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ABSTRACT
SPRITE (Signal PRocessing In The Element) detectors are analyzed

in terms of their main spatial frequency dependent parameters of
modulation transfer function and number of equivalent elements.

1 . INTRODUCTION
SPRITE detectors (refs. 1-10) are photoconductive structures which

exploit the finite carrier drift velocity in a semiconductor
material to achieve an enhancement in signal to noise ratio, by
means of time—delay-and-integration (TDI). TDI is a technique which
facilitates an increased "dwell time" of the detector on each
element of the scene. This increased dwell time is equivalent to
signal averaging, and hence the signal grows coherently in
proportion to the observation time and the noise grows incoherently
in proportion to the square root of the observation time. This is
implemented by physically scanning the infrared scene past the
SPRITE detector at the same velocity as the photogenerated carriers
drift under the applied electric field. The signal to noise
enhancement is achieved at the expense of spatial resolution,
because as the carriers drift in the semiconductor, they also
undergo diffusion, which makes the impulse response of the detector
larger with increased dwell time.
The basic structure of a SPRITE is seen below in Fig.1. The image

data is available as the voltage across the read—out region, which
is modified by the carrier concentration which moves past the
read-out. Fig.2 illustrates two design parameters which are often
useful: the length of the SPRITE element and the shape of the
read—out region.

IMAGE SCAN DIRECTION
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Fig.1. Basic structure
of the SPRITE.
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Fig.2. SPRITE array
of variable bar length,
with a tapered read—out region.



2 . MODULATION TRANSFER FUNCTION
The modulation transfer function (MTF) of the SPRITE detector

may be obtained from the Fourier transform of the impulse response
of the device. Our analysis concentrates on two major components of
the MTF, arising from carrier diffusion and recombination, and from
the shape of the read-out region.

2.1 MTF due to carrier diffusion and recombination
Following the procedure used by Day and Shepherd (Ref .3 ) , the

component of MTF due to carrier diffusion and recombination may be
found using the following impulse response for the semiconductor,
which accounts for both effects:

G(x,t) = 1
exp (x4Dpt)2 + _i_ . (1)2nDt V

In the above equation, x is spatial position, t is time (assuming
that the charge is generated at x=O and tO), D is the diffusion
constant of the material, V is the carrier lifetime, p is the
carrier mobility and E is the electric field impressed across the
length of the SPRITE. The diffusion length of carriers in the

material is LD V . The mean carrier drift length before

recombination is pEt. The qualitative behavior of this impulse
response may be seen in Fig.3, where G is plotted versus x/LD at

various instants in time (this figure was adapted from Ref.3, and is
plotted for pEr 6 LD) ti.O.25

G

Fig.3. Impulse response of the detector material,
as a function of time and position.

The MTF of the SPRITE due to carrier diffusion and recombination
is found (Ref.9) by performing the Fourier transform of this impulse
response in both the space and time domains, taking into account the
finite length of the SPRITE element. Once the transform of this
impulse reponse Is normalized to unity at low spatial frequency, the
following expression for MTF obtains:
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where is spatial frequency (radians/distance) and L Is the length
of the SPRITE element. The MTF Is shown in Fig.4, plotted as a
function of normalized spatial frequency (LD)1 with normalized bar

length (L/(pEv)) as a parameter.
MTF(I,L)

1 LET

ø25::
L

0. . 5 1. 0 1. 5 2. 0 2. 5 3. @ 3. 5 4. 0 4. 5 5. 0 D

Fig.4. MTF of the SPRITE as a function of
spatial frequency and element length.

We note that the MTF is increased by decreasing the length of
the SPRITE element. The charge packet undergoes diffusion as it
travels down the element. If the bar is too short for the
attainment of a steady state spot size due to diffusion, then the
smaller size of the charge packet gives a better spatial resolution
for the SPRITE. Another feature of Fig.4 is that a SPRITE
fabricated from a semiconductor material with a small diffusion
length LD (generally having a small carrier lifetime v) will have a

higher MTF than a SPRITE using a material with a longer diffusion
length.

It is of interest, from the point of view of comparision with
previously published work, that in the limit of long bar length
(L>>pE), Eq.2 yields the usual MTF expression:

MTF(t,L) = 2 2 (3)

(LDt +1)

A gain in MTF naturally comes at the expense of signal to noise
ratio, since a short element (or a material with a small carrier
lifetime) has a shorter dwell time on a particular scene feature.
We will consider the engineering tradeoff of MTF versus signal to
noise ratio in section 3.

