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A B S T R A C T

Shadows are prevalent in urban environments, introducing high uncertainties to fine-scale urban land-cover
mapping. In this study, we developed a Recurrent Shadow Attention Model (RSAM), capitalizing on state-of-the-
art deep learning architectures, to retrieve fine-scale land-cover classes within cast and self shadows along the
urban-rural gradient. The RSAM differs from the other existing shadow removal models by progressively refining
the shadow detection result with two attention-based interacting modules – Shadow Detection Module (SDM)
and Shadow Classification Module (SCM). To facilitate model training and validation, we also created a Shadow
Semantic Annotation Database (SSAD) using the 1 m resolution (National Agriculture Imagery Program) NAIP
aerial imagery. The SSAD comprises 103 image patches (500 × 500 pixels each) containing various types of
shadows and six major land-cover classes – building, tree, grass/shrub, road, water, and farmland. Our results
show an overall accuracy of 90.6% and Kappa of 0.82 for RSAM to extract the six land-cover classes within
shadows. The model performance was stable along the urban-rural gradient, although it was slightly better in
rural areas than in urban centers or suburban neighborhoods. Findings suggest that RSAM is a robust solution to
eliminate the effects in high-resolution mapping both from cast and self shadows that have not received equal
attention in previous studies.

1. Introduction

The presence of shadows is frequent in high-resolution remote
sensing imagery of urban landscapes due to tall objects, both natural
(e.g., trees) and human-made (e.g., buildings) (Fig. 1). Depending on
the source, shadows can be categorized into cast shadows and self
shadows (Arévalo et al., 2008). Cast shadows are caused by tall objects
in the vicinity blocking the light source, while self shadows arise from
the object surface not being directly illuminated by the light source (Su
et al., 2016). Shadows can reduce the urban heat island effect providing
outdoor thermal comfort (Lin et al., 2010) and can serve as a clue for
building identification (Shackelford and Davis, 2003). However, they
are generally considered as a nuisance obscuring details of fine-scale
geographic objects (Dare, 2005), and hence pose a significant challenge
for accurate land-cover mapping. More specifically, shadows reduce

spectral radiance in the shaded landscape, which makes detection of
spectral and spatial features within shadows using a high-resolution
imagery a problematic task (Wang et al., 2017). Typically, it is also
common for shadows to be misclassified as water or water-related land-
cover types (e.g., wetland, marsh, etc.) due to high similarities in
spectral signatures and texture (Kang et al., 2017).

To deal with the undesirable shadow effects on high-resolution
imagery of urban landscapes, researchers for land cover mapping have
two strategies, such as treating shaded areas as one single ‘shadow class’
and correcting the distorted radiance. The implementation of the
former approach is straightforward. However, shadows are not a real
land-cover type, and therefore, mapped products are highly erroneous,
making the product useless for many urban studies. The second strategy
capitalizes on the advancement of inpainting, a process of re-
constructing missing or damaged areas of digital photographs and
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videos (Buyssens et al., 2015). This is applied in two steps: shadow
detection and shadow removal, often stated as de-shadowing or shadow
correction/compensation process, to eliminate shadows in remote-
sensing-based land-cover mapping. Precisely, shadow detection locates
shadow pixels. Wide range of models have been developed to consider
the sensor-sun-object geometry for accurately simulating shadow lo-
cations (e.g., Arévalo et al., 2008; Li et al., 2004). While promising,
those models are often tied to specific scene conditions and require a
priori knowledge of the viewing geometry that is not always available
(Zhang et al., 2014). To overcome these limitations, property-based
models have been developed to identify the spectral contrast between
the sunlit land cover and their shaded counterparts using thresholding
(e.g., Chen et al., 2007; Milas et al., 2017; Shedlovska and
Hnatushenko, 2019), shadow index (e.g., Mostafa and Abdelhafiz,
2017; Zhang et al., 2014), segmentation (e.g., Azevedo et al., 2019; Mo
et al., 2018), and classification (e.g., Kang et al., 2019). Those models
are typically calibrated on a scene-by-scene basis to achieve optimal
results. Once the shadow-contaminated pixels are located, their spectral
radiance is enhanced to simulate the corresponding sunlit condition
through shadow removal procedure. The basic concept behind the
majority of shadow removal models is to correct the spectral difference
between the sunlit and the shaded pixels representing the same or si-
milar surface materials, such as using histogram or region matching
(e.g., Sarabandi et al., 2004; Shedlovska and Hnatushenko, 2019), il-
lumination correction (Luo et al., 2019; Zhang et al., 2015a), linear
correlation correction (Chang and Tsay, 2010; Chen et al., 2007), and
gamma correction (Jain and Khunteta, 2017; Massalabi et al., 2004).
Relying on a single image to correct shadow effects in high-resolution
imagery has been a standard practice, while data integration from
multiple sources and/or dates has drawn increasing attention (Zhang
et al., 2014).

