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A B S T R A C T

Forest canopy cover and carbon density are two pivotal biophysical parameters for assessing urban forest
structure and its ecosystem services. While canopy cover (horizontal structure) has been extensively studied for
understanding the relationship between socio-ecological dynamics and urban forests, carbon density (vertical
structure) received little attention in the urban setting. The goal of this study was twofold: (i) exploring the
differences between canopy cover and carbon density, and their relationships with socio-ecological factors across
an urbanizing landscape, and (ii) assessing the effect of neighborhood category (i.e., low, medium and high
development intensity) on the relationships at the neighborhood level. We used Mecklenburg County located in
the Charlotte Metropolitan area of North Carolina, United States as a case study area, where rapid urban sprawl
has fragmented the pine-oak-hickory dominated forests into a range of low to high housing density neighbor-
hoods. We observed two major findings. First, canopy cover and carbon density demonstrated a generally weak
correlation across various types of residential neighborhoods, although such relationship became relatively
stronger in areas featuring a higher level of development intensity. Second, ecological factors (e.g., landscape
spatial patterns) were found to dominate the statistical models explaining the variance in both canopy cover and
carbon density compared to urban socioeconomic factors (e.g., income and age). However, the models and the
explanatory factors were different for the two forest parameters, and they varied across neighborhoods of diverse
development intensities. Based upon these findings, we argue that canopy cover and carbon density are different
proxy indicators of forest functioning in the urban setting, and should be independently treated in urban forest
management. The best management practices should be developed at the inner-city, neighborhood level, rather
than the typical city level, owing to the significant, variable influence of socio-ecological conditions across
neighborhood types.

1. Introduction

Urban forests are essential for maintaining a plethora of ecosystem
services that affect human wellbeing (Dwyer et al., 1992; Nowak et al.,
2006; Nesbitt et al., 2017). These benefits have led to many efforts into
managing, conserving, and preserving trees. Nonetheless, trees are ex-
posed to a wide range of disturbances such as land conversions, insect
outbursts, microclimate change, and plant invasions that disturb trees
and their capacity to sequester carbon often for the long-term and with
slowed or no opportunity for recovery (Alberti, 2005; Poland and

McCullough, 2006; Drummond and Loveland, 2010; Hawthorne et al.,
2015; Singh et al., 2018). A growing concern for forest managers is how
to increase tree cover and their capacity to sequester carbon in rapidly
urbanizing landscapes to minimize the negative impacts of dis-
turbances. Success relies on a rarely studied relationship between forest
structure (e.g., canopy cover, and carbon density) and diverse socio-
ecological conditions of urban landscapes.

Previous studies have often utilized canopy cover as a proxy in-
dicator to assess forest ecosystem services in the urban setting (Kabisch
et al., 2015). Canopy cover is typically defined as a proportion of land

https://doi.org/10.1016/j.ecolind.2020.106279
Received 29 January 2019; Received in revised form 27 February 2020; Accepted 2 March 2020

⁎ Corresponding author.
E-mail address: Gang.Chen@uncc.edu (G. Chen).

Ecological Indicators 113 (2020) 106279

1470-160X/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2020.106279
https://doi.org/10.1016/j.ecolind.2020.106279
mailto:Gang.Chen@uncc.edu
https://doi.org/10.1016/j.ecolind.2020.106279
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2020.106279&domain=pdf


area occupied by tree crowns when viewed from the sky. Setting a clear
goal of future canopy cover is widely employed by city managers in
their forest management plans (e.g., Baltimore County, 2018; City of
Charlotte, 2017a; City of Seattle, 2013; City of Toronto, 2013). Perhaps,
our advancements in mapping canopy cover from remote sensing data
contrary to estimating other forest biophysical/biochemical parameters
is one of the main reasons for using canopy cover as the main input. To
date, socio-ecological conditions of urban landscapes have proven to be
relevant to canopy cover. For example, tree cover in urban landscapes is
associated with property value (Anderson and Cordell, 1988), water
cycle (Wear et al., 1998), air quality (Nowak et al., 2013), inequalities
(Escobedo et al., 2015b), and the crime rate (Gilstad-Hayden et al.,
2015).