2.2 MTF due to the read-out shape
In this section, we treat the read—out region separately from

the rest of the SPRITE, for purposes of an MTF analysis. We obtain
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an expression for the MTF of the read-out, which can be multiplied
with the MTF obtained in the previous section, to give an overall
device MTF. As seen in Fig.2, the readout region of the SPRITE can
have a tapered shape. This is a technique which is used to enhance
the MTF of the SPRITE. One interpretation of the mechanism of such
a structure is that the taper reduces the dispersion of carrier
transit times through the read—out (Ref .6) . We present an
easy—to—use, alternative model of these structures which appears to
have a better agreement with experimental results.

The read-out region of the SPRITE is photosensitive, and as
such, is a detector element which is scanned over the image
presented to the SPRITE. Our model for MTF of these structures
begins with the fact that a detector of finite size performs a
spatial averaging of the flux which falls on it. This spatial
averaging process has the effect of filtering the image data in the
Fourier domain. The process of scanning a detector past a spatially
varying irradiance may be cast (Ref.1O) as a convolution between the
irradiance i(x,y) and the detector spatial responsivity profile
d(x,y), which is taken for convenience to be a tlonezerot; function,
i.e., either unity inside or zero outside. Assuming for the moment
that the detector is free to scan in both the x and y directions, we
may write the following expression for the output of the detector as
a function of scan position, r(x51y9):

r(x5,y5) = i(x,y) ** d(x,y) , (4)

where ** indicates a two-dimensional convolution. For a line-
scanned detector such as the SPRITE, Eq.4 needs to be modified to
give the response of the detector along one particular horizontal
scan line, here taken to be the line

r(x5,O) = (i(x,y) d(x,y)] x (1(x5) 8(y5)] . (5)

We can obtain R(), the 1—D Fourier transform of r(x5,O) by means of

the convolution theorem:

R() = {r(x51O)} = (I(,,') x D(,i)] (&() 1(,z)] (6)

where r is the 1—D Fourier transform operator, is the along—scan
spatial frequency variable and , is the perpendicular—to—scan
spatial frequency variable. The convolution in the , direction
produces a constant which normalizes out under the usual definition
of MTF, so that the MTF for the read-out structure (in the
along—scan direction) is written as

MTF() = 1D(,O)/D(O,O)I . (7)

We can now compare the MTF of two typical read—out structures: one
is rectangular of length X and height Y; one is exponentially-
tapered; having the same total length X, but now tapered along the x
direction.
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Using Eq.7 for the rectangular structure of width X, calculation
of the MTF yields simply

MTF(e) = Isinc(Xt)I . (8)

The photosite responsivity function d(x,y) was separable, so that
D(,O) could be calculated simply as {d(x,O)}.

The geometry for the tapered readout is shown in Fig.5. The
height of d(x,y) in the y direction depends upon the x coordinate.
In order to calculate the MTF for this structure, we again need to
find an expression for D(,O). However, in this case, we have a
non—separable function for d(x,y), i.e., d(x,y) cannot be expressed
simply as a function of x multiplied by a function of y. This
implies D(,O) r(d(x,O)), i.e., that the profile of the 2-D
transform of the photosite responsivity is not simply the 1-D
transform of the x—profile of that responsivity. The non-
separability of d(x,y) in this case implies that the y-profile of
the photosite response function comes explicitly into the
calculation of the MTF in the direction.

sided(x,y) = 3 , outside

Fig.5. Geometry for the tapered read—out structure.

We proceed as follows:

D(,i) =
:i!

d(x,y) exp(-j2ncx) exp(-j2iriy) dx dy . (9)

Since d(x,y) is a tione_zeroft function, we may write Eq.9 as
y(x)

D(t,7?) J exp(-j2wx) $ exp(-j2ir,y) dy dx . (10)
-y(x)

Along the 77=0 profile which is of interest for MTF(t), Eq.10 becomes

y(x)

dy dx=Jexp(_J2nx) 2y(x) dx = 2Y(t) . (11)
-y(x)
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Applying Eq.?, we obtain

MTF(t) IY(t)/Y(O)1 (12)

For the tapered read—out, the profile y(x) of the photosite
responsivity is of the form

I x — X/2 1y(x) = rect j exp(—x), (13)

where is the tapering coefficient. Thus, because of the
convolution theorem, the MTF of the tapered read—out will be wider
than the MTF of the rectangular readout of the same length.

MTF()
r[rect[

x
xX2 ]exP(_x)]

rx-x/ 21= ;:
rect j * r{exp(—x)) . (14)

In Fig.6, we present a comparison of MTF for two typical read-out
structures: one is rectangular with dimensions 5Opm long in the x
direction and 35pm wide in the y direction; the other is
exponentially-tapered, also 5Opm long in the x direction, and 62.5pm
wide at the wide end and l5pm wide at the narrow end ( = 0.0285).
The tapered read-out is seen to have a better MTF than the
rectangular read—out. A comparison of these curves with measured
data is made in Ref.10. A good agreement is found, with the
advantage that the MTF for a particular read-out geometry is easily
calculated from the geometry of the structure.
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Fig.6. Comparison of MTF of rectangular (lower curve)
and tapered (upper curve) read—out structures.