Recent studies have reported 85–95% accuracies for correcting
shadow effects in high-resolution remote sensing imagery (e.g., Jain
and Khunteta, 2017; Luo et al., 2019; Qiao et al., 2017; Silva et al.,
2018). While promising, those models require carefully defining
thresholds, parameters, or image features for optimized performance on
individual scenes over specific types of urban neighborhoods. Com-
pared to traditional methods, deep-learning-based methods for shadow
processing have proven effective in natural images, such as using
Generative Adversarial Network (Hu et al., 2018) and attention-based
Convolutional Neural Networks (Ding et al., 2019; Zhu et al., 2018).
However, these methods failed to process high-resolution remote sen-
sing imagery that has a wide spectral range, varying types of shadows,
and sophisticated features (Wang et al., 2017). In addition, previous

studies has emphasized cast shadow corrections (e.g., Adeline et al.,
2018; Arévalo et al., 2008; Zhang et al., 2014), while self shadows have
received less attention. Compared to cast shadows, self shadows exhibit
distinct spectral variation and semantic features, e.g., highly frag-
mented shaded tree canopies (Chen et al., 2011) that entail unique
consideration. Another challenge lies in the two-step sequential process
for shadow elimination is the lack of a mechanism to correct errors from
shadow detection once they propagate to the succeeding shadow re-
moval process.

Based on those considerations, the goal of this study is to develop an
accurate model to eliminate shadow effects in high-resolution urban
land-cover mapping. Our model aims to (i) retrieve fine-scale land-
cover classes within cast and self shadows, and (ii) generate reliable
results across various types of urban neighborhoods. To do so, we used
state-of-the-art deep learning (DL; LeCun et al., 2015) architectures for
high-performance semantic segmentation of urban land cover within
cast and self shadows. Further inspired by the bidirectional recurrent
neural networks (Schuster and Paliwal, 1997) and the attention me-
chanism in DL (Vaswani et al., 2017), we designed the model structure
to progressively refine the shadow detection result preventing the
propagation of significant errors to the retrieval of land-cover classes in
the shadow.

2. Study area

The Research Triangle metropolitan area of North Carolina
(4030 km2, Fig. 2) is located in the southern Piedmont physiographic
region and characterized by the rolling landscapes and mosaics of oak-
pine-hickory forests adjoining to the Atlantic Coastal Plain region. The
Raleigh-Durham-Chapel Hill CSA (Combined Statistical Area) has a
population of over 2.2 million (Census, 2020). With high-tech en-
terprises advancing the “new economy,” the three major cities Raleigh,
Durham, and Chapel Hill and the surrounding towns all expanded tre-
mendously. The rapid growth and sprawling patterns typify the land
uses of various neighborhood types (e.g., residential vs. commercial) of
urban areas representing different development densities (e.g., high-
density urban centers vs. low-density rural regions). The diverse land-
cover classes and spatially heterogeneous patterns in the region were
ideal for us to incorporate a wide variety of representative shadow
types in model development.

3. Data

3.1. NAIP (National Agriculture Imagery Program) imagery

The NAIP (National Agriculture Imagery Program) images covering
the study area were downloaded from the USGS Earth Explorer data
portal (USGS, 2019). Original NAIP images were taken during the leaf-
on seasons from 2016 to 2018 at the 1.0 m spatial resolution with four
spectral bands (blue - 400-580 nm; green - 500-650 nm; red - 590-
675 nm; and near-infrared - 675-850 nm). The images were orthor-
ectified with data quality inspected before being delivered by the
vendor.

