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Abstract

Transmission characteristics of layers that contain fractal aggregates are investigated. In
particular, the modulation transfer functions of these layers are studied in comparison with the

case of uniformly dispersed particles. The effects of aggregation type (fractal dimension) and
aggregate size are discussed.
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1 Introduction
Light propagation through a random medium is a problem of great practical interest. In optical
communications, light scattering and absorption attributable to particulates along the optical path
degrade the system's performance which is usually described in terms of optical transfer functions.
Significant difference exist between the case of a uniform dispersion of particulates between transmitter
and receiver and the case when the same particulates are agglomerated to form aggregates of various
sizes. Aggregates of atmospheric aerosols, dust particles, or smokes are successfully described as fractal

clusters. Depending on the aggregates size and type, the optical properties of fractal clusters can differ
significantly from those of the primary particles and those of compact agglomerates. Accordingly, the

photon propagation is affected by the degree of aggregation that occurs along the optical path. This
is of interest not only from the viewpoint of a structural description but also for the evaluation of
observable quantities in a long-range propagation [1,2]. Knowledge about the effects of aggregation on
the optical transfer functions can lead to improvements of classical techniques in active and passive
remote sensing.
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2 Fractal random layers
Fracta' layers have been successfully used to describe various wave propagation and scattering phenom-
ena. Band-limited fractal screens have been used to model the atmospheric refractivity fluctuations
[ 3] and fractal surface models have been considered in explaining diffraction effects produced by thin

layers [4].

This paper focuses on layers containing agglomerates of particles that can be described as fractal
aggregates. Various models characterize the complex process of aggregation [5] but their results are
most pregnantly represented in terms of the fractal dimension D. The fractal dimension is determined
from the relation N o (R/a)D, where N is the number of constituent particles of size a and R is
the aggregate radius of gyration. Depending on the type of aggregation, the fractal dimension D ofa
cluster takes a value between 1 and 3 describing the relative compactness of the aggregate.

The practical problem of the structural description of a random phase screen made of fractal
aggregates should answer questions referring to both the value of the fractal dimension D and the
extension of the scaling range R. In addition, the electromagnetic wave propagation through such a
screen depends on the number density p of individual scattering centers.

2.1 Light scattering and absorption by fractal layers
In the regime of weak scattering. when multiple scattering is negligible, the attenuation length of a
layer containing a uniform dispersion of particles is 1o = (po)', where o is the scattering cross-
section of an individual particle. For sparse distribution of aggregates, a similar relation describes the
attenuation length of a fractal layer: 1c1 (pciaj)'. In this case, Pi is the cluster number density
and °•i is the scattering cross-section of the whole cluster.

We start with the scattering cross-section of a cluster considered to be an independent scatterer.
For this large scatterer, the differential scattering cross-section into the solid angle element df at the
angle 0 is given by

1=N2S(9), (1)

where do/d is the differential scattering cross-section at the angle 6 for an individual particle,
while 8(0) is the structure function that describes the long-range fractal-like correlation between the
components of a cluster. Equation (1) disregards the possible contributions from the inside-cluster
scattering. However, intensive studies [6,7] have revealed that the multiple scattering inside the fractal
cluster renormalizes the mean scattering field but does not affect the angular profile of scattering
pattern, i.e., the scaling form of S(9).

Introducing the modulus of the scattering wave vector as q = 2k sin(9/2) with k = 27r/A, the total
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scattering cross-section of a cluster is obtained by integrating Eq. (1) over all the scattering angles:
2k d

N2k2f S(q)qdq. (2)

The scattering mean free path 1c1 can be directly measured, for instance, in a ballistic transmission
experiment. In this regime, the structure function S(O) can also be measured directly.

For an average cluster size R larger than the wavelength, one expects a proper description of
scattering phenomena in terms of the geometrical optics. For opaque clusters with D > 2, many
particles are practically shadowed even if their size is small a < ). However, N particles are active
in the scattering process and, being spatially correlated, scatter the light in an amplitude basis.
Therefore, in the definitions of scattering cross-section of Eqs. (1) and (2), the factor of N2 must
be replaced by N. As expected, this approach leads to the geometrical optics limit of o R2 for
D >2 and cr1 No for D 2.

