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ABSTRACT
We investigate the expression of non-Kolmogorov turbulence in terms of Zernike polynomials. Increasing
the power-law exponent of the three-dimensional phase power spectrum from 2 to 4 results in a higher
proportion of wavefront energy being contained in the tilt components. Closed-form expressions are
given for the variances of the Zernike coefficients in this range. For exponents greater than 4, a von
Karman spectrum is used to numerically compute the variances as a function of exponent for different
outer-scale lengths. We find in this range that the Zernike-coefficient variances depend more strongly on
outer scale than on exponent, and that longer outer-scale lengths lead to more energy in the tilt terms. The
scaling of Zernike-coefficient variances with pupil diameter is an explicit function of the exponent.
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1. INTRODUCTION
While the Kolmogorov has been widely used to successfully describe atmospheric

turbulence, some turbulence conditions exist where experimental data does not support it. For
Kolmogorov turbulence, the three-dimensional power spectral density of phase fluctuations has the form

I(k) =
O.023k1113

r (1)

where k is spatial frequency (cyflength) and r0 is a normalization factor with units of length that gives the

correct dimensionality of the power spectrum2. We interpret r0 as the pupil diameter over which the piston-

subtracted wavefront variance is equal to 1 rad2 for the case of Kolmogorov turbulence. We find this
definition more convenient for our purposes than the original3 definition of r0 in terms of the integral of the
modulation transfer function. These two defmitions agree to within a few percent.

The exponent for the inverse spatial-frequency dependence has been experimentally observed to be
both larger and smaller than the value of 11/3 that derives from the Kolmogorov theory. Exponent values
around 5 are encountered in high-altitude (statospheric) stellar-scintillation studies4'5, while measurements
affected by turbulence nearer to the ground68 yield exponents in the range of 3 to 3.65.

It is thus of interest to investigate the behavior of non-Kolmogorov turbulence 910 having a range

192 ISPJE Vol. 2730 0-8194-211 1-1/96/$6.00



of exponents. We will consider a wavefront expansion for the general-exponent case in terms of variances
of Zernike coefficients. This will allow us to investigate the behavior of the turbulent wavefront and also
to assess our ability to correct for that turbulence by use of an adaptive-optical system.

The generalized form of Eq. (1) for the phase spectrum isA
(k) =

'10 (2)

where '1O S .fl analogous quantity to r0, which reduces to r0 for the case of J3=1 1/3. The constant A has

a value such that, for any power law 3 chosen for the spectrum, the piston-subtracted wavefront variance

(which we denote z) is normalized to 1 rad2 over a pupil diameter D = The numerical values of the

Zernike-coefficient variances (that we denote as < a2 >) are then the relative wavefront energies
contained in each Zernike term. Because the wavefront variance directly impacts image quality, this
normalization provides an equivalent-image-quality basis for comparison of the amounts of different
aberrations in the turbulent wavefront as a function of f3.

2. ZERNIKE EXPANSiON AND RESIDUAL WAVEFRONT ERROR
We use the defmitions of for the Zernike polynomials and their Fourier trrm12 We perform
all calculations with the transform-domain Zernike polynomials

I n/2
J (- 1) IT cos m, j even

J (2irk))Q(k,) = ri:i-;T tk \ sin m, j odd
I n/2
" (-1) , m=O (3)

where 4 is the azimuthal angle in the transform domain, j is the mode number, n is the radial degree, and m
is the azimuthal frequency.

We are interested in the residual mean-squared wavefront error after terms from j = 1 to J are
corrected (as with an adaptive-optical system), defined as

=()-( a.)j=1 (4)

where < p2> is the total phase variance of the random wavefront

(2)( aj2)
j=1 , (5)

and the < a 2 > are the Zernike-coefficient variances. The piston variance < a1 12 > is infinite, and the
phase variance is also infinite if outer-scale effects are neglected. These infinities cancel when the two
terms are subtracted. The resulting piston-subtracted wavefront variance is normalized to I which
determines the value of A.

The Zemike-coefficient variances are defined'1 as
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K I a2 ) = f (k) Q(k') k') dk dk'

L
(6)

where R is the pupil radius, and the general form of the cross-phase spectrum is

k') = A
2

(k - k')
1/0 (7)

Substituting Eq. (7) into Eq. (6), the expression for the Zernike-coefficient variances becomes

K a. 2) A2J f Q (k - k')

(8)

Using Eq. (3) and 2R = D, Eq. (8) can be written (with the change of variables 2itk =e) as

( a.)=8 A (Di) (n+1) ]j+1) J1()d
which is valid for any m, and any n not equal to zero. We find that the Zernike-coefficient variances have

a (D/'i0)2 dependence, and thus the scaling of the Zernike-coefficient variances with pupil diameter is

explicitly a function of 13.

