignited by a dry lightning storm burned
28,383 ha within our study area (Potter, 2016).

3. Data and preprocessing

3.1. Reference data

This study has two groups of reference data: field data and remote
sensing data from high-resolution Google Earth (Google, Mountain
View, California) image samples and local aerial photos (NAIP,
National Agriculture Imagery Program). Specifically, we have estab-
lished 85 permanent field plots (50×50m, 0.25 ha) since the summer
of 2006 (Meentemeyer et al., 2008b). These plots were designed to
follow a stratified random sampling scheme within the mixed oak
woodland and redwood-tanoak (acting as the main host species of P.
ramorum), and have been revisited yearly to monitor sudden oak death
infection and its impact on forest structural change (e.g., tree density,
tree height, and forest species types). A Panasonic SXBlue real-time
differential GPS (Geneq, Montreal) was applied for collecting plot po-
sitions, with an average accuracy of 1.0 m or less.

To supplement the limited number of field-derived sudden oak
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death samples, we extracted diseased and healthy tree plots from
Google Earth and aerial photos (i.e., NAIP) via image interpretation. We
based our interpretation on the spatial, spectral and temporal symp-
toms of sudden oak death-caused tree mortality in the study area that
are relatively unique as compared to the drought/fire-caused tree
mortality. Early in 2002, Kelly and Meentemeyer (2002) discovered the
‘freeze-dried’ characteristic of oak trees as a result of sudden oak death
infection, and then used such spectral trait to map the spatial dis-
tribution of the disease. Fig. 2 shows examples of isolated diseased trees
that are surrounded by healthy trees in multi-temporal, high-resolution
true color images. Fig. 2 demonstrates the symptom changes during the
three stages of sudden oak death progression (Meentemeyer et al.,
2008a; Chen et al., 2015a): (i) early-stage (host trees retaining their
dried foliage and fine twigs for one year or more), (ii) middle-stage
(some older mortality with host trees losing fine crown fuels and sur-
face fuels beginning to accumulate for 1–3 years), and (iii) late-stage
(host trees being dead for over 4 years and causing gaps due to trees
falling over). Hence, the diseased tree plots change their spatial re-
presentation over time, making it distinctive from the other dis-
turbances in high-resolution imagery (Fig. 2).

To quantify the disease's spectral, spatial and temporal patterns as
observed in Google Earth and NAIP imagery, we employed two indices.
First, tree foliage dramatically changes color from healthy green to
brown over one or two years following sudden oak death infection (Liu
et al., 2006), and then to gray indicating foliage desiccating and pig-
ments breakdown, leading to ‘freeze-dried’ appearance (Kelly and
Meentemeyer, 2002). We used Red-Green Index (RGI) to capture the
variation in canopy color. RGI is a simple ratio between the red and the
green band. It was originally developed for detecting mountain pine
beetle infestation, which causes color change in pine tree canopies
(Coops et al., 2006). Using field data as reference, we calculated RGI for
sunlit green, sunlit brown and sunlit gray crowns respectively. As il-
lustrated in Fig. 3, unhealthy trees (i.e., sunlit brown and sunlit gray)
are distinguishable from the healthy trees (i.e., sunlit green) with RGI
locating in different value ranges.

Second, sudden oak death-caused tree mortality demonstrates iso-
lated, patchy distribution patterns, which gradually increase the density
and reduce distances to each other (Meentemeyer et al., 2008a). To
analyze such patterns, we employed mean proximity index (PRO_MN)
to assess the degree of isolation and fragmentation of the corresponding

Fig. 2. Examples of isolated diseased trees being surrounded by healthy trees and symptom change over time in Google Earth and NAIP high-resolution images.
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patch type at landscape level over years (McGarigal, 2014; McGarigal
and Marks, 1995). In our study, PROX_MN was used as an indicator of
fragmentation for sudden oak death-caused tree mortality, with high
values indicating low levels of fragmentation and low values indicating
high levels of fragmentation (Turner et al., 2001).

=

∑ =

n
PROX_MN

s
n a

h1
ijs

ijs
2

(1)

where PROX_MN represents the mean proximity index for focal patch ij,
aijs is the area of patch ijswithin a specified neighborhood of patch ij, hijs
is the distance between patch ijs and patch ij, based on patch edge-to-
edge distance and computed from cell center to cell center, and n is the
total number of patches within the neighborhood. Here, PROX_MN was
calculated within a neighborhood using 200m as search radius. Our
assumption is that if field data have suggested sudden oak death oc-
currence at that location, the neighboring trees with similar RGI values
(same value range) were also affected by the disease. The neighborhood
size was chosen based on our field experience in sudden oak death
identification. Fig. 4 shows the trajectory of PROX_MN values over
years. We did not find in the literature or in our study area that
drought/fire-caused tree mortality demonstrates any specific spatial-
temporal patterns over years. For example, Fig. 5 shows the trajectory
of PROX_MN values for gray/brown sample areas not affected by the
disease, which even indicates a decreasing trend over time.

We used 70% of the field data to estimate the range of RGI values

(0.96–1.54), and the range of PROX_MN values (10.20–2509.03) and
the slopes of their trend lines (63.05–196.74). The remainder of the
field date was used for accuracy assessment. We have achieved an
overall accuracy of 92% and a Kappa statistic of 0.84 in sudden oak
death extraction from NAIP and Google Earth imagery.