3.2. Shadow Semantic Annotation Database (SSAD)

We created a Shadow Semantic Annotation Database (SSAD) from
the collected NAIP images for the training and validation of the model
proposed in this study. The SSAD has a total of 103 image patches
containing various types of shadows along the urban-rural gradient of
the Research Triangle region while balancing the distribution of the six
major land-cover classes (e.g., building, tree, grass/shrub, road, water,
and farmland). The size of each image patch is 500 × 500 pixels. Two
categories of annotation in the SSAD are: (i) shadow annotation (i.e.,
shadow and non-shadow) for straightforward shadow detection; and
(ii) land-cover annotation including the six land-cover classes within

Fig. 1. This is a simple example of shadows caused by a built (e.g., a building)
and natural (e.g., a tree). When light is blocked by the object projected on the
ground is called cast shadows while projected on the object surface itself is
called self shadows.
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shadows. Sample image patches and the corresponding semantic an-
notations are shown in Fig. 3.

We utilized transfer learning (Torrey and Shavlik, 2009) and
manual correction to annotate 103 image patches. For transfer learning,
we employed SegNet (Badrinarayanan et al., 2015) to produce pre-
annotated sample patches, using two available semantic databases: (i)
SBU Shadow Dataset (Tomas et al., 2016) for shadow annotation, and
(ii) ISPRS 2D Semantic Labeling Dataset (ISPRS, 2019a, 2019b) for land
cover semantic annotation. With this process, we were able to quickly
obtain initial sample patches. However, because the two databases were
not specifically developed for the same research purpose as ours, noises
and errors were prevalent in the obtained annotations. To improve the
quality, at each training process, we randomly selected five annotated
sample patches, carefully conducted manual correction, and put them
back for further learning. Through an incremental process, we gradu-
ally corrected all the sample patches to ensure the high annotation
quality in the SSAD. Here, the Oxford's renowned VGG-16 network
architecture was initially fine-turned to the annotation network, mainly
due to its proven success in image object recognition and the publicly

available network structure and weights for ease-of-use (Zhang et al.,
2015b).

4. Methods

4.1. Recurrent Shadow Attention Model (RSAM)

4.1.1. Overview
Our proposed Recurrent Shadow Attention Model (RSAM) retrieves

fine-scale urban land-cover classes within shadows (Fig. 4) and is
comprised of two interacting modules: Shadow Detection Module
(SDM) and Shadow Classification Module (SCM) (Fig. 4a). The SDM
was intended to focus primarily on cast shadows, capitalizing on a di-
lated Convolutional Neural Network (CNN), and a dual attention net-
work (i.e., position and channel attention), while the SCM was designed
to give more attention to self shadows. Using two sequential convolu-
tional Long Short-Term Memory (LSTM) units, SDM and SCM re-
ciprocally influenced further learning, which agglomerated over epochs
to refine the shadow and the shaded land-cover feature attention in a

Fig. 2. Research Triangle is a rapidly urbanizing region with a spatially heterogeneous land cover that ranges from high-density city centers to low-density rural areas
(PBU: Percent Built-Up). The thirty sample neighborhoods are shown in insets T1-T30.
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Recurrent Neural Network (RNN) architecture (Fig. 4b). After the re-
finement, both the final shadow attention and the shaded land-cover
feature attention were bidirectionally fed into SegNet to retrieve de-
tailed land-cover classes within shadows (Fig. 4c).

4.1.2. Shadow Detection Module (SDM)
To obtain the best local and global shadow feature representations

for pixel-level prediction, SDM used a dilated SegNet (Badrinarayanan
et al., 2015) architecture due to its robust performance in semantic
segmentation (Audebert et al., 2017; Hamida et al., 2017; Jiang et al.,
2020; Panboonyuen et al., 2017; Zhang et al., 2019), which was applied
to detect shadow versus non-shadow areas in the NAIP imagery. The
novelty of the proposed SDM lies in the integration of the position
(spatial) and the channel (band) attention via the Convolutional Block
Attention Module (CBAM) (Woo et al., 2018). The choice of the module
was mostly due to its effectiveness in enhancing shadow contextual
dependencies in the scene segmentation task (Fu et al., 2019), which
ensured the key advantages of SDM: (i) channel attention was used to

understand ‘what’ is meaningful in the high-resolution imagery by ex-
ploiting the inter-channel relationship of shadow features; and (ii) po-
sition attention allowed the channel attention to focus on local semantic
information through prioritizing the shadow areas, i.e., ‘where’ is an
informative part.

