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ABSTRACT 
 
With over 110 million landmines buried throughout the world, the ability to detect and identify objects beneath the soil is 
crucial. The increased use of plastic landmines requires the detection technology to be able to locate both metallic and 
non-metallic targets. A novel active mmW scanning imaging system was developed for this purpose. It is a hyperspectral 
system that collects images at different mmW frequencies from 90-140 GHz using a vector network analyzer collecting 
backscattering mmW radiation from the buried sample. A multivariate statistical method, Principal Components 
Analysis, is applied to extract useful information from these images. This method is applied to images of different 
objects and experimental conditions.  
 
Keywords: landmines, plastic, millimeter wave, unexploded ordnance, principal component analysis 

 
1.  INTRODUCTION 

 
Landmines inflict high costs on civilian populations many years after the military conflicts that prompted their 
deployment have ceased. The United Nations estimates that over 110 million active mines lie hidden beneath the ground 
of sixty-eight countries, killing or maiming 2000 people per month. Accidents occur on a rate of one for every 1000 to 
2000 mines destroyed.1 The threat to civilians remains and hinders economic and social recovery.   
 
Anti-personnel mines are usually buried just beneath the surface to a depth of about 3 cm, whereas anti-tank mines are 
buried as deep as 40 cm. The landmines can be any shape and be made of many different materials including metal, 
plastic, rubber, or wood. There are a number of detection technologies applied for the remediation of minefields,2 such as 
inductance coils3 (metal detectors), magnetometers, ground-penetrating radar3, infrared imaging4, and explosives vapor 
sensors.2 Metallic mines can be detected using many of the methods mentioned above. However, the increased use of 
plastic mines has made detection difficult. A passive mmW landmine detection system has been demonstrated before,5 

but depends on the effective sky temperature. An active mmW system6 is potentially attractive in that, in an imaging 
mode, it can achieve good discrimination between anti-personnel mines that are primarily non-metallic, and the small 
metallic debris (shrapnel, cartridge cases, etc.) typical of minefield conditions. Because of the shape and size 
discrimination inherent in an imaging system, the tradeoff between false alarm rate and miss rate is favorable for mmW 
wavelengths.5 Ability to detect and image buried objects will depend on soil transmission and scattering. Soils with 
particle sizes larger than the wavelength have low transmittance due to scattering.7 Dry quartz sand has high transmission 
in the mmW range due to its fairly uniform particle size, which is smaller than the wavelength of light.7  
 
A hyperspectral 90-140 GHz mmW imaging system used to locate and identify landmines and other objects buried 
beneath sand of various depths and conditions is demonstrated. The information provided by the hyperspectral images is 
analyzed through a Principal Component Analysis (PCA) method. With this signal processing, valuable information is 
condensed into single images and the buried objects can be located and identified. The PCA method has been used 
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before as a landmine detection signal processing technique in other wavelength regions improving the detection and 
classification rates while lowering the false-alarm rate.8-10 We present the experimental set up for the 90-140 GHz mmW 
imaging system, the signal processing method used, and imaging results of the buried objects.   
 

2.  EXPERIMENTAL METHODS 
 
An imaging system was developed for the mmW range using an Anritsu vector network analyzer (VNA) operating from 
90-140 GHz. The VNA modules, equipped with 16 degree horn antennas, were mounted on a vertically oriented optical 
table, shown in fig. 1. The mmW radiation was focused using a high density polyethylene (HDPE) lens onto the sample 
and then reflected back through another HDPE lens into the VNA receiver. Two motorized translation stages, with 200 
mm maximum travel distance and 50 mm/s maximum velocity were mounted perpendicular to each other. The sample 
was attached to the stages using a long aluminum arm with the inset removed preventing the sample from being held 
over the highly reflective metal stages.  
 

 
 
Fig. 1.  Photograph of the active hyperspectral mmW imaging system. (Inset) Schematic of the path for taking a raster scan image. The 
radiation coming from the transmitter, 90-140 GHz, is focused onto the sample using the HDPE lens and scattering radiation from the 

object is collected and focused on the receiver at each pixel of the raster scan. 
 