Because field plots have unbalanced number of healthy versus dis-
eased tree plots due to sudden oak death progression, it may cause a
bias in model training. We extracted various numbers of plots each year
to balance the number of the two tree classes. We randomly allocated
the photo interpretation-derived plots, but also created a buffer to avoid
the neighborhood of field plots (100m in size). The final reference
dataset includes 40 diseased and 40 healthy tree plots every year during
the 2005–2016 study window. We were aware of the positional errors
in NAIP and Google Earth imagery (Potere, 2008; USDA, 2012). Be-
cause of the higher accuracy in NAIP data (6m of true ground at a 95%
confidence level, USDA, 2012), we relied more on NAIP to collect an-
nual imagery (2005, 2009, 2010, 2013, 2014, and 2016), which were
supplemented by Google Earth (2006, 2011, and 2015). We further
compared our field plots (with GPS-measured accurate positions) with
the targets identified on NAIP and Google Earth imagery. The errors
were noticeably smaller than 30m, which did not have a major effect
on the modeling accuracy since our model was built at the 30m re-
solution using Landsat data as the major input.

3.2. AVIRIS data

We collected AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) data on September 24, 2008. AVIRIS is an airborne hy-
perspectral sensor developed and operated by NASA's Jet Propulsion
Laboratory (JPL) flown on ER-2 and Twin Otter aircrafts mainly over
the United States. The AVIRIS sensor consists of 224 contiguous spectral
bands in the range of ~360 nm to ~2500 nm with an average band-
width of 10 nm (Clark et al., 2002). The cloud-free AVIRIS spectral
radiance image mosaic covered the northern part of our study area
(27,925 ha), with a spatial resolution of 3m. To mitigate the topo-
graphic effects in the mountainous regions, the topographic correction
method recently developed by K.S. He et al. (2015) and T. He et al.
(2015) was applied on the basis of slope and aspect provided along with
the AVIRIS flight data, which was processed using a 30m resolution
digital elevation model (DEM) derived from the data collected by Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) as part of the Global Digital Elevation Model Version 2 (GDEM
V2) project (ASTER GDEM Validation Team, 2011). Finally, the AVIRIS
image mosaic was converted to surface reflectance bands using the 5th
version of MODerate resolution atmospheric TRANsmission (MOD-
TRAN5) as described by Berk et al. (2006).

Fig. 3. Boxplots showing Red-Green Index (RGI) values (minimum, first quar-
tile, median, mean, third quartile, and maximum) for sampled sunlit green,
sunlit brown, and sunlit gray crowns.

Fig. 4. Temporal trajectory of the mean proximity index (PROX_MN) for the dead trees affected by sudden oak death.
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3.3. Landsat imagery

To retrieve the spatial and temporal patterns of sudden oak death
progression annually from 2005 to 2016, we downloaded a total of
eight Landsat-5 TM (Thematic Mapper) and five Landsat-8 OLI
(Operational Land Imager) image scenes covering our study area (path:
43, row: 35) via the U.S. Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center's Science Processing
Architecture (ESPA) interface (https://espa.cr.usgs.gov). We did not
use Landsat data from 2012, due to Landsat 5's mechanical failures and
Landsat 7's Scan Line Corrector (SLC) failure. Although there are wa-
velength differences between sensors, we used the six bands that have
been consistently acquired by all the sensors, including blue, green, red,
NIR, SWIR-1, and SWIR-2 (NASA, 2018). All the images were acquired
in the growing season (April–June, Table 1). Because some of the areas
were covered by clouds in 2006 and 2013, we generated a cloud-free
mosaic for each of the two years through compositing two image scenes
acquired in the same month. During the process, cloud pixels were
simply replaced by the cloud-free pixels of the same locations. Because
the images used for merging were from the same months over the same
region, we visually interpreted the images and found low spectral
variation over the same ground objects between different dates. The
high quality radiometric correction completed by USGS also ensured
the minimized impact of our merging process. In our study, we directly
used the Landsat Surface Reflectance level-2 science products, which
have been geometrically, radiometrically, and topographically cor-
rected by USGS before being made available online. Please refer to
Landsat 4–7 Surface Reflectance Product Guide (USGS, 2018a) and
Landsat 8 surface reflectance product guide (USGS, 2018b) for details
about Landsat surface reflectance products.

3.4. NAIP imagery

NAIP (Airborne Visible/Infrared Imaging Spectrometer) imagery
was acquired in 2005 at a 1.0 m resolution (a.k.a., ground sample dis-
tance - GSD) with a horizontal accuracy that matches within six meters
of photo-identifiable ground control points. It was a three-band (Red,
Green and Blue, or RGB) image mosaic with high quality data covering

a portion of our study area. The data were downloaded from the U.S.
Department of Agriculture (USDA) Farm Service Agency with free ac-
cess (https://datagateway.nrcs.usda.gov/). The data were geome-
trically and radiometrically corrected by USDA.