Forest’s capacity to assimilate atmospheric carbon and reduce
greenhouse gas emissions depends on the age of trees, species types,
and the local environment control. Therefore, carbon density (carbon
storage per unit area) is an equally important parameter along with
canopy cover in ecosystem service assessments (Escobedo et al.,
2015b). In contrast with canopy cover that describes the horizontal
structure of trees, carbon density emphasizes the vertical structure.
While carbon density has been intensively studied in the natural en-
vironment, it received much less attention in the urban setting, parti-
cularly for analyzing the relationship between forest structure and
socio-ecological conditions. Only a few examples exist in the literature.
For example, Conway and Bourne (2013) studied Toronto’s neighbor-
hood plants and concluded that forest vertical structure is a vital factor
to complement canopy cover for understanding the impacts of wealth,
demographics, and housing on tree patterns. Escobedo et al. (2015a)
found that both tree cover and vertical foliage affect human perceptions
of local greenspaces and hence property value. Godwin et al. (2015)
discovered varying relationships between carbon density and urban
spatial patterns across four different densities of residential neighbor-
hoods. The results from Singh et al. (2017) suggested a strong effect of
impervious surface on forest biomass, which is directly related to
carbon storage. While bigger trees tend to have larger canopy cover and
higher carbon density, those studies indicate that canopy cover and
carbon density may not be used interchangeably in studying urban
forests, which are subject to complex disturbances resulting in a high
level of landscape fragmentation. To date, it remains uncertain how
differently tree cover and carbon density relates to socio-ecological
conditions in an urban environment.

This study aims to examine the relationship among canopy cover,
carbon density, and socio-ecological factors of urbanizing landscapes at
the neighborhood scale. Using Mecklenburg County in the Charlotte
Metropolitan area of North Carolina as a case study, we estimated de-
velopment intensities, urban spatial patterns, socioeconomic factors,
tree cover, and carbon densities for urban residential neighborhoods,
and established statistical relationships among these. This allowed us
to: (1) explore the differences between two important forest parameters
– canopy cover and carbon density, and their relationships with socio-
ecological factors across urbanizing landscapes, and (2) assess the effect
of development intensities (e.g., high versus low housing density) to
these relationships at the inner-city level. Outcomes of this study helps
shed light on the varying responses of urban forest productivity to
socio-ecological dynamics, and complement urban forest management
plans for maximizing ecosystem services in urbanizing landscapes.

2. Methods

2.1. Study area

The study area is Mecklenburg County, North Carolina, USA
(Fig. 1). It is located within the center of the Charlotte metropolitan
area and covers an area of 1,415 km2. The elevation of the rolling to-
pography ranges from 252 m above sea level in the north to 159 m in
the south (Singh et al., 2012). The humid subtropical climate of the

region is characterized by hot, humid summers and mild winters with
three optimal growing seasons: spring, summer, and fall. Specifically,
spring and fall have shorter days and cooler temperatures with an
average temperature of 22 °C (average high) and 8 °C (average low),
while long days and high temperatures are common in summer with an
average high of 32 °C and average low of 20 °C at the peak of July.
Average annual precipitation is 42 in. (1,067 mm), with an even dis-
tribution of rainfall throughout the year. Humidity ranges from 60% to
75%, with a peak in August. Wind speed is averaged at 6 mph, which
remains relatively stable across the year. Average wind direction
changes from southwest in the spring to northeast in the fall (National
Weather Service, 2019).

As per the U.S. Census Bureau estimate in 2017, the population of
the County is 1,076,837, a 17.1% increase from 2010. This trend is
expected to continue. However, the rapid population growth, mani-
fested by a low to high housing density, has replaced landscapes
dominated by secondary forests and farmlands with an array of de-
veloped land use types, including managed treescapes and highly
fragmented urban forests (BenDor et al., 2014). Mecklenburg County is
comprised of 464 neighborhoods based on the Census Block Groups
(City of Charlotte, 2017b). The planning designs (e.g., single-family
versus multi-family residential, small versus large lot) and socio-
demographic profiles (e.g., education and income) are relatively
homogeneous within neighborhoods with high diversity and variation
between neighborhoods (City of Charlotte, 2017b).