The integral in Eq. (9) can be expressed in closed form13 as

F(13+l) (2n
+2

,+1) J1() d& =
2

2w'' 13+2 2n+4+13
2 2 (10)

for 13 and n satisfying (2n + 2) > 1 > -1. In that range, the Zernike-coefficient variances are expressed as

F(131)F2n+213

(aj2)=8A) (n+l) 2__2

+1{r(13+2)} r(24+13)2 2 (11)

For the piston case (j=l, n=0), the integral of Eq. (10) diverges for 13 > 2, which includes all cases of

interest to us. Using the normalization condition L\ = 1, we develop an expression for A, which when
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combined with Eq. (11) yields

F
2n + 2 - r P- sjn(t P---

2 D
-2

(n+1) 2 2 2 \ 2

KIaj)_
2

, (12)

valid for n � 1 and 2 < 3 < 4. The Zernike-coefficient variances are equal for anyj having the same value

ofn. Wedenote<Ia232><1a12><Ia3I2>; <1a46I2><Ia4I2>=<Ia5I2>=<Ia6I2>;
<Ia7 101>=<1a71>=<zIa8J>=<1a91>=<la101>.

3. ZERNIKE-VARIANCE COEFFICIENTS FOR 2 < 3 < 4

We evaluate Eq. (12) with 2 � j � 1 1 and 2 < 3 < 4, for the case of D = '. The Zernike-coefficient

variances scale with pupil diameter as (D/'i0)2, consistent with Eq. (13). Figure 1 shows the two tilt

terms < I I 2 > as a function of J3, while Fig. 2 shows three curves for the next higher-order terms:

< I a46 I 2 > < I a710 I 2 > and < I a11 I 2 > as functions of 3.

All of the variances obey the normalization condition = 1 for any given value of 3, and thus the

sum over all the coefficients forj � 2 must be unity. All of the coefficients approach zero as f3approaches
2. As f3 increases toward 4, the two tilt coefficients of Fig. (1) increase toward 0.5. Although Eq. (12)
has a singularity at f = 4, the interpretation is that an increasing amount of the energy in the piston-
subtracted wavefront are contained in the tilt terms as 3 approaches 4. Figure 2 shows that all of the
coefficients for j > 3 approach zero as 3 approaches 4, as required by the normalization, because an
increasing amount of energy is contained in the tilt terms. Figures 1 and 2 (or Eq. (12)) can be used to
evaluate the residual mean-squared error for any 4 > J3 > 2.

4. ZERNIKE..VARIANCE COEFFICIENTS FOR 3 > 4

Equation (12) for the Zernike-coefficient variances is not valid in the range J3> 4, so we use numerical
techniques to investigate the variances as a function of f3 for different outer-scale lengths. Combining Eq.
(9) and the expression for A yields the Zernike-coefficient variances in terms of spatial-frequency

integrals

2 -2
4(n+1) ______________

/ O (I) [i -
(13)

The integrals involved in Eq. (13) are divergent for small &, which requires the use of an explicit outer
scale, L0, in the calculation. We modify Eq. (2) to account for outer-scale effects, resulting in the von
Karman1 form of the spectrum
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2

A+())

If Eq. (14) is used in a development similar to that which produced Eq. (13), the analogous expression is

r
I &2 + - I

2 (?e) d?e,

K
aj2)= 4 (n+1)

L L0

Jo
(2 + ()2) {i

4

J&) }
d

We choose the following outer scales for the computation of the < I a 2 > from Eq. (15): L0 = 10

D, L0 = 100 D, and L0 = 1000 D. Figure 3 shows < I a3 2 >, and Fig. 4 shows < I a46
2 >, as

functions of 13 and L/D, for the case of D =

We note from Figs. 3 and 4 that the coefficients have a stronger dependence on L0 than on 3. For

any given 13, a decreasing outer scale takes energy away from the tilt terms. The normalization = I then

requires that the higher-order terms gain energy as L0 decreases. Conversely, the tilt terms dominate the

expansion for for large L0. Also, increased values of 3 lead to larger amounts of tilt.

6. CONCLUSIONS
We investigated the behavior of the Zernike-coefficient variances of a turbulent wavefront having a general

exponent f3. Our normalization of unity piston-subtracted wavefront variance provides an equal-image-
quality comparison of the relative energy content of the various Zernike components in the turbulent
wavefront as 1 varies. The scaling of the Zernike-coefficient variances with pupil diameter is proportional

to

For 2 < 13 <4, the amount of energy in the tilt terms increases nearly linearly with f3,with the limit

that the tilt terms contain all of the energy at 13 —> 4. The higher-order terms increase in importance for

smaller values of f3. The case of 13 = 2 corresponds to all of the variance of the turbulent wavefront being
contained in the piston term.

For f3 > 4, an outer scale L0 must be assumed in the calculation. The tilt terms dominate the

expansion with increasing outer scale or increasing f3. The higher-order terms correspondingly decrease

with increasing L0 and 13. Consistent with Ref. 9, the Zernike-coefficient variances show a stronger

dependence on L0 than on 13, for 13 > 4.
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Fig. 1. Zernike-tilt-coefficient variances (for the case of D= < a23 12> as a function of

13,for2<13 <4.

Fig. 2. Higher-order Zernike-coefficient variances (for thecase of D = 'i.) <I a46 2>,

<1 2> and < a11 1 2> as functions of , for 2 < <4.
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Fig. 3. Zernike-tilt-coefficient variances (for the case of D = ') < a3 2 > as a function of

1, for 3 > 4, with L/D = 10, 100, and 1000.
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Fig. 4. Zemike-coefficient variances (for the case of D = 't) < a46 I 2> as a function of 3,

for J3 > 4, with LJD = 10, 100, and 1000.
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