The landmine was placed in a 20.3 cm x 20.3 cm x 9.5 cm container surrounded by soil. This container allows the 
landmine to be buried up to 5 cm deep and be placed anywhere within the 412 cm2. A broadband convoluted foam 
millimeter wave absorber, ECCOSORB CV, was placed under the sample to eliminate back reflections from the optical 
table. A program was written in LABVIEW to capture a raster scan image (fig. 1 inset), containing 29 lines, of the 
landmine under the soil. At each position of the scan, the VNA measured the reflection from the landmine, from 90-140 
GHz in 1 GHz steps. The resulting data set is converted into a set of images (one for each mmW frequency used) by a 
MATLAB software program. In our case, the total number of frequencies is 51. The size of the images depends on the 
number of points taken in each scan and the distance between them. These sizes can be changed with the LABVIEW 
program. 
 
The objects imaged beneath the soil were two landmines, minefield debris, and 11 pucks of various materials. The two 
landmines were the TS-50 (fig. 2 top left) and the M14 (fig. 2 bottom left). They are typically scatter laid by a helicopter 
or buried to a depth of 30 mm.11 The TS-50 is a circular plastic bodied mine with strengthening ribs. The TS-50 has a 
height of 45 mm, a diameter of 90 mm, and weighs 186 g. It contains a round metallic pressure plate on top of the mine. 
The TS-50 contains 50 g of T4 explosive and is waterproof and non-buoyant.11 The TS-50 cannot be located using metal 
detectors under most field conditions and are highly resistant to blast overpressure clearance methods. The M14 
landmine is a cylindrical bodied plastic mine with very low metal content. The M14 has a height of 40 mm, a diameter of 
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56 mm, and weighs 90 g. The M14 contains 29 g of Tetryl explosive.11 The M14 is very difficult to locate using metal 
detectors under most field conditions and can be defeated using blast overpressure methods. The minefield debris 
consisted of a 20 mm OICW practice round, a 20 mm round from WWII, a 7.62 mm cartridge case, a 5.56 mm rose 
crimp cartridge case, a 5.56 mm standard cartridge case, and a fuse lighter with a metal key ring (fig. 2 right).   
 

 
 
Fig. 2.  Photographs of the TS-50 landmine (top left), the M14 landmine (bottom left), and minefield debris (right) including from top 
down a 20 mm OICW practice round, a 20 mm WWII round, a 7.62 mm cartridge case, a 5.56 mm rose crimp cartridge case, a 5.56 

mm standard cartridge case, and on left a fuse lighter with a metal key ring. 
 
The 11 pucks were 5 cm in diameter and made from Aluminum, Polystyrene, Plexiglas, HDPE, PVC, Teflon, Phenolic, 
Lucite, Particleboard, Plywood, and Pinewood of various thickness. The soil sample was quartz sand locally sourced at 
the University of Central Florida in Orlando, FL. The soil was dry and maintained in a laboratory environment at about 
40% humidity. 
 

3. SIGNAL PROCESSING 
 
The initial data set is a collection of N images, each one corresponding to a mmW frequency. Fig. 3 shows six of the 51 
individual images, representing a different frequency, taken during a single scan. The information contained in each 
image about the object (TS-50 landmine, fig. 2 top left) is slightly different and you cannot distinguish whether the 
object is a landmine, rock, aluminum can, or some other minefield debris. The information about the structure of the 
object is not concentrated around a single frequency but spread over the frequency spectrum. Therefore, it is necessary to 
employ a method that can combine the majority of the available information into a single image with a high signal to 
noise ratio.  
 
For this purpose, we have used a Principal Component Analysis (PCA) method.  PCA is a multivariate statistical method 
primary developed to deal with a large ensemble of observations of N random variables.12 The original data set is the 
collection of N images, parameterized by the frequency f . The N images are each transformed to produce a mean of 
zero. In this framework, the N images are N random variables and the values of the pixels are “random observations”. 
The covariance matrix between the N images is calculated.13 In general, this matrix is strongly non-diagonal, which 
means there is a strong correlation between the images (see fig. 3). 
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Fig. 3. Six of the 51 single-frequency reflectance images taken from 90-140 GHz in 1 GHz steps of the TS-50 landmine 
with a 2 mm step size, buried 15 mm deep, and with a flat soil surface. 