2.2. Measuring tree cover and carbon density

We acquired 2012 leaf-on season tree-cover data for the study area
from the Geospatial Information Services of Charlotte. Data were de-
veloped using aerial photographs (1 m resolution), LiDAR (light de-
tection and ranging) point cloud data (average point density – 1 pts/
m2), and field observations. We extracted carbon density from the
urban forest carbon storage map (20 m resolution) produced by Godwin
et al. (2015). In their project, the 2012 LiDAR data were applied to
estimate forest carbon stocks by linking LiDAR-derived vertical struc-
tural variables (e.g., height percentiles) with field-measured carbon
density samples. The relationship was extended to the entire county for
mapping wall-to-wall carbon density in urban forests. Both tree cover
and carbon density were averaged at the neighborhood scale (Fig. 2),
which was consistent with that of the evaluated socio-ecological factors
(see the succeeding sections).

2.3. Extracting ecological factors

Landscape metrics represent spatial characteristics of various types
of patches or entire landscape mosaics, which have proven to affect
biophysical characteristics of trees (Alberti, 2005). In this study, we
extracted ecological factors by calculating landscape metrics (Herold
et al., 2002; McGarigal and Marks, 1995), which quantify the spatial
heterogeneity of the landscape patches (e.g., a tree cluster or an open
space) using a range of indices at the neighborhood scale. To do so,
first, we randomly selected 100 residential neighborhoods (Fig. 1) by
excluding the commercial or industrial areas with low tree density. For
considering urban development intensity, we categorized the selected
neighborhoods into three groups using the percent built-up (PBU) cri-
teria: low (PBU ≤ 15%); medium–low (15%<PBU ≤ 40%); and high
(PBU > 40%) density (Table 1). The PBU is a ratio of built-up areas
(i.e., impervious surfaces) divided by the total area in each neighbor-
hood. Because the study area was in residential neighborhoods, the
ratio of built-up areas was a strong indication of housing density. We
derived PBU from a 1.0 m resolution land use/cover map (Godwin
et al., 2015) developed using 2012 NAIP (National Agricultural Imagery
Program) imagery with an accuracy of 83.92% and a kappa coefficient
of 0.84. We utilized PBU thresholds of 15% and 40% for grouping
neighborhoods into three broad categories. For example, low-density

G. Chen, et al. Ecological Indicators 113 (2020) 106279

2



neighborhoods are the suburban residences dominated by large patches
of forested lands. High-density neighborhoods are close to the city
center and sub-centers, containing a large percentage of residential
areas along with small businesses. Medium-density neighborhoods are
typically in the transitional areas between low- and high-density
neighborhoods, with small to medium disaggregated clumps of trees.

We did not categorize the neighborhoods into more detailed classes
since the three types of neighborhoods are representative in many ci-
ties. Having more detailed classes will potentially make the conclusions
tied to our study area only. More detailed classes will further reduce the
number of neighborhoods, which is already limited for each class. It
will lead to unreliable statistical analysis.

Fig. 1. Study area. (a) Mecklenburg County and the Charlotte Metropolitan area, North Carolina, USA and (b) Distribution of urban forests and water bodies with the
selected residential neighborhoods overlay [modified after Godwin et al. (2015)].

Fig. 2. Distribution of canopy cover and carbon density for the selected neighborhoods.
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Then, we developed landscape metrics for each neighborhood
considering five aspects: area, shape, dispersion/interspersion, di-
versity, and connectivity. We used the previously mentioned land use/
cover map with six classes (i.e., deciduous tree, coniferous tree, im-
pervious surface, open space, water, and bare earth). To quantify the
five landscape aspects, we calculated five groups of landscape metrics
(Table 2) that included percentage of impervious surface [Impervious
(%)] and open space [Open (%)], edge density (ED), contagion index
(CONTAG), Shannon’s diversity index (SHDI), and patch cohesion index
(COHESION). Both Impervious (%) and Open (%) are area-based me-
trics ranging from zero to 100, where 100 represents a neighborhood
with a single patch. We did not consider water and bare earth land-
cover types due to the lack of a significant correlation with forest
structure in our preliminary analysis. Higher complexity in the shape of
landscape patches corresponds to a longer edge length and therefore
higher ED. The CONTAG quantifies the patch dispersion and inter-
spersion effect. A higher CONTAG value may come from landscapes
with a few large, continuous patches. The SHDI normally increases as
the diversity of patch types increases. The COHESION measures the
physical connectedness of patches. A high value represents a clumped
or aggregated distribution. We applied the popular FRAGSTATS soft-
ware (McGarigal et al., 2002) to calculate these ecological factors in
each of the selected neighborhoods.