The encoder of SDM performed convolution using a filter bank to
generate a series of shadow feature maps, comprising five convolution
blocks. Feature maps at the shallower layers encoded the fine details
that helped to preserve the shadow boundaries, while feature maps at
the deep layers carried global semantics that helped to recognize the
shadow and non-shadow regions. In pre-training, SDM started initially
with the weights of the inceptions-v4 net (Szegedy et al., 2017) pre-
trained with ImageNet, and all the weights were fine-tuned using the
SSAD Category (i) training data (Section 3.2). Compared with the other
pre-trained networks, e.g., ResNet-50 (Targ et al., 2016) and VGGNets
(Wang et al., 2015), Inception-v4 balanced efficiency and performance
well (Szegedy et al., 2017). With a very deep convolutional network, it
was especially suitable for high-resolution shadow context recognition

Fig. 3. Three sample patches along an urban-rural gradient from the SSAD: (a) NAIP Infrared-Red-Green image composites, (b) SSAD Category (i) results, and (c)
SSAD Category (ii) results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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due to the proven success of fitting databases with a similar size as
SSAD (Liu and Deng, 2015). At the end of the encoder, we generated the
final shadow feature maps based on the features aggregated at multiple
layers. The decoder of SDM unsampled and reconstructed the shadow
feature maps by five symmetrical deconvolution blocks with respect
encoder, and utilized the memorized max-pooling operation of the
corresponding encoder feature maps. CBAM was then integrated into
our SDM architectures to compute the channel and the position atten-
tion.

4.1.3. Shadow Classification Module (SCM)
Self shadows are highly variable, containing objects of different

sizes, shapes, and spatial patterns. While the SDM may work well for
cast shadows that are often connected, it is challenging to characterize
self shadows, which tend to be fragmented (Fu et al., 2019). Hence, the
land-cover contextual information within self shadows is often different
from those in cast shadows. To address this issue, SCM adapted the
same neural network structure as SDM. Consequently, the parameters
and pre-training remained the same. However, SCM was fine-tuned
using the SSAD Category (ii) training data (Section 3.2) to produce
position and channel attention maps. This is because the Category (ii)
data included detailed land-cover classes within shadows. Our pre-
liminary evaluations found that such fragmented land-cover

information helped detect and remove self shadows at similar frag-
mentation levels. Compared to SDM, SCM has two unique operations:
(a) assigning the position attention to update the shadow attention of
SDM, i.e., an element-wise sum operation on the above-resulting posi-
tion attention of SDM and SCM, and (b) refining shaded land-cover
features within the shadow attention map obtained in the first steps,
i.e., a matrix multiplication between the two attention maps. The
purpose was to refine the shadow attention map, and suppress the non-
shaded land-cover contextual information to be introduced into the
final feature maps.

We used the two sequential convolutional LSTM units (Graves and
Schmidhuber, 2005) to progressively refine the shadow attention map
for developing the RSAM (Fig. 4a). At each epoch, we employed a
convolutional LSTM unit to adaptively generate a recurrent shadow
attention map relying on the shadow position attention from SDM and
SCM, which consisted of two stages: (i) producing shadow attention
map by a 1 × 1 convolutional layer with stride 1, and (ii) progressing
as memory in the RASM. The integrated position attention map was
then fed into SDM and SCM in the next epoch to improve the estimation
of shadow cover and land-cover classes within shadows, respectively.
The process completed at the end of the epochs. The shadow attention
map was a matrix ranging from 0 to 1, rather than a binary mask. The
larger the value, the more attention should be given to this region.

Fig. 4. (a) RSAM workflow; (b) the detailed structure for generating recurrent shadow attention maps with two interacting modules – the Shadow Detection Module
(SDM) and the Shadow Classification Module (SCM); (c) the structure for retrieving fine-scale shaded land-cover classes using shadow attention map, shaded land-
cover attention map, and SegNet.
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Here, the attention mechanism was employed to direct the model's
emphasis on shadow areas. Such a device is one of the most influential
trends in deep learning attempting to mimic human brain actions by
selectively concentrating on relevant objects (Bahdanau et al., 2014;
Sutskever et al., 2014), which are shadows in our study. As shown in
Fig. 5, the red areas with higher attention values (i.e., closer to 1) are
more likely to be shadow, whereas the blue areas with lower attention
values are more likely to be non-shadow. The shadow attention maps
gradually improved through recurrent iterations.

