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ABSTRACT

Spatial-frequency filtering of laser speckle patterns has proven to be a useful tool in the measurement of MTF for focal
plane arrays. Intensity thresholding of the laser speckle patterns offers nearly an order of magnitude savings in digital storage
space. The effect of this thresholding on the spatial-frequency power spectral density of the speckle pattern is investigated.
An optimum threshold level is found that minimizes distortion of the power spectrum for the classes of speckle data used for
MTF testing.

1 , INTRODUCTION

The statistics of speckle phenomena have been the focus of many research efforts since the introduction of the laser. As
our knowledge of speckle behavior increases, new ways to use and control it become evident. One useful application of laser

speckle has been the measurement of modulation transfer function (MTF) of CCD arrays.1 In this application a considerable
amount of laser speckle data is collected for each MiT calculation which must be stored digitally for future use. Because
digital storage space is always a problem, it is desirable to reduce the amount space required by this application.

The size of the data arrays used in the calculation are fixed by the size of the CCD array being tested, meaning only two
ways to reduce the data exist. First, the number of points used to plot the MTF could be minimized. This would reduce the
accuracy of the calculation because the spacing of data points dictates the size fluctuation in MiT that can be detected.
Second, the speckle intensity could be thresholded eliminating all but 2 of the 256 gray levels used to represent the digitized
speckle field (Fig. 1). This binarization would transform the 8-bit data into 1-bit data, reducing the total amount of data by
nearly an order of magnitude.

Fig. 1. Narrowband laser speckle: (a) Continuous laser speckle with 256 gray levels.

(b) Laser speckle reduced to 2 gray levels by thresholding at the mean intensity.
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This paper shows that the fidelity of the spatial-frequency power spectral (nsity of the laser speckle intensity is
maintained after a thresholding operation is performed. The effects of the intensity thresholding will be investigated and an
optimal threshold value will be determined for the narrowband laser speckle used in the MTF calculation.

The second section of this paper discusses the derivation of the spatial autocorrelation function for the continuous and
thresholded intensity of the laser speckle. The derivation will be exemplified using two different cases. The first case will be
a simple square aperture and the second will be a double-slit aperture used in the calculation of MTF.

The relationship between the autocorrelation and power spectral density of the thresholded laser speckle will be discussed
in the third section. The same two examples will be used, and an optimal threshold level will be determined for each case
based on a minimum-mean-squared-error analysis in their power spectral densities. A computer simulation of these two
examples was performed to check the validity of this analysis and its results are given in section 4 in terms of power
spectrum.

2, AUTOCORRELATION OF THRESHOLDED LASER SPECKLE

In this section we will derive the spatial autocorrelation function for intensity thresholded laser speckle. To simplify the
reading, this function will be referred to as the thresholded autocorrelation. The derivation will begin with the spatial
autocorrelation function for intensity distribution of nonthresholded laser speckle, which will be referred to as the continuous
autocorrelation.

The continuous autocorrelation is measured using two observations of the speckle intensity. Ideally, these observations
are made using two point detectors that sample the speckle field simultaneously at different points in a common plane (x,y).
The autocorrelation is formed by fmding the expected value of the product of the two observations for each unique separation

distance. This is expressed

R1(x1,y1;x,,y2)=(I(x1,y1)(x2,y,)). (1)

In reality the detectors are of finite size, which changes the overall shape of the autocorrelation by convolving Eq. (1) by the
spatial autocorrelation of a single detector. This paper omits the added effect of fmite detector size so that the singular effect
of thresholding could be investigated.

The only factor contributing to the form of the spatial autocorrelation is the amplitude of the field emanating from the

generating aperture, P ( ,17 ). This relationship is described by Goodman2 as

2

+

JJIP()I2dd
. (2)

From this we can see that the continuous autocorrelation is basically the magnitude squared of the Fourier transform of
P ( ,T7 ). As a result, using Eq. (2) we can calculate an analytical expression for the continuous autocorrelation for any
generating aperture which exists physically.

Our goal is to determine the thresholded autocorrelation, R We must determine a relationship between the
continuous and thresholded autocorrelations. The speckle field is thresholded using the following operator,

(1, ifl(x,y)�b(I(x,y))
J(b)(xy) (3)

LO ifl(x,y)<b(I(x,y))

The thresholded autocorrelation can be determined from the continuous autocorrelation using a relationship calculated by
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Barakat,3

R r2(a,b a) (b a)2aexp(2b a) (R1(zx4y)1 (L (b a))2 , (4)r (a) T2(a) =1
(n+a_1)

n

where G is the complimentary incomplete gamma function and L , is the associated Laguerre poiynomia1. The parameter
a is equivalent to the mean of the intensity squared divided by the variance. In this paper we are assuming point detectors
meaning that the value of a is equal to 1. Using a=1, Eq. (4) can be simplified to

This equation was computed utilizing the recursion formula for Laguerre polynomials5 over the range of possible correlation
values (0.0 to 1 .0). The result is given in Fig. 2 in the form of a mapping. A value of continuous autocorrelation, , can

be mapped to the corresponding value of thresholded autocorrelation, R j( ), using Fig. 2. As an example, for a threshold

value of b = 3 a value of continuous autocorrelation, = 0.4, would map to a value of thresholded autocorrelation, R 3) =
0.25. Repeating this procedure for all values on a continuous autocorrelation function would yield the thresholded
autocorrelation for a particular threshold value.
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Fig. 2. Mapping for continuous autocorrelation ,R1 , to thresholded autocorrelation,

R for threshold levels: b = 1, 1.45, 1.535, and 3.

Two cases will be used to exemplify this mapping technique. One, a simple square aperture whose continuous

autocorrelation can be found in Goodman. Two, a double-slit aperture that was used in Ref. 1 to produce narrowband filtered
laser speckle (Fig. 1).

The amplitude of the field