2.4. Extracting socioeconomic factors

We extracted socioeconomic factors from the Mecklenburg County
and the City of Charlotte Quality of Life project that comprises socio-
economic factors at the neighborhood scale (City of Charlotte, 2017b).
We evaluated all of the factors and identified four that are associated
with the functioning of urban forest (i.e., a significant correlation with
either canopy cover or carbon density) in our study area: Resident Age,
Income, Ownership, and Neighborhood Age (Table 3). Socioeconomic
factors such as Ownership may reflect the level of engagement of

residents in tree care and management. For example, Szantoi et al.
(2012) observed a positive correlation between canopy cover and
owner-occupancy, while canopy cover correlated negatively with renter
occupancy. Higher engagement of ownership indicates local residents’
stronger willingness to maintain and improve the environment that
would lead to more and/or healthier trees in a neighborhood. The
factor Income has demonstrated a positive correlation with urban ca-
nopy cover (Holtan et al., 2015). Likewise, Resident Age may affect
personal preferences and capacity to impact canopy cover and trees in a
neighborhood. For instance, Szantoi et al. (2012) found a positive
correlation between tree cover and resident with age between 40 and
64 years and a negative correlation with relatively young (22–39 years)
residents. We also included Neighborhood Age to include the role of
neighborhood development history.

2.5. Statistical analysis

We performed Pearson's correlation analysis followed by identifi-
cation of outliers for developing multiple linear regression (MLR)
models between canopy cover, carbon density, and socio-ecological
factors. Pearson's correlation is a measure of the strength of the linear
relationship between two variables, where ‘1′ represents a perfect po-
sitive linear relationship. To identify the least collinear variables, we
calculated VIF (variance inflation factor) for all the socio-ecological
variables. We selected variables that produced VIF values smaller than
5 as a common rule of thumb to avoid the collinearity issue in the MLR
models. We developed the models using the ordinary least squares
method for estimating the unknown factors to establish the statistical
relationship between socio-ecological conditions (i.e., landscape me-
trics, and socioeconomic factors), and tree cover and carbon density
respectively at the neighborhood level. Socio-ecological factors were
treated as independent variables while tree cover and carbon density
were used as dependent variables. Because urban neighborhoods had
varying development intensities, it is possible that socio-ecological

Table 1
Three neighborhood groups used in the study.

Category Number Mean size (ha) Std. dev. (ha) Minimum (ha) Maximum (ha)

Low (PBU* ≤ 15%) 22 775 714.67 221.68 3454.74
Medium (15% < PBU ≤ 40%) 54 324 129.41 46.76 595.46
High (PBU > 40%) 24 128 160.62 33.21 809.46

* PBU = Percent built-up.

Table 2
Selected landscape metrics with description (McGarigal et al., 2002).

Variable Description Mean Std. Dev. Min Max

Impervious Percentage of impervious surface (%) 27.34 13.76 3.30 59.64
Open Percentage of open space (%) 22.09 6.03 11.00 35.69
ED Edge density (ED) is correlated positively with patch shape complexity where higher complexity corresponds to longer

edge length and therefore higher ED.
1206.03 272.97 467.24 1787.95

CONTAG Contagion index (CONTAG) quantifies the patch dispersion and interspersion effect. A higher CONTAG value may stem
from landscapes with a few large, continuous patches.