4.1.4. Implementation of RSAM
At the training stage, we randomly selected 73 image patch samples

out of 103 (approximately 70%) from the SSAD and their corresponding
NAIP images (Infrared Red Green, IRRG). We used a sliding window
strategy (Lampert et al., 2008) to extract the patches of 250 × 250
pixels and a 32-pixel stride to recognize shadow at varying scales and
locations in each patch. We conducted 50 epochs with the bath size 10
(i.e., 500 iterations). In our evaluation, the optimal number of epochs
was set to 50, as this number allowed all the SSAD sample patches to be
used for training and the model performance achieved a stable level
(Fig. 6). At the testing stage, we used a 32-pixel stride window for the
selected NAIP image. The value of 32 was chosen to reduce border
effects and predict results efficiently while being permitted by the GPU
cache. RSAM was implemented in the Caffe framework (Jia et al.,
2014), using the eminent Stochastic Gradient Descent (Sra et al., 2012)
to optimize parameters with a base learning rate of 0.01 adaptively, a
momentum of 0.9, a weight decay of 0.0005 and a batch size of 10 for
high-resolution mapping in urban environments (Audebert et al.,
2018). For SegNet-based architectures, the weights of the encoder were
initialized with those of inception-v4 trained on ImageNet, while the
decoder weights were randomly initialized (He et al., 2015). The main
computation in both the convolution and deconvolution stages was
filtering, which was implemented as the standard dot product of two
vectors. Our networks used a SoftMax layer to compute the multinomial

logistic losses (Audebert et al., 2018), which were averaged over all the
patches. In this study, a total of six shaded land-cover classes across the
30 tested urban neighborhoods were generated, i.e., building, tree,
grass/shrub, road, water, and farmland.

4.1.5. Accuracy assessment
We used the remaining 30 urban neighborhood patches (set aside

from the training data) from the SSAD for model validation. Those
patches (a total area of 7.50 km2) cover diverse shadow types along the
urban-rural gradient. Overall accuracy (OA) and Kappa statistic
(Kappa) were calculated and reported along with F1-score as an addi-
tional accuracy metric, as this is suitable for comparing different
methods running on different portions of the dataset (Goutte and
Gaussier, 2005).

4.2. Effects of urban development patterns on model performance

In the study, we selected widely used landscape metrics (McGarigal,
2014) to evaluate RSAM's performance for urban neighborhoods of
various development patterns, including landscape-level metrics (e.g.,
CONTANG: Contagion Index; SHDI: Shannon's Diversity Index) and
class-level metrics (e.g., ED: edge density; PLAND: percentage of land;
COHESION: patch cohesion index) (Lechner et al., 2009; Smith et al.,
2003). The 8-neighbor rule was chosen for patch delineation, treating
both cardinal and diagonal pixels/cells as adjacent neighbors. This rule
has been found to generate appropriate patches in previous urban
studies (Godwin et al., 2015). These metrics capture urban landscape
patterns from various perspectives – geometry, dispersion/intersper-
sion, diversity, and connectivity.

We summarized and compared all the selected landscape metrics for
the 30 validation neighborhood patches (T1-T30, Fig. 2). Those patches
are divided according to the percent built-up (PBU) of each neighbor-
hood (Angel et al., 2012), representing three primary urban develop-
ment intensities along the urban-rural gradient: urban center (hereafter

Fig. 5. Visualization of sample shadow attention maps generated by one NAIP image at epochs of 10, 30, and 50 using three proposed modules: top - Shadow
Detection Module (SDM), middle - Recurrent Shadow Attention Model (RSAM), bottom - Shadow Classification Module (SCM).
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urban), suburban, and rural. Spearman's correlation coefficients were
calculated to evaluate the relationship between model accuracy and the
selected landscape metrics for the three types of neighborhoods, re-
spectively. Spearman's correlation was chosen, instead of the commonly
used Pearson's correlation, to describe the potentially nonlinear,
monotonic relationship between variables (Hollander and Wolfe,
1973).