3.5. Environmental variables

We used two groups of environmental variables known to affect the
transmission of P. ramorum (Meentemeyer et al., 2008a): climate (i.e.,
precipitation, temperature, and relative humility) and topographical
variables [i.e., elevation, slope, solar insolation index (SII), and topo-
graphic wetness index (TWI)] (Table 2). For climate, we calculated each
variable using the monthly mean data during the disease's general re-
productive season from December to May prior to each state transition
over a period of 10 years (2007 to 2016). We selected this time period
mainly due to the proven correlation between pathogen progressions
with local climatic conditions (Meentemeyer et al., 2008a). This time
period was selected in order to model the response of disease to annual
patterns of climate, not individual weather events (Sturrock et al.,
2011). The employed climate data were part of a broader-scale data-
base Daymet (https://daymet.ornl.gov), at a 1× 1 km resolution over
the conterminous United States (Thornton et al., 2018). For topo-
graphical conditions, we calculated four variables from a 30m resolu-
tion DEM, derived from the ASTER's GDEM V2 product, including
elevation, slope, SII, and TWI. We calculated SII for each 30m cell as
the potential mean solar radiation in the rainy season using the cosine
of illumination angle on slope equation (Dubayah, 1994). We further
calculated TWI as the natural log of the ratio between the upslope
contributing drainage area and the slope gradient of a grid cell to
quantify topographic control on hydrological processes (Moore et al.,
1991).

4. Methods

Our research framework has two major steps: (i) model develop-
ment, and (ii) model application to multi-temporal disease distribution
mapping. Generally, Step (i) was conducted for 2005, the beginning
year of the studied time window 2005–2016 (see flowchart of step 1 in

Fig. 5. Temporal trajectory of the mean proximity index (PROX_MN) for the dead trees not related to sudden oak death.

Table 1
Acquired dates for time-series Landsat imagery.

2005 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016

April 4th 16th +25th 28th 15th 17th
May 8th+ 15th 13th 16th 3rd
June 6th 12th
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Fig. 6). To balance the needs for fine-scale monitoring of disease dis-
tribution and satisfactory coverage at broad scales, we applied spectral
unmixing to extract sub-pixel disease presence in Landsat imagery, and
derived an NPV (non-photosynthetic vegetation) fraction map to si-
mulate tree mortality. The AVIRIS image mosaic was used to extract
endmembers to facilitate spectral unmixing. We further developed a
species distribution model and subsequently a probability map for as-
sessing the probability of sudden oak death infection. We employed the
2005 reference data and the NAIP image of the same year to generate a
high-resolution disease map for calibrating and validating the species
distribution model. The probability map was compared with the re-
ference disease presence/absence for determining a probability
threshold, by which disease distribution was mapped for 2005. In Step
(ii), an NPV fraction and a probability map were generated for each of
the succeeding years (2006–2016). The annual disease-caused tree
mortality maps were derived by applying the probability threshold
(Step i) to all the probability and the corresponding year of NPV frac-
tion maps. Fig. 6 shows the main components in model development
and application. Please refer to the following subsections for detail and
explanation. The annual disease-caused tree mortality maps were de-
rived by applying the probability threshold (Step i) to all the probability
and the corresponding year of NPV fraction maps. The accuracy of the
tree mortality maps was individually evaluated using the annual re-
ference data (see Section 3.1).

4.1. Spectral library extraction

We constructed a spectral library to include the spectra of four
endmembers in our study area: green vegetation (GV), non-photo-
synthetic vegetation (NPV), soil, and shade. We intended to use GV to
represent healthy trees. Here, we tried to build an NPV spectral library
biased to sudden oak death, although we expected an overestimation of
NPV-derived diseased trees because other disturbances (e.g., drought)
may have resulted in similar spectra. Due to no pre-existing library
including the spectral signatures from sudden oak death-impacted for-
ests, we extracted image endmembers from the hyperspectral AVIRIS
data acquired over the same region. Compared to field radiometry
surveys, such method was cost-effective, allowing us to efficiently col-
lect a large number of reflectance values associated with disease in-
fection. Using the AVIRIS data, we applied the Pixel Purity Index (PPI)
algorithm to identify a large number of potential endmember pixels
with unique spectral signatures. The classic PPI is an iterative process,
in which every pixel is repeatedly projected onto a random vector se-
lected through the n-dimensional scatter plot (n= 224 in our study);
and pixels are considered pure if they constantly fall into the tails of the
calculated histograms. The threshold for defining histogram tails af-
fected the number of the endmember pixels identified by PPI. After an
initial assessment, we used the threshold value 5 to extract 200 end-
member candidate pixels.

To select the most appropriate endmembers for our study, we first
applied sub-meter Google Earth WorldView-1 images (observation

dates in the similar time window as that of AVIRIS data acquisition) as a
reference to reduce the number of endmember pixels to 47: 17 (GV), 13
(NPV), 14 (soil), and 3 (shade). To further refine the result, we used the
following three metrics.

1) Endmember Average RMSE (root mean squared error) (EAR): EAR
was used to select the most representative endmember for each land
cover class. It was calculated for each endmember by averaging the
RMSE of the set of models that used the endmember to unmix the
spectra belonging to the same land cover class (Roberts et al., 2003).