57.33 4.29 47.70 72.41

SHDI Shannon diversity (SHDI) index increases as the diversity of patch types increases. 99.53 0.25 98.72 99.95
COHESION Patch cohesion index (COHESION) measures the physical connectedness of patches. A higher value represents an

aggregated distribution.
1.24 0.11 0.83 1.43

Table 3
Socioeconomic factors.

Factor Description Mean Std. Dev. Min Max

Resident Age Median age of population (year) 35.48 6.93 23 67
Income Median income ($) by house 69,303 34,447 24,182 250,001
Ownership Number of occupied housing units divided by the total number of housing units (%) 65.19 26.62 0.1 98.4
Neighborhood Age Average age of housing (year) 30 17 7 95
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conditions varied across neighborhood types. To assess the impact of
development intensity on the evaluated relationship, we also developed
models for the three neighborhood categories – low, medium, and high
PBU neighborhoods, respectively. The MLR models were developed at a
0.05 significance level using adjusted R2 and RMSE (Root-Mean-Square
Error) as measures for performance assessment. The leave-one-out
cross-validation method was used to assess the performance due to the
low number of neighborhoods. The entire analysis was performed using
the R statistical language (R Core Team, 2013).

3. Results and discussion

3.1. Direct comparison between canopy cover and carbon density

The increase in built-up areas (e.g., high-density neighborhood) was
linked to reduced tree cover and reduced carbon density (Table 4). For
example, the high-density neighborhoods showed about half (34.46%)
of the low-density (60.15%) tree cover. We observed similar but a less
steep change in carbon density, such as an average of 61.15 t/ha for the
low-density and 42.30 t/ha for the high-density neighborhoods. Our
results confirmed that urban forests are severely affected by the in-
crease of development intensities in terms of size and spatial pattern
(Kong and Nakagoshi, 2006; Singh et al., 2017). While this was ex-
pected, our findings suggest that urban development may exert a
greater impact on tree cover than carbon density. It was possibly linked
to the development and management practices in urban areas where
individual mature trees (high carbon stocks) are more likely to be
conserved (Stagoll et al., 2012). It is also possible that isolated trees
(e.g., street trees) appear more often in the highly fragmented urban
environment and have received better care because of the Tree Ordi-
nance adopted by the local government (City of Charlotte, 2018). The
fact that high-density neighborhoods tend to retain larger trees than the
lower-density neighborhoods offers some compensation for the loss of
carbon. In addition, we found a consistent variation of tree cover
(~10%) among neighborhood categories but carbon density increased
from 9.34 t/ha (low-density) to 17.83 t/ha (high-density) (Table 4).
This reveals a higher variability in the capacity of trees to sequester
carbon in higher-density neighborhoods.

Pearson’s correlation coefficients (r) for the tree cover and carbon
density at the neighborhood scale were found to be weak across three
neighborhood types: low (r = -0.11), medium (r = 0.48), and high
(r = 0.60) (Fig. 3). However, the correlation became relatively stronger
with the increase of development intensity from low to high. The
findings support our assumption that a larger tree cover is not ne-
cessarily, and possibly not, leading to a higher carbon density in urban
settings. As a result, urban forest structure in the horizontal (canopy
cover) and the vertical direction (carbon density) should be considered
as separate proxy indicators of forest ecosystem functioning. Carbon
density may complement canopy cover for measuring the effectiveness
of forest management practices and evaluating the benefits of trees in
cities (Conway and Bourne, 2013; Escobedo et al., 2015a; Singh et al.,
2017).