5. Results and discussion

5.1. Overall performance of RSAM

To facilitate the performance evaluation of the proposed model
RSAM, we applied state-of-the-art deep learning architecture ResNet-50
(Targ et al., 2016) as a baseline (i.e., direct classification of land-cover
classes within shadows) for result comparison. There are two reasons.
First, recent studies (e.g., Luo et al., 2019; Mostafa and Abdelhafiz,
2017; Su et al., 2016) focused extensively on recovering the spectral
reflectance of the ground objects to their non-shadow conditions. No
other shadow algorithms were known to directly generate land cover
maps, as we did with RSAM. Second, ResNet-50 has been successfully
applied to urban semantic segmentation (Zhong et al., 2018; Zhu et al.,
2017) and shadow processing of natural imagery (Zhu et al., 2018),
demonstrating a good balance between model complexity and accu-
racy. We initialized RSAM and ResNet-50, respectively, using para-
meters from inception-v4 pre-trained with ImageNet. Compared with
RSAM, ResNet-50's configuration remained the same to ensure a fair
comparison (Section 4.1.4). Although the structure of RSAM was more
complicated due to using the bidirectional attention mechanism, we
relied on parallel processing to run the model. As a result, ResNet-50
and RSAM had similar runtime. Using the same training and validation
samples for the two models, RSAM was found to outperform ResNet-50,
with OA of 90.6% versus 76.2%, and Kappa of 0.82 versus 0.54. Si-
milarly, RSAM revealed higher accuracies (F1-scores) than ResNet-50 in
mapping each of the six land-cover classes within shadows – building:
72.8% versus 33.1%, tree: 90.2% versus 63.9%, grass/shrub: 79.7%
versus 41.4%, road: 84.8% versus 54.3%, water: 83.9% versus 32.2%,
farmland: 91.9% versus 35.8% (see Fig. 7). Our visual interpretation of
the results indicates a relatively robust model performance of ResNet-
50 across urban neighborhood types (Fig. 8); however, problems

remained primarily for extracting roads and water (Fig. 8). This may be
due to the fact that high-resolution remote sensing imagery typically
has low feature resolution and broad data range, causing the shadow
areas to have highly fragmented and detailed land-cover features, i.e.,
uncertain semantic and fuzzy boundary (Wang et al., 2017). Compared
with ResNet-50, RSAM improved the average performance for ex-
tracting shaded roads by 30.5% in F1-score, while the standard devia-
tion decreased by 0.44 across the tested neighborhood patches. Simi-
larly, for extracting shaded water, the model performance improved by
51.7% in F1-score, with a decrease of 0.17 in standard deviation

Fig. 6. The blue line corresponds to the average values of accuracy (top) or loss (bottom) with the change of epoch (0–80) for SDM, SCM, and RSAM. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Comparison of the model performance across 30 tested neighborhood
patches using (a) ResNet-50 versus (b) RSAM. Boxplots showed the maximum,
minimum, median, standard deviation, and average values of the F1-score.
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(Fig. 7). While ResNet-50 (with the residual learning technique) has
improved feature refinement by learning the residual of input features,
it introduced non-shadow areas into the results because it lacks the
bidirectional shadow attention mechanism developed for RSAM. Capi-
talizing on this mechanism, RSAM was able to suppress non-shaded
land-cover context information (including those from low-albedo ob-
jects) to be introduced into the final result and exhibit smaller variation
in the results along the urban-rural gradient, e.g., lower standard de-
viation values for OA, Kappa, and F1-score (RSAM: 0.04, 0.08, and
0.12; ResNet-50: 0.12, 0.18, and 0.19) across the tested neighborhood
patches.