=
∑

−

=

n
EAR

RMSE

1i
j
N

i j1 ,

(2)

where i is an endmember, j is the modeled spectrum, N is the number of
endmembers, and n is the number of modeled spectrum. The term n-1
corrected for a zero RMSE resulting from an endmember itself. EAR was
used to evaluate the ability of each endmember to model the spectra
within its own class. Endmembers possessing a lower EAR model
spectrum within their land cover class were better than endmembers
with a higher EAR. The minimum EAR endmember should be the most
representative of its modeled class.

2) Minimum Average Spectral Angle (MASA): MASA within a class was
calculated as the average spectral angle between the reference
spectrum (candidate model) and all other spectra within the same
class. The best MASA candidate was selected as the one that pro-
duced the lowest average spectral angle (Dennison et al., 2004).
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where ρλ is the reflectance of an endmember, ρλ′ is the reflectance of a
modeled spectrum, Lρ is the length of the endmember vector, and Lρ′ is
the length of the modeled spectrum vector. MASA was similar to EAR in
that it was designed to select spectra with the best average fit within a
class, while differing from EAR in that the measure of fit used was the
spectra angle instead of RMSE.

3) Count-based Endmember Selection (CoB): CoB was used to select
optimal endmembers as those members of a library that modeled the
greatest number of spectra within their class, while assessing whe-
ther these candidate models met fraction, RMSE and residual con-
straints when unmixing any other spectrum in the library (Roberts
et al., 2003). CoB used the MESMA concept to select endmembers
based on the number of library spectra, determining the number of
spectra modeled by an endmember within the endmember's class
(InCoB) and outside of endmember's class (OutCoB). The optimum
model had the highest InCoB and lowest OutCoB.

The processing used the tool – Visualization and Image Processing
for Environmental Research (VIPER; Roberts et al., 2007), which gen-
erated the final spectral library (including 6 spectra for GV, 5 spectra
for NPV, 6 spectra for soil, and 1 spectrum for shade) and the corre-
sponding fractions.

4.2. MESMA procedure

Using the constructed spectral library, we applied spectral unmixing
to decompose each of the Landsat pixels acquired in 2005 into three
components: GV, NPV, and soil. Spectral unmixing was implemented by

Table 2
Description of the evaluated environmental factors.

Factor type Factor name Description

Climate Precipitation Monthly (December–May) mean precipitation of
10 years (2007 to 2016)

Temperature Monthly (December–May) mean maximum
temperature of 10 years (2007 to 2016)

RH Monthly (December–May) mean relative humidity
of 10 years (2007 to 2016)

Topography Elevation Elevation
Slop Slope
TWI Topographic wetness index
SII Solar insolation index
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the classic Multiple Endmember Spectral Mixture Analysis (MESMA)
algorithm, which considers spectral variability allowing the number
and type of endmembers to vary on a per-pixel basis (Roberts et al.,
1998). The criteria used to determine the best-fit models included
endmember fractions, maximum shade fraction, and RMSE. We chose
the following thresholds: −0.05 and 1.05 for minimum and maximum
allowable fraction values, respectively; 0.8 for maximum allowable
shade fraction value; and 0.025 for maximum allowable RMSE. Those
thresholds were initially determined from the literature (Roberts et al.,

Fig. 6. Detailed working flow for model development (Step1) and annual disease-caused tree mortality mapping (Step 2).

Table 3
A confusion matrix to evaluate the result of a presence-absence (binary) model.

User class Reference class

Presence Absence

Presence True Positive (TP) False Positive (FP)
Absence False Negative (FN) True Negative (TN)

Y. He, et al. Remote Sensing of Environment 231 (2019) 111238
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1998), and adjusted through our tests, in which we evaluated all the
reasonable endmember combinations and selected the best-fit model.
When multiple models met these criteria, the model with the lowest
RMSE was chosen. Finally, shade normalization was performed to re-
move shade fraction, redistributing this fraction proportionally among
all other non-shade endmembers (Roberts et al., 2007). We employed
the VIPER package to complete the MESMA procedures (Roberts et al.,
2007). Given the fact that our study focused on forests, we excluded the
soil, and shrub/grass components from all NPV images (2005–2016)
using the 2005 NAIP-derived classification result (see Section 4.3).

4.3. High-resolution disease mapping

We generated a high-resolution disease distribution map for 2005,
the beginning year of the study time window. The map was for SDM
calibration and validation (Section 4.4), mainly because the accuracy of
SDM depends on the number and quality of species reference samples
(Carneiro et al., 2016). In our study, field-measured data were limited,
which may not provide a reliable knowledge of sudden oak death dis-
tribution. Here, we integrated the 1.0 m resolution NAIP image mosaic
and the reference data acquired in 2005 to generate a high-resolution
tree mortality map. This map was later used to extract a large number
of samples of sudden oak death distribution for reliable SDM calibration
and validation (Section 4.4).

To generate the map, we applied a geographic object-based Image
Analysis (GEOBIA) framework following Chen et al. (2012). Compared
to the classic pixel-based approach, GEOBIA uses image-objects (i.e.,
pixel clusters) as the basic study units to reduce errors caused by
spectral variation within each geographic object (e.g., individual trees
containing sunlit and shaded crowns; Chen et al., 2015a). Our frame-
work has two components: image segmentation and object-based clas-
sification, both of which were completed in the eCognition Developer
9.0 environment (Trimble, Sunnyvale, USA).