 
Principal components are a new set of variables (frames) that have no correlation between them. Moreover, the original 
frames can be seen as a linear combination of the principal components. The coefficients of these linear combinations are 
obtained through the diagonalization of the frame covariance matrix, giving the eigenvalues, the eigenvectors, and the 
principal components. The principal components can be seen as the projections of the original zero mean images into a 
base produced by the eigenvectors. After the diagonalization, there is zero correlation between the principal components 

αY and they are calculated as linear combinations of the original images. But, the original images can be expressed as 
linear combinations of the principal components. Normally, the principal features of the data set are well represented by 
a few number of principal components.14 In our case, the principal features of the landmine are well represented by only 
one principal component (Y1 in fig.4). This allows the main principal components to be selected and then to reconstruct 
the original images using only them, filtering out the higher components. This process is called rectification.13 A 
statistical analysis of the principal component decomposition enables the classification and grouping of the eigenvalues 
and the corresponding eigenimages into processes. When a subset of eigenvalues, along with their uncertainty, can be 
consecutively indistinguishable, they belong to the same process. A process is defined as a filtered set of frames 
generated by a subset of principal components. These processes could contain a single principal component or a high 
number of them. Based on previous applications of the method to different types of systems,15-17 different types of noise 
are associated with process containing a high number of principal components: they are so random that they need a high 
number of degrees of freedom to describe them. On the other hand, “signals” normally appear associated to processes 
with only one principal component or a few number of them.  
 
We have applied the previously described method to the collection of images produced by the mmW imager. After 
identifying the appearing processes, an analysis over the rectified images for each process is performed. The outputs are 
related to physical characteristics of the sample objects. These results are described in the following sections. 
 

4. RESULTS 
 
4.1  TS-50 Landmine 
 
Fig. 4 shows the results of the PCA method for the set of 51 images some of which are presented in fig. 3. A relevant 
principal component clearly appears and its picture resembles, with high accuracy, the shape of the object buried beneath 
the sand. The higher principal components are grouped together in a single process which gives useful information about 

100 
GHz 

110 GHz 

140 GHz 130 GHz120 GHz 

90 GHz 

Proc. of SPIE Vol. 6217  621723-4



Y20 Y50

300

250

50

00 10 20 30 40 50 60
# Elgenvalue

 

 

the structure and composition of the object. Fig. 5 represents the total amount of variance explained by each principal 
component. The first principal component only represents about 27% of the total variance. 
 

 
 
Fig. 4. Application of the PCA to a set of 51 single frequency images of the TS-50 landmine. Only one relevant principal component 

(Y1) appears. Some of the higher components (Y2, Y20, and Y50) are represented. 
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Fig. 5. Percentage of variance explained by the principal components in fig. 4. 
 
Two different sub-data sets were constructed: the first one coming from the rectification using only the first principal 
component and the second from the rectification using the higher components. For each data set, the mean value and the 
standard deviation of each pixel is calculated and three images are constructed: the mean value (signal), the standard 
deviation (STD) and the ratio of them (signal to noise ratio-SNR). The results are shown in fig. 6.  

Y1 

Y2 Y20 Y50 
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Fig. 6.  Images of the mean value, standard deviation and signal to noise ratio for the rectified images of fig. 2 with the first principal 
component (left) and the higher components (right) of a TS-50 landmine at 2 mm step size, 15 mm deep, and with a flat soil surface. 

 
The first principal component reconstructs the original shape of the object with high accuracy and high signal to noise 
ratio (typically 6 to 18). The threshold value of the signal to noise ratio for which the target is detectable half the time 
was determined experimentally in [18] to be between 2 to 3. The metal inside of the mine is clearly seen in the signal, 
meaning that the metal reflection drives it. However, reflections from the plastic body of the mine showing the structure 
of the strengthening ribs are seen.  
 
We also reconstruct the data using the remaining components (higher components) and perform the same analysis as 
before obtaining the signal, STD, and SNR. In the reconstruction with the higher components, the signal is weaker, but 
the standard deviation is high. The difference in the structure and material of the background and object is responsible 
for this behavior. The plastic part of the object is curved and the reflection changes with the angle, while the background 
is random. Also, the reflection from the plastic varies at different frequencies which will be represented by the higher 
order components. This is the reason the STD of the higher order components is greater than the STD of the first 
principal component. The main difference is that while a strong signal is produced mainly by metal components of the 
object, the structure in the higher components is mainly driven by the structure of the plastic material. 
 