While recent studies focused extensively on using two sequential

steps – shadow detection and shadow removal to address the shadow
concern in high-resolution imagery (Luo et al., 2019; Mostafa and
Abdelhafiz, 2017; Su et al., 2016), errors propagating through the steps
raised new concerns about model robustness and its generalizability
capacity across land-cover types (Mostafa, 2017). Our study, for the
first time, capitalizes on the deep learning bidirectional attention me-
chanism to iteratively refine shadow detection for estimating land-
cover classes within shadows. The strategy circumvents the dependence
on two separate steps. We also note that most of the previous studies
attempted to recover the spectral reflectance of the ground objects to
their non-shadow conditions. Our model moved one step forward to
extract land cover types within shadows. This product can be directly

Fig. 8. Five typical examples for model performance in building, road, water, and tree: (a) NAIP, (b) Ground truth; (c) ResNet-50, and (d) RSAM, respectively.
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used by researchers and practitioners in urban studies. In addition,
incorporating ancillary data (e.g., LiDAR – light detection and ranging)
has proven effective in shadow detection and classification (Milas et al.,
2017; Sharma and Singhai, 2019); however, it demands computational
resources and expertise, and sometimes impossible to obtain such
auxiliary data for specific regions. Our model only requires high-

resolution imagery as input, which is increasingly available in urba-
nized areas. Due to certain illumination conditions (e.g., a low solar
elevation angle) or land cover types (e.g., the shadow cast onto a water
surface), heavy shadows add additional challenges to ascertaining ac-
curate land cover even with visual interpretation. While the spectral
and spatial information of shadows is used in our modeling, RSAM

Fig. 9. Sample cast and self shadows for buildings (a) and trees (b). The red polygons include self shadows, while the blue polygons indicate cast shadows. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of overall performance in F1-score for (a) self shadow versus (b) cast shadow detection across 30 tested urban neighborhood patches (T1-T30)
using three scenarios: SDM, SCM, and RSAM.
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further capitalizes on shadow's contextual variation (neighboring land
covers) – one key feature of deep learning – to infer the landscape types
underneath the shadow. Another unique contribution of this study is
the development of a shadow semantic annotation database – SSAD,
which is accurate, diverse, and extendable. Such knowledge can be
easily used to help train a deep learning model for high-resolution
shadow removal in other urban regions.

5.2. Comparison between cast and self shadows

Our study evaluated cast and self shadows over various types of
urban neighborhoods. Compared to cast shadows, we found that self
shadows typically demonstrated high spectral variation and high frag-
mentation. For instance, the self shadow of a building or a tree (or a tree
cluster) is often a mixture of light and dark shadow patches that are
smaller than the corresponding cast shadow (Fig. 9). Aside from the
causes of shadow, secondary lighting from the surrounding illuminated
objects may also be contributed to the difference (Dare, 2005).

We compared the performance of RSAM in detecting cast versus self
shadows. Since the SDM and SCM modules of RSAM were designed to
identify the two shadow types, respectively, they were also used as
standalone models for the purposes of comparison. Here, we reported
our findings from three shadow detection scenarios: SDM, SCM, and

RSAM. For all the tested neighborhoods (Fig. 10), on average, RSAM
gained superior performance for detecting self shadows with higher F1-
scores (91.7%) than using the SDM (65.3%) or the SCM model (80.3%).
Similarly, RSAM achieved higher performance (F1-score) for cast sha-
dows in (91.1%) than SDM (78.8%) or SCM (69.3%). RSAM extracted
and integrated the semantic of both shadows and land-cover classes into
a position attention map through SDM and SCM, achieving higher
sensitivity and more accurate detection performance for self and cast
shadows. When comparing SDM and SCM, we found that SDM per-
formed better than SCM, with more accurate results in cast shadows,
especially those from buildings with accurate boundary detection
(Fig. 11). However, SCM was more suitable for detecting self shadows
with higher sensitivity to shaded trees (Fig. 11). While previous studies
mainly investigated cast shadows (Liu et al., 2017; Su et al., 2016;
Zhang et al., 2014) or treated cast and self shadows as single objects
(Zhou et al., 2009), our study is one of the first to focus on cast and self
shadows separately and report on model performance for both shadow
types.