Image segmentation was conducted on the NAIP image mosaic using
the eCognition's classic multiresolution segmentation algorithm. A
crucial issue involved in segmentation is defining an appropriate Mean
Object Size (MOS), or spatial scale of analysis. A large MOS may cause
under-segmentation where an image-object contains more than one
land-cover class. However, a very small MOS may introduce biases
where an image-object may only contain sunlit or shaded canopies re-
sulting from the complex sun-tree-sensor geometry. We followed the
recommendations by Chen et al. (2017), and the value 30 for MOS was
chosen to accurately capture relatively small, homogenous land-cover
patches, where the majority of trees within image-objects were either
dead or healthy. In addition to MOS, the default value of 0.1 was used
for the shape parameter, while the compactness parameter was set at
0.8 to obtain relatively smooth forest object boundaries.

Object-based classification used the segmentation-derived image-
objects, instead of pixels, as the basic mapping units. To extract spectral
features for classification, we followed Chen et al. (2017), who suc-
cessfully used three groups of features – spectral (mean), texture
(standard deviation), and geometry (compactness, length/width ratio,
roundness, and shape index) – to map sudden oak death-caused tree
mortality. Compared to many other causes of mortality, sudden oak
death has resulted in uniquely spatial and spectral appearances in tree
crowns (Section 3.1). We expected to use these features to capture the
unique traits of diseased trees. Here, we categorized the image into
three classes: (i) healthy forest, (ii) diseased forest, and (iii) others. This
step was accomplished by applying the eCognition's nearest neighbor
algorithm, a supervised classification approach. Half of the 2005 re-
ference samples for each land-cover class were used for training, while
the remaining samples in the same year were applied for validation.

4.4. Species distribution modeling (SDM)

We developed a generalized linear model (GLM) to analyze the
degree to which ecological conditions influenced the probability of
sudden oak death infection. GLM is an extension of ordinary multiple
regression that allows for modeling non-normal response variables,
which has been used for modeling disease risks (e.g. Meentemeyer
et al., 2008a). Here, we modeled the infection probability of sudden oak
death as a function of seven environmental variables (i.e., precipitation,
relative humidity, temperature, elevation, slope, SII, and TMI) by fol-
lowing the recommendations of Meentemeyer et al. (2008a, 2008b),
who studied sudden oak death in the same region. We used the logit
link function in GLM, which is synonymous with logistic regression
employing a maximum likelihood parameter optimization technique to
model the log odds of a binary response variable (Franklin, 1995). The
logit transformation of the probability (pi) that a susceptible plot i
(equivalent of the area of a Landsat pixel) becomes invaded is described
as:

∑= =
−

= +
=

p
p

p
β β xY logit( ) log

1i
i

i j
j jinfection 0

1

8

(6)

where β0 and βi are the regression coefficients, and xj is one of the eight
environmental variables. Meentemeyer et al. (2008a) discovered a
rapid decline of P. ramorum invasion probability as the distance to the
previous year of infection (i.e., sources of inoculum) increases. Parti-
cularly when the distance is longer than 1 km, the probability that a

Fig. 7. The extracted spectra for green vegetation (GV), non-photosynthetic
vegetation (NPV), and soil in our study area.
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susceptible plot may be invaded is very low. In this study, we applied a
fixed dispersal kernel (1 km in Euclidean distance) to constrain the
maximum infection distance for each year.

To reduce multicollinearity among the independent variables, the
Pearson's linear correlation coefficients were calculated for all the
variables. Then, we applied the variable reduction method as described
in Chen et al. (2015b). That is, each independent variable was eval-
uated and retained under two rules: (1) its correlation with any other
independent variable should be lower than 0.7; or (2) if its correlation
with another one or several independent variables is higher than 0.7,
the variable should have the highest correlation value with the de-
pendent variable. After discarding redundant independent environ-
mental variables/factors, we applied regression analysis and assessed

model's adjusted R2, RMSE (root mean square error) and AIC (Akaike
information criterion) values in the statistical environment R package
(R Core Team, 2017, Vienna, Austria). For model calibration, we ex-
tracted 300 sample points (150 diseased and 150 healthy samples to
ensure a balanced representation of trees affected and not affected by
sudden oak death) from the previously generated high-resolution tree
mortality map (Section 4.3). We used a stratified random sampling
strategy to collect samples from diseased and healthy tree classes, re-
spectively. To ensure the quality of the samples, we manually checked
all the samples following the same image interpretation approach as
described in the reference data section (Section 3.1). If the sample did
not appear to be affected by the disease, we selected a new sample in its
neighborhood.

We further compared the probability derived from the SDM (Eq. (6))
with the NPV fraction (Section 4.2) at the sample locations. We used the
reference disease presence/absence data to determine the best prob-
ability threshold, with results reaching the maximum kappa statistic
value (Freeman and Moisen, 2008), i.e., a Landsat pixel area was
deemed to be affected by sudden oak death if its probability value was
higher than the threshold. We also applied the reference data to con-
duct an accuracy assessment using confusion matrix to calculate True
Skill Statistic (TSS), a measure reflecting true ecological phenomena in
presence-absence models (Allouche et al., 2006). Specifically, for the
binary classification, the confusion matrix records the number of True
Positive (TP), False Positive (FP), False Negative (FN) and True Nega-
tive (TN) cases predicted by the model (Table 3). Sensitivity is the
probability that the model correctly classifies a presence (Eq. (7)).