As stated at the beginning of this section, the read-out MTF
seen above can be multiplied by the MTF due to carrier diffusion and
recombination to obtain the MTF for the entire SPRITE device.
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NUMBER OF EQUIVALENT ELEMENTS
In section 2.1, It was found that the MTF of the SPRITE is

better for shorter element lengths. This MTF enhancement comes at
the expense of signal to noise ratio, since a short element has a
shorter dwell time on a particular scene feature. We now consider
the dependence of signal to noise ratio on bar length and spatial
frequency by the figure of merit Neql the number of equivalent

elements.
N is the number of discrete detector elements in TDI which
eq

would produce the same signal to noise ratio enhancement as the
SPRITE bar. Recall that in the classical TDI situation of n
detectors scanned serially, the signal strength grows in proportion
to n, and the noise grows as the root of n, since the signal is
correlated and the noise is uncorrelated from element to element.
Thus, for the classical TDI case, the signal to noise ratio grows as

I-;;--. We can define the number of equivalent elements on the same
basis, that of signal strength. Thus, Neq is the ratio of the

signal strength which would be obtained by a SPRITE element of
length L to the signal strength which would be obtained by a SPRITE
element of length t of the read-out alone. By analogy with the
classical TDI case, the signal to noise enhancement obtained with

the SPRITE may be interpreted as rNeq . The signal strength as a

function of element length and spatial frequency is obtained (Ref.9)
via a Fourier transform of the impulse response given in Eq.1, but
without the normalization to unity at zero spatial frequency which
was necessary for the MTF calculated in Eq.2. Thus, the expression
for N becomes

eq
I 2 2 L1 -

exp[
-

(LD ÷ 1)

N (;L) (15)
eq

1 2 21 -
exp[ -( LD

+ 1)

which is shown in Fig.7. Neq is plotted as a function of normalized

bar length, with normalized spatial frequency as a parameter. For
the , a readout length of 0 . 1 times the mean dri ft length
before recombination was assumed. There are several features of the
plots worth noting: Increasing bar length gives a larger value of
Neqi but for any given spatial frequency, there is a particular bar

length for which the majority of signal to noise enhancement has
been obtained. For low spatial frequencies, it takes a longer
element length to obtain the majority of the available signal to
noise enhancement. There is more signal to noise enhancement
available at low spatial frequencies. The interpretation can be
made that the carrier diffusion limits the available integration of
signal at high spatial frequencies.
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An approximation to Eq.15 under a specific combination of limits
is also of interest. At low spatial frequencies (tO), and for a
SPRITE having an element of length L which is long and a read-out
dimension which is short, both compared to the mean drift length
before recombination (L>>pEv>>fl, Eq.14 has the following limiting
form:

Neq pEv/t , (16)
which is the mean drift length before recombination divided by the
read-out length.

4. SYSTEM OPTIMIZATION
The effect of SPRITE element length has been seen to have

competing effects on two figures of merit which are important for
thermal imager performance. As the element is shortened, the MTF is
enhanced, but at the expense of signal to noise ratio. An
engineering trade—off is necessary for the system designer to decide
on the proper element length. To illustrate the optimization
procedure, a system—wide figure of merit may be taken to be the

product of MTF and / Neg Both components of this figure of merit

are functions of spatial frequency and bar length. Plots of this
merit function (excluding the effect of read-out MTF) are shown in
Fig.8. An appropriate optimization for element length would involve
a maximization of the area under the merit function curve. The
decicing factor in the choice of element length will then be the
range of spatial frequencies over which the system is required to
operate. It can be seen from Fig.8 that a system operating at
predominantly low spatial frequencies would benefit from a long
SPRITE element, while a system operating at predominantly high
spatial frequencies would benefit from a short SPRITE element.

SPIE Vol. 1309 Infrared Imaging Systems: Design, Analysis, Modeling, and Testing (1990) / 165

N (,L) (t=O.lpEv)
eq

eLD=l

Fig.?. N
eq

LD=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0J.,,..

as a function of SPRITE length and spatial frequency.



3.

3.

2.

1.

1.

0.

0.

5. CONCLUSIONS
Expressions have been presented for the MTF of SPRITE detectors

due to carrier diffusion and recombination, and due to the chap. of
the read—out region. MTF has been seen to depend on the length of
the SPRITE element. The enhancement of signal to noise ratio also
depends upon the element length, and can be expressed in terms of
the number of equivalent elements. A figure of merit has been
presented which allows the optimization of performance, as a
function of the length of the SPRITE element.
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Fig.8. System merit function (MTF x i Neq) as a function of

spatial frequency and SPRITE element length