3.2. Impact of socio-ecological factors on canopy cover

We observed different relationships between socio-ecological

factors and canopy cover across neighborhood categories (Table 5). For
ecological factors, open space demonstrated a consistent, significantly
negative correlation with canopy cover in all the neighborhoods. Si-
milarly, impervious surface, ED (edge density), and SHDI (diversity)
were negatively correlated with canopy cover, but the relationship did
not hold significance across the neighborhood categories. Positive
correlations were found between canopy cover and CONTAG (patch
dispersion and interspersion effect) or COHESION (connectedness of
patches). Effect of development on urban spatial patterns (e.g., land-
cover fragmentation) has been well documented (Irwin and Bockstael,
2007). Tree canopy cover, as one typical land-cover type, is no excep-
tion (Kong and Nakagoshi, 2006). In urban areas, an increase in tree
density would reduce the size of the open area in a neighborhood.
Likewise, an increase in spatial heterogeneity increases edge density
and that lowers contagion value for canopy cover, which means an
increase in landscape fragmentation would impact contagion value for
canopy cover in neighborhoods. Our findings further suggest that the
relationship between ecological factors and canopy cover may not be
equally significant across neighborhoods of different development in-
tensities. The same conclusion applies to the relationship between so-
cioeconomic factors and canopy cover. In our study, although resident
age and neighborhood age have demonstrated moderately positive
correlations with canopy cover, and the relationships were negative for
income (Table 5), their significance did not hold across all the neigh-
borhood categories. Property ownership even showed opposite corre-
lations for high-density versus all neighborhoods (Table 5). Compared to
the ecological factors, the socioeconomic conditions had less consistent
correlations with canopy cover in the studied neighborhoods. As further
proven in the regression analysis, the ecological factors were found to
dominate the models (Table 6). This may be explained by the high
variation in urban socioeconomic status across the city and even within
the neighborhoods with similar tree cover. For example, Panduro and
Veie (2013) argued that the same level of green space could have dif-
ferent relationships with property value, where accessibility and
maintenance level also played a key role.

3.3. Impact of socio-ecological factors on carbon density

Carbon density was also variously correlated with the evaluated
socio-ecological factors (Table 7). We found that the factors have in-
fluenced canopy cover and carbon density in the same direction (i.e.,
positive or negative) with a few exceptions in the low-density neigh-
borhoods. For example, Impervious, Open, and ED were negatively
correlated with canopy cover; however, they demonstrated positive
relationships with carbon density (Table 6; Table 7). Here, we should
note that these positive relationships were not statistically significant.
In fact, we were unable to fit a regression model for the low-density
neighborhoods due to the low and insignificant correlations between
carbon density and the tested socio-ecological factors (Table 8). For all
the significant correlations (Table 7), the ecological factors – Im-
pervious, Open and ED, and the socioeconomic factors – Income and
Ownership showed negative relationships with carbon density, while
the relationships for CONTAG, COHENSION, and Neighborhood Age
were positive. Similar to the aforementioned findings for assessing ca-
nopy cover, our statistical analysis for carbon density again proved that
the relationship between tree structure and socio-ecological conditions

Table 4
Statistics of tree cover and carbon density for the three neighborhood categories.

Neighborhood Tree cover (%) Carbon density (t/ha)

Mean Std. dev. Min Max Mean Std. dev. Min Max

Low density 60.15 10.36 35.30 83.80 61.15 9.34 41.74 78.08
Medium density 50.86 10.44 22.50 75.20 55.26 11.37 32.12 76.61
High density 34.46 10.43 15.60 52.10 42.30 17.83 13.06 73.46
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are not likely to hold significance across all the neighborhood cate-
gories. While previous studies have investigated similar relationships
between forest structure and socio-ecological conditions (e.g., Escobedo
et al., 2015b; Wang et al., 2016; Salvati et al., 2017; Singh et al., 2017),
our study differs from theirs by evaluating the impact of neighborhood
diversity (based on development intensity) on such relationships within
the city boundary. The findings suggest that the two crucial forest
biophysical factors – canopy cover and carbon density – are likely to
show different relationships with socio-ecological conditions across
residential neighborhoods. Consequently, they should be treated as
different proxy indicators in urban forest management. This is im-
portant as urban forest vertical structure has received increasing at-
tention (e.g., Conway and Bourne, 2013; Escobedo et al., 2015a; Singh
et al., 2017) over the past decade. Advancements in high-resolution
remote sensing (e.g., LiDAR) have made fine-scale urban forest 3D
structure mensuration a feasible task (Godwin et al., 2015). Through
quantitative analyses, our study indicates that experience gained for

managing canopy cover is not a suitable guide for managing carbon
density, as they are not necessarily correlated with each other. Further
because urban neighborhoods typically exhibit a high variation of de-
velopment intensity, best management practices should be developed at
the neighborhood scale to improve the understanding of the influence
of socio-ecological conditions on the two indicators of urban forests.