Fig. 8. Fraction maps of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil for year 2005, where gray tones represent values from low (black) to
high (light).

Table 4
Confusion matrix for the disease mapping result.

User class Reference class

Healthy
forest

Diseased
forest

Others Total Producer's
accuracy (%)

Healthy forest 35 4 1 40 87.50
Diseased forest 3 34 2 39 87.17
Others 2 2 37 41 90.25
Total 40 40 40 120
User's accuracy

(%)
87.50 85.00 92.50

Overall accuracy= 88.33%; Kappa statistic= 0.82.

Y. He, et al. Remote Sensing of Environment 231 (2019) 111238

10



Specificity is the probability that the model correctly classifies an ab-
sence (Eq. (8)). TSS equals the difference between the sum of sensitivity
and specificity and constant one (Eq. (9)).

=
+

TP
TP FN

Sensitivity
(7)

=
+

TN
FP TN

Specificity
(8)

=
+

+
+

−TSS TP
TP FN

TN
FP TN

1
(9)

4.5. Annual disease-caused tree mortality mapping

We applied the spectral unmixing MESMA model to each of the
Landsat images from 2006 to 2016, which produced annual NPV frac-
tion maps. Meanwhile, the SDM was employed to produce yearly
probability maps of sudden oak death infection (see Step 2 in Fig. 6).
We overlapped the two types of maps of the corresponding year. The
probability threshold (Section 4.4) was used to determine whether an
NPV-identified pixel was affected by sudden oak death or not. We
considered that a 30-m pixel area is affected by the disease if a disease
reference sample is found in the area. This is based on the nature of
SDM, which only considers infection and non-infection for each pixel
area. Consequently, a total of 10 maps were produced to show annual
sudden oak death progression from 2006 to 2016. The final mapped
results were assessed using the reference data that were collected an-
nually (see Section 3.1), with confusion matrices, coverall accuracies,
and kappa statistics calculated for accuracy assessment.

5. Results

5.1. Endmembers and fraction images

The spectral reflectance for the extracted 6 GV, 5 NPV and 6 soil
endmembers are presented in Fig. 7. Overall, the GV endmembers re-
vealed higher intra-class variation than the NPV and soil endmembers.
This was mainly because trees in the study area were comprised of a
variety of species types, including mixed oak woodlands and coniferous
forests. Compared to healthy trees, dead trees and soil were relatively
homogeneous in terms of spectral signatures. Especially for the dead
trees, their spectral reflectance values were extremely low in the near
infrared portion of the spectrum (760–900 nm) and high in the short-
wave infrared portion (1550–1750 nm), making NPV distinguishable
from GV and soil. Uncertainties occurred mainly between some GV and
soil endmembers. There were barren lands in the study area, although
forest floor was often made up of soil, decaying logs/leaves and grass/
shrubs.

The fraction maps corresponding to the three components of GV,
NPV and soil for year 2005 are shown in Fig. 8. Live trees covered much
of the study in 2005, as evidenced by the high GV fraction values. High
NPV values mainly occurred on the west coast, which is consistent with
findings by Meentemeyer et al. (2008b), who used 0.33m resolution
aerial photos to manually digitize sudden oak death-caused tree mor-
tality over the same area.

5.2. Fine-resolution tree mortality map

The overall accuracy of the classification result using the 2005 NAIP
imagery and the object-based framework was 88.33%, with a Kappa
statistic of 0.82. As presented in Table 4, others achieved better per-
formance. Compared to the non-forest landscapes, forest horizontal and
vertical structure was of higher complexity and heterogeneity, resulting

Legend

Healthy Forest

Diseased Forest

Soil Ground

Shrub/Grass

Shade

(a) (b)

0 40 80 120 16020

Meters

Fig. 9. (a) True color sample NAIP image in the Big Sur, CA study region, and (b) corresponding classification with image-object boundaries. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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in a higher spectral variation. Compared to the healthy forests, diseased
forests were more difficult to map showing relatively lower user's and
producer's accuracies (Table 4). Uncertainties mainly occurred in the
land-cover transitional zones, where dead trees were interspersed with
their healthy counterparts or soil. Because sudden oak death had a non-
random, highly-localized distribution pattern (Meentemeyer et al.,
2011), some small patches of diseased trees were closely surrounded by
healthy forests [see (a) in Fig. 9]. In addition, trees affected by the
disease changed colors progressively over years, which made it difficult
to accurately extract all the diseased trees. For example, some may be at
the non-visible early stage of infection. In the transitional zones, we
also observed a mixture of soil, and sparsely distributed vegetation
within single image-objects [see (b) in Fig. 9]. The averaged reflectance
from those objects was similar to that of a diseased forest object (Chen
et al., 2017). Although the mapping was challenged by a small portion
of transitional zones, the extracted 300 samples (Section 4.3) were all
manually checked to ensure the quality for reliable SDM calibration and
validation.