4.2  M14 Landmine 
 
Antipersonnel mines very widely in size, shape, and material content depending on their intended use and burial location. 
The M14 landmine has a different size and shape compared with the TS-50 as well as a much smaller metal content. 
Images were taken for the M14 landmine with a 2 mm step size, buried 15 mm deep, and with a flat soil surface. As with 
the previous mine, the PCA method allows the structure and composition of the mine to be identified. The results are 
given in fig. 7. The unique structure of the top cap of the mine can be identified from the principal component images. 
The higher component images show the plastic composition of the landmine. The percentage of variance explained by 
the first principal component is similar to the pervious case. 
 

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-16

-14

-12

-10

-8

-6

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

3

4

5

6

7

8

9

-38.7

-38.6

-38.5

-38.4

-38.3

-38.2

-38.1

-38

 

-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

 

Proc. of SPIE Vol. 6217  621723-6



 

 

 
 

Fig. 7.  Images of the mean value, standard deviation and signal to noise ratio for the rectified images of an M14 landmine with the 
first principal component (left) and the higher components (right) at 2 mm step size, 15 mm deep, and with a flat soil surface. 

 
4.3 Unexploded Ordnance 
 
Fig. 8 shows the results of the analysis for a collection of bullet cartridges and other types of minefield debris. In this 
case, the object is not visible in the first principal component, but in the STD of the reconstruction with the higher 
components. The curvature of the objects introduces deviations in the reflection coefficients. In the previous images, the 
metal was large and planar compared to the wavelength, which produce strong reflections. In this case the dimensions of 
the metal parts are small or comparable to the wavelength, producing small backscattering. The objects are curved and 
the reflection changes with the angle introducing a high STD. The PCA method can even distinguish between the objects 
with such small fluctuations allowing the minefield debris to be located and identified.  
  

 
 
Fig. 8.  Images of the mean value, standard deviation and signal to noise ratio for the rectified images of the minefield debris with the 

higher components at 2 mm step size, 15 mm deep, and with a flat soil surface. The principle component rectified images did not show 
any features of the objects. 
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4.4 Non-metallic materials 
 
The results of the SNR analysis of 11 different material pucks buried 5 cm beneath the soil are shown in figs. 9 and 10. 
The images represent different types of non-metallic materials that can potentially be found in landmines in particular 
plastic and wood. The ability to locate and identify objects made of different materials beneath soil will help reduce the 
false alarm rate.   

 
 

Fig. 9. Images of the SNR of the principal and higher components of 6 pucks 5 cm in diameter of various thickness made of 
Aluminum, Polystyrene, Plexiglas, HDPE, PVC, and Teflon buried 5 cm beneath soil, at 5 mm step size, and flat soil surface. 

 
An aluminum puck was imaged to produce a highly reflective object for comparison with the other materials. The SNR 
of the principal component for the aluminum is high and the puck can be clearly seen beneath the 5 cm of soil. The 
reflection from the aluminum is constant over the wavelength range, except for diffraction around the edge of the puck. 
Therefore, the image of the SNR of the higher components for the aluminum puck only contains the outline of the puck. 
The reflection from the plastic and wood vary over the wavelength range allowing the puck to be clearly seen in the 
higher components SNR image using the PCA method. In some cases, the structure of the object can be identified in the 
principal component SNR. The images of the polystyrene and HDPE are not as apparent as the other plastics. 
Polystyrene and HDPE are highly transparent materials in the 90-140 GHz range producing small reflections under 5 cm 
of sand. However, a signature from the puck can still be seen. Objects made of metal, plastic, or wood can be located 
beneath soil. The ability to detect non-metallic objects will aid in the detection of plastic landmines. 
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Fig. 10. Images of the SNR of the principal and higher components of 6 pucks 5 cm in diameter of various thickness made of 
Aluminum, Phenolic, Lucite, Pinewood, Particleboard, and Plywood buried 5 cm beneath soil, at 5 mm step size, and flat soil surface. 
 

5. CONCLUSION 
 

An experimental 90-140 GHz mmW imaging system was developed and tested using different types of objects. The 
principal application was the detection of landmines and minefield debris buried in soil. The final data set was a 
collection of mmW images at different frequencies. A signal processing method based on a Principal Component 
Analysis was applied to the images in order to separate different structures that help to identify the objects. In most 
cases, the first principal component appeared strongly related to the structure of the object. Information in the higher 
components was also extracted giving additional information about the composition of the object. The mmW imaging 
system and PCA method were successful as a means of locating and identifying the non-metallic objects buried beneath 
the soil. A hyperspectral mmW imaging system using the PCA method is a promising technique for the detection of the 
landmines and unexploded ordnances. 
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