4. Conclusions

This study examined the relationship between urban socio-ecolo-
gical conditions and two pivotal forest biophysical parameters – canopy
cover (horizontal structure) and carbon density (vertical structure) – in
the residential neighborhoods of Mecklenburg County, North Carolina,
USA. We aimed to bridge a gap in understanding the difference between
forest horizontal and vertical structure at the inner-city, urban neigh-
borhood scale. Our study led to two major findings. First, canopy cover
and carbon density demonstrated a stronger correlation in the

Fig. 3. Scatter plots showing canopy cover versus carbon density for (a) low-, (b) medium-, and (c) high-density neighborhoods.

Table 5
Pearson’s correlation coefficients (r) between canopy cover and socio-ecological
variables for low, medium, and high density, and for all neighborhoods.

Variable Pearson’s correlation

Low density Medium
density

High
density

All neighbors

Impervious (%) −0.50* −0.32* −0.02 −0.68**
Open (%) −0.48* −0.37** −0.47* −0.40**
ED −0.37 −0.14 −0.47* −0.37**
CONTAG 0.48* 0.26 0.48* 0.41**
COHESION 0.52* 0.04 0.35 0.29**
SHDI −0.48* −0.29* −0.22 −0.32**
Resident Age 0.41 0.20 0.02 0.35**
Income −0.07 −0.09 −0.46* −0.01
Ownership 0.04 −0.23 −0.45* 0.25*
Neighborhood Age 0.31 0.33* 0.54** 0.16

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.

Table 6
Linear regression models of canopy cover for low, medium, and high density, and for all neighborhoods.

Neighborhood Model Adjusted R2 RMSE (%)

Low density −5911.856* + 59.860 × COHESION* 0.23 9.08
Medium density 97.170** − 0.767 × Open** − 0.654 × Impervious** − 0.173 × Ownership** 0.34 8.49
High density 24.226** + 0.261 × Neighborhood Age** 0.26 8.98
All neighborhoods −790.856* − 0.647 × Impervious**- 0.580 × Open**+ 0.211 × Neighborhood Age**+ 8.670 × COHESION* 0.32 8.46

* Significance at the 0.05 level.
** Significance at the 0.01 level.

Table 7
Pearson’s correlation coefficients (r) between carbon density and socio-ecolo-
gical variables for low, medium, and high density, and for all neighborhoods.

Variable Pearson’s correlation

Low
density

Medium
density

High density All neighbors

Impervious (%) 0.07 −0.34* −0.04 −0.50*
Open (%) 0.19 −0.55** −0.59** −0.43**
ED 0.22 −0.16 −0.65** −0.33**
CONTAG −0.16 0.29* 0.40 0.26**
COHESION 0.14 0.01 0.37 0.23*
SHDI 0.14 −0.22 −0.03 −0.12
Resident Age −0.26 0.17 −0.16 0.15
Income 0.05 −0.14 −0.51* −0.06
Ownership −0.02 −0.13 −0.43* 0.11
Neighborhood Age −0.07 0.34* 0.48* 0.23*

* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
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neighborhoods of higher development intensity. However, the corre-
lations were generally weak (rmax = 0.60), indicating different spatial
distribution patterns of the two parameters at the urban neighborhood
level. Second, socio-ecological conditions explained the variance in
canopy cover and carbon density with diverse models and different
explanatory variables. Our results suggest that tree canopy cover and
carbon density are different proxy indicators for assessing the re-
lationship between forest structure and urban socio-ecological condi-
tions, and such relationship varies across neighborhoods of diverse
development intensities. While cities across the world have been tra-
ditionally relying on canopy cover to evaluate the success in urban
forest management, our study confirmed an essential role of tree ver-
tical structure (i.e., carbon density) to underpin ecosystem services.
Using high-resolution remote sensing to measure the two ecological
indicators and quantifying their differences provide an operational so-
lution to inform effective urban forest conservation and management.
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