5.3. Species distribution modeling (SDM)

Three environmental variables were selected in the SDM, including
precipitation, temperature, and elevation (Eq. (6)). These variables
together explained 36% of the variation (adjusted R2: 0.36) of the
probability of sudden oak death infection. The TSS value 0.78 for our

SDM was considered satisfactory following the suggestion by Shirk
et al. (2018), in which multiple SDM types (including ours) were
comprehensively compared for modeling the spread of white pine
blister rust in the Western U.S. Their acceptable TSS values were lo-
cated in the range between 0.71 and 0.84. We found increased prob-
ability with the increase of maximum temperature, and precipitation;
however, probability was negatively correlated with elevation. Our
findings of significant variables are similar to those in an earlier study,
where 2003–2005 field measurements were used in species distribution
modeling for predicting the probability of sudden oak death invasion
(Meentemeyer et al., 2008a; Meentemeyer et al., 2008b). Using cali-
bration data further allowed us to determine the best probability
threshold 0.62. Hence, a Landsat pixel was deemed sudden oak death-
impacted if its probability value was equal to or higher than 0.62.

= − + × + ×

− ×

Y

8.4606 0.0434 Precipitation 0.3290 Temperature

0.0046 Elevation

Infection

(10)

5.4. Annual maps of disease-caused tree mortality

Following the application of the proposed mapping method, the
long-term sudden oak death-caused tree mortality maps achieved
overall accuracies between 0.7 and 0.9, with Kappa statistics ranging

Fig. 10. Mapping accuracies (producer accuracy, user accuracy, overall accuracy, and Kappa statistic) in years 2005, 2006, 2009, 2010, 2011, 2013, 2014, 2015 and
2016. See methods of accuracy assessment in Section 4.5.
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from ~0.5 to ~0.7 [see (a) in Fig. 10]. The mapping accuracies for
years 2005, 2013, 2014, and 2016 were higher than 80%, while rela-
tively inferior performance (75%–80%) was obtained in years 2006,
2009, 2010, 2011 and 2015 [see (a) in Fig. 10].

We applied the developed SDM to the entire study area and gen-
erated a probability map of sudden oak death infection (Fig. 11). When
it was overlaid with field plots, we found that potential habitat suit-
ability with high probability was significantly greater (p < 0.05) in the
invaded plots. All the 11 tree mortality maps (2015–2016) are included
in Fig. 12, which shows annual sudden oak death infection in the study
area. Those maps illustrate a spatial progression pattern of disease
mainly from the west coast to the northeast. The spatial coverage of
sudden oak death-caused tree mortality rose rapidly from 1584 ha in
2005 to 3178 ha in 2016, a 2-time increase over a decade, at an annual
infection rate of 7%. Such an aggressive progression pattern is con-
sistent with the field findings discussed in the literature (e.g., Rizzo
et al., 2005; Cunniffe et al., 2016).

6. Discussion

6.1. Assessment of disease mapping using spectral unmixing

While plant disease-caused tree mortality has reached epidemic le-
vels in forest landscapes, such as California's coastal forests (Chen and
Meentemeyer, 2016), many diseases (including sudden oak death) de-
monstrate isolated, patchy progression patterns. In our study, spectral
unmixing proved to be effective for extracting tree mortality at the
Landsat sub-pixel level. Such an approach differs from the previous
efforts of sudden oak death modeling, which solely relied on high-
spatial resolution imagery for small-area mapping (e.g., Kelly et al.,
2007; Liu et al., 2006; Meentemeyer et al., 2008a). Through comparing
MESMA-derived NPV fractions (Fig. 8) with the high-resolution sudden

oak death map, we found a similar pattern of disease occurrence mainly
on the west coast of the study area in 2005.

Although promising, spectral unmixing was found to overestimate
disease-caused tree mortality. For example, Fig. 8 shows high-value
NPV pixels in some of the southern and eastern parts of the region,
which have yet to be heavily impacted by sudden oak death in 2005
according to field observations and high-spatial resolution images. Si-
milar overestimation patterns were found in the NPV results over the
succeeding years. This was mainly due to the use of Landsat imagery
that has a limited number of spectral bands, unable to accurately
identify the spectral differences in some dead trees affected by sudden
oak death versus other disturbances (e.g., extreme drought and wild-
fires). We also found relatively higher accuracies in the maps using the
data collected more recently (e.g., years 2013, 2014, 2015 and 2016).
Those data were from the Landsat-8 OLI sensor (as compared to the
other data from Landsat 5 TM). The data quality (signal to noise ratio)
and radiometric quantization (12 bits) of Landsat 8 OLI is higher than
those of previous Landsat instruments (e.g., 8 bits for TM), providing a
significant improvement in the ability to detect land cover on the
Earth's surface (Roy et al., 2014). The improved data quality of Landsat
8 OLI may have positively contributed to such phenomenon. When
comparing the mapping accuracies between healthy and diseased trees,
the results showed differences [see (b) in Fig. 10]. From 2005 to 2016,
the producer's accuracies of healthy trees were consistently higher than
that of diseased trees, and their user's accuracies were lower [see (b) in
Fig. 10].