By neglecting the inside-cluster multiple interaction effects for D < 2, the absorption cross-section
°-:i of a cluster of N particles can be estimated to be N times the absorption cross-section o of the
constituent particle. For large clusters in the limit of geometrical optics, the assumption of aggregation
in compact spheres of radius R leads to o '- R2 = N and, therefore, strongly underestimates the
absorption in comparison to the case of a fractal aggregate with the same number of particles o 'S-' N.
When D > 2 and for large clusters, the absorption approaches the geometrical optics limit ofo 'S-' N.

2.2 Structure functions
To evaluate the scattering coefficients, we need appropriate forms for the structure function of clusters
and the cross-section of individual particles. A simple form for the fractal structure function is the
Fisher-Burford formula [8]

S(q,N)=S(O)
3D

2 (3)3D + 2q2N
Note that the more familiar Heyney-Greenstein scattering form factor [9] for large particles H(, g) =
(1 — 2)(1 + 712 — 271)3/2 given in terms of = cos 0 and the asymmetry parameter 71 = (cos 0) is
the particular case of S(q) in Eq. (3) for D = 3.

Real systems are polydisperse and a probability distribution of cluster sizes p(N) must be consid-
ered. In this case an average structure function

S( ) - f°p(N)N2S(q,N)dN
(4)q —

fp(N)N2dN
is to be considered.

As for do/df, different scattering approximationsmay be used, depending on the size a of particles
as compared with the wavelength A.
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2.3 Optical depth of fractal layers
To assess the strength of the wave attenuation when it propagates through a layer of thickness L, one
must evaluate the optical depth r1 Pci(0i + a)L.

By using Eqs. (2) and (3), the scattering cross-section can be written as

(ka)2N1 { [1+ (ka)2N]2 -
1}

(5)

and has, for large clusters, different behaviors depending on the value of the fractal dimension

aS1 I 0(ka)_DN,
2

D < 2
(6)C a(ka)2N2, D > 2.

This represents a scattering cross-section per particle which is independent of the cluster size when
D < 2 but increases with N when D > 2.

For the evaluation of optical transfer function, it is of interest to estimate how, for a given number

density p of particles and a given pathlength L, the optical depth r is modified from the value ro
corresponding to the case of a uniform dispersion of particles. Using Eqs. (1) and (5), it can be shown
that

(ka)2N* { [1 + (ka)2N] —
1}

+
Tcl (7)+ cr

3 Modulation Transfer Function
The radiative transfer equation [9] can be solved in the case of mostly forward scattering when many
scattering events are considered. In the so-called small angle approximation (SAA), a closed solution
can be found for a Gaussian type of scattering function

G(q) = exp (_2q2) . (8)

The parameter c relates to the particle size and determines the forward peaking of the scattering
function. In SAA, photons are propagating essentially parallel to the beam axis, the full details of the
scattering function are irrelevant, and only the average scattering angle < q >= 2k2 < 1 — cos 9 > is
required

2k
>= k f G(q)q3dq = (9)

The requirements of this approximation are usually fulfilled for atmospheric propagation. However,
the validity of SAA becomes questionable for very large scattering particles or for particles with
appreciable backscattering.
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The modulation transfer function in SAA approximation for a scattering function such as the one
in Eq. (10) is [9]

M(f) = exp [_ + erf ()] . (10)

A series expansion of Eq. (10) results in

M(f) = I exp (—aL — aL) f < F0
(11)

I exp(—'ro), f>F0
where F0 is a cutoff frequency equal to the ratio between particle size and wavelength.

4 MTF of fractal layers
In the case of aggregated medium. the values of o, a, and are replaced with the corresponding
values given in Eqs. (2) and (7). An equivalent average cosine of the scattering angle is found by
evaluating the integral of Eq. (9) for the structure functions given in Eq. (3) or (4') corresponding to
a monosized arid, respectively, polydisperse collection of fractal aggregates. We can further attribute
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Figure 1: Comparison between MTF curves corresponding to fractal layers with different aggregate
size and the same fractal dimension D=1.5.

this value to an equivalent particle with a corresponding d given by
2k

= kf S(q)q3dq (12)
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and use the closed form of Eq. (10) (or the asymptotic form of Eq. (11)) to calculate the MTF
corresponding to the fractal layer

M1(f) = exp + dclLerf ()] . (13)

In this case the MTF cutoff frequency will be

F1 =
aN = F0N. (14)
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Figure 2: Comparison between MTF curves corresponding to fractal layers with different aggregate
size and the same fractal dimension D=2.5.