5.3. Effects of urban development patterns

We observed that shadow occupied 14.8% urban, 13.4% suburban,
and 10.3% rural in the test database. The proposed RSAM demonstrated

Fig. 11. Five sample patches, i.e., building, road, water, and tree in model performance for self shadow versus cast shadow detection between three scenarios: (a)
NAIP, (b) Ground truth, (c) SDM, (d) SCM, and (e) RSAM, respectively.
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relatively stable performance across the three types of urban develop-
ment patterns (Fig. 13), with average OA of 89.3%, 89.0%, and 94.8%,
and Kappa of 0.82, 0.78, and 0.89 for urban, suburban and rural
neighborhoods, respectively. We also estimated the city of Raleigh and
the model performed well (Fig. 12), especially in the rural regions due
to simple shadow conditions (e.g., less tall buildings and larger forest
patches) than the highly urbanized areas. The six land-cover types were
detected within shadows with various levels of success along the urban-
rural gradient. For instance, RSAM achieved stable performance for all
the land-cover types over the urban core neighborhoods except farm-
lands that did not exist in the region (Fig. 14). Specifically, the model
performance (average F1-scores) across urban, suburban and rural
neighborhoods – building: 80.3%, 68.9%, and 67.9%; Tree: 84.7%,
90.2%, and 97.1%; Grass/shrub: 76.7%, 77.8%, and 88.6%; Road:
89.8%, 84.6%, and 74.8%, Water: 78.4%, 84.4%, and 85.7%. However,
when moving to the neighborhoods with lower urban development

intensities (e.g., suburban and rural), buildings within shadows were
harder to detect than trees. It was possibly due to the discontinuous
urban fabric (i.e., decentralized building distribution) in the suburban,
causing the shaded buildings to be fragmented at a higher level than the
shaded trees (Awuah et al., 2018).

To date, studies of shadow detection and/or removal have mainly
focused on urban (Ma et al., 2015; Qiao et al., 2017; Su et al., 2016;
Zhang et al., 2014) and suburban residential regions (Zhou et al.,
2009). However, none of them have quantified the relationship be-
tween the spatial patterns of urban development and model perfor-
mance. In this study, our statistical analysis discovered consistent,
significant effects of urban forests (i.e., PLAND_C2 and COHESION_C2)
and edge density (ED) of ground patches on RSAM's performance along
the entire urban-rural gradient (Table 1). This was probably due to a
large number of trees in all the neighborhoods. The intricate edges of
tree patches and high variation in forest structure (caused by diverse

Fig. 12. Shaded land cover estimating result for the city of Raleigh using RSAM. The insets correspond to the neighborhood-level results for sample urban center,
suburban, and rural regions.

Fig. 13. The overall performance of RASM in OA (Overall Accuracy) and Kappa across various types of urban neighborhoods. PBU is a percent build-up representing
various development intensities in the tested neighborhoods T1-T30.
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species types, growing stages, and forest management practices) may
have introduced high uncertainties to retrieving land cover in shadows.
When comparing neighborhoods of increasing urban development in-
tensity from rural to urban centers, we found increasing effects of non-
forest land-cover classes on model performance. For example, roads and
water bodies revealed significant correlations with model accuracy in
the suburban areas, while buildings and grass/shrub were more influ-
ential to the results in areas close to urban centers. We note that the
specific relationship between landscape patterns and model perfor-
mance may vary from one city to another. However, such quantitative
analysis informs valid deep-learning-based model calibration by col-
lecting training data for the land cover that is highly relevant to model
performance.

6. Conclusion

In this study, we developed a novel deep-learning-based shadow
removal model RSAM to eliminate shadow effects in high-resolution
urban land-cover mapping. We also quantified the relationship between
the spatial patterns of urban development and model performance.
Based on the results of this study, the following conclusions can be
drawn: (i) RSAM capitalizes on the deep learning attention mechanism
to progressively refine the shadow detection results, which provides a
viable and accurate solution to retrieve land-cover classes within sha-
dows in an urban context (overall accuracy of 90.6% and Kappa of
0.82). (ii) Our model has the capacity to detect both self and cast
shadows, which is significant because self shadows were often ne-
glected in previous studies due to their complex and distinct contextual
features in the urban environment. (iii) RSAM shows relatively stable
performance along the evaluated urban-rural gradient with diverse
spatial development patterns, demonstrating its generalizability po-
tential to other urban regions. (iv) This study produced a database of
shadow semantic annotation SSAD, the first of its kind for high-re-
solution shadow detection. It is accurate, diverse, and extendable, and
hence can directly benefit future shadow removal studies as effective
training and validation data. The SSAD currently has 103 patches, and
we are keen to enhance the database for removing more complex sha-
dows by sharing it with the broader community: https://pages.uncc.
edu/gang-chen/research-products/.
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