6.2. Effects of SDM on disease mapping

The developed SDM indicated that higher probabilities were cor-
related with the forests experiencing relatively warm and wet climatic
conditions, and that were located at low elevations in the mountainous

Fig. 11. Species distribution model derived probability map of sudden oak death infection from 2005 to 2016.
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study area (Eq. (10)). Similar significant factors (e.g., precipitation,
temperature, and elevation) were found in a previous study by
Meentemeyer et al. (2008a), who applied a SDM to predict the invasion
of sudden oak death pathogen P. ramorum using field plots only.

Compared to the MESMA-derived NPV results, the SDM consistently
improved the estimation of sudden oak death-caused tree mortality
over years (see Fig. 13 for a comparison), leading to an average of 26%
decrease in detecting diseased forests. This was equivalent to an
average of 818.4 ha each year, ranging from the minimum of 424.8 ha
and the maximum of 1187.1 ha. The difference between the NPV and
the SDM-constrained results was partially explained by two major

drought events that severely affected California's coastal ecosystems.
For example, the overall rainfall levels in the central coast were about
50% of average over 2007–2009 (California Dept. Water Resources,
2010). Starting from 2012, the region experienced severe drought again
for five consecutive years (U.S. Geological Survey, 2017). Our field
visits and aerial photo interpretation both discovered large areas of
stressed and dead tree canopies in the areas unsuitable to be infected by
sudden oak death.

In summer 2008, the Basin Complex Fire that was ignited by a dry
lightning storm burned the northern part of our study area (Fig. 12).
Because some diseased trees revealed similar spectral reflectance as the

Fig. 12. Spatial distribution of the estimated density of sudden oak death-caused tree mortality per 900 m2 from 2005 to 2016.

Fig. 13. Annual sudden oak death-impacted forest area from NPV versus NPV+SDM (species distribution model) for the entire study area.
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burned trees owing to reduced foliage water content and damaged tree
structure (Chen et al., 2017; He et al., 2019), the high spectral simi-
larity and the relatively low Landsat spectral resolution did not provide
sufficient information for MESMA to accurately extract diseased trees.
Instead, MESMA treated some burned trees as being affected by sudden
oak death, causing a major increase in the NPV result in 2009 (Fig. 14).
In contrast, the SDM was able to mitigate the overestimation effect,
making it valuable for generating reasonable sudden oak death pro-
gression maps in the regions affected by compound disturbances.
However, the high-spectral similarities between burned (within five
years following the fire occurrence) and diseased canopies definitely
affect the effectiveness of SDM. Spectral similarities also apply to the
drought- and disease-killed trees, although studies have found less se-
vere tree mortality caused by drought in coastal forests (including our
study area) than their inland counterparts (Baguskas et al., 2014;
Fischer et al., 2009). Nevertheless, it is possible that the presence of
sudden oak death remains overestimated by our model. Acquiring de-
tailed field measurements of tree mortality caused by both the disease
and fire/drought offers a solution to better train our model and assess
its performance in distinguishing between the two disturbance types.
Another viable solution, as suggested by He et al. (2019), is using hy-
perspectral data with enhanced spectral signatures from the shortwave
infrared portion of the spectrum. Because different types of dis-
turbances may reveal varying progression patterns over time, high-re-
solution time series images have the potential to capture those patterns.
However, data acquisition and processing costs are considerably higher
than using time series data at the medium resolution.

7. Conclusion

We developed a new mapping method to capture the spatiotemporal
patterns of diseased-caused tree mortality in a forested area for over a
decade. The rationale of integrating remote sensing and SDM was based
on the fact that remotely observed tree mortality may be associated
with both disease and non-disease disturbances; such uncertainties can
be reduced by understanding pathogen spatial preferences for certain
habitat conditions (i.e., using SDM). The proposed method bridges re-
mote sensing and ecological SDM in a way that has not been well stu-
died. Here, we used sudden oak death (caused by pathogen P. ramorum)
as a case study of a rapidly spreading EID. The results show that SDM
considerably reduced the overestimation of sudden oak death-caused
tree mortality observable from Landsat imagery. However, due to the
lack of detailed field observations (e.g., drought-caused tree mortality),
we were unable to assess what percentage of the overestimation was

from what specific causes, other than sudden oak death. Our inter-
pretation that the overestimated tree mortality was mainly linked to
drought/fire was based on the reported severe weather events in the
region (Asner et al., 2016). Nevertheless, our study represents the best
way linking multi-scale remote sensing observations to highlight areas
that are probably not affected by sudden oak death so we can focus the
disease management efforts in areas that need them. The final annual
tree mortality maps show accuracies ranging from 75.5% to 82.5%. To
balance data costs and the ability to map the pathogen's isolated, patchy
distribution patterns, in this study we applied spectral unmixing to
Landsat TM/OLI time series. Our model was calibrated and validated by
disease reference data from high-resolution image samples (aerial NAIP
and AVIRIS photos and Google Earth imagery) and field surveys. Cou-
pling multi-sensor, multi-scale remote sensing (full-cover Landsat
imagery and sampled high-resolution images) and SDM offers a timely
and cost-effective means to map long-term forest disease progression at
the regional scale.
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