We present in Fig. 1 results of MTF evaluation based on Eq. (13) for the case of a fractal layer
with fractal dimension D = 2.5 and various extensions of the scaling range. Also shown is the MTF
corresponding to the case of a uniform dispersion of particles. Note that, for all the four cases shown
in Fig. 1, the total number of particles in the scattering volume is the same. The differences visible in
Fig. 1 are all induced by the presence and extent of the aggregation. A similar evaluation is presented
in Fig. 2 for the case of a fractal dimension D = 1.5.

In both cases, as the aggregation process evolves, the cutoff frequencies are increased as expected
from Eq. (14). However, for transparent clusters when D < 2, the MTF curves tend to saturate at
the same level and, according to Eq. 11, this means a similar optical depth for all of the aggregation
stages. Indeed, this can be obtained in the limit of large clusters from Eq. (7). A similar conclusion
can be drawn in the geometrical optics limit when Oj o No. In the other case, when the clusters are
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optically opaque D > 2, the optical depth decreases when increases N and therefore the MTF curves
saturate at higher levels.
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Figure 3: Comparison between MTF curves corresponding to fractal layers with the same aggregate
size and different fractal dimensions.
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Figure 4: Comparison between MTF curves corresponding to fractal layers with the same aggregate
size and different fractal dimensions

This behavior occurs because. when D > 2, according to Eq. (6) the scattering cross-section per
particle increases with N at a lower rate than the decrease of the cluster's number density. As for the
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cutofffrequency, this increases in both cases for larger clusters. However, stronger dependence is found
for transparent clusters with D < 2 because their overall size, for a given number of monomers. is
larger than the size corresponding to a cluster with the same number of constituents but with D > 2.

The growth process of structures made of similar particles is governed by the potential energy
of interaction between particles and the field distribution of external influences. As a result of this
complex interaction, different types of aggregation can occur and lead to the formation of structures
with different fractal dimensions.

The influence of aggregation type on MTF behavior is exemplified in Figs. 3 and 4. As can be
seen, different characteristics are found again for the cases with D < 2 and, respectively, D > 2.
For transparent aggregates, as the fractal dimension decreases, the spatial frequency cutoff increases
because, for a constant number of particles, smaller D determines a larger cluster. In the case
of opaque clusters, there is not such a large size difference between clusters with different fractal
dimension. Accordingly, an almost constant cutoff frequency is evident. However, the number density
of clusters is strongly reduced for large D leading to a smaller optical depth and, accordingly, a higher
saturation level the MTF curve.

5 Conclusions
When aggregation occurs in a scattering medium, the result is a distribution of clusters and the prop-
agation.of light can be thought as being developed through a medium with a rescaled number density

Pci, a modified optical depth Tc( and with correspondingly increased scattering o and absorption o
cross-sections. The modulation transfer function of such a layer is directly dependent on the conditions

of aggregation.
Distinction should be made between clusters with fractal dimensions smaller than, and greater

than, 2. In the case of D < 2, the clusters are partially transparent and all the particles belonging
to a greater cluster are subject to single-scattering interactions. Therefore, the optical depth of the

scattering layer is almost not affected by aggregation. However, because photons are practically
scattered by larger particles determines an increase of the spatial frequencies that can be transferred

through the layer.
When D > 2, the cluster is said to be optically opaque, some of its constituents being shadowed

and incapable of single-scattering interactions. In this case, the more particles are shadowed the lower
the optical depth becomes and better information can be transfered through the scattering layer.
Also, because photons are scattered again by a larger particle, the cutoff frequency increases as the
aggregation process evolves. However, this increase is at a lower rate than in the case of transparent
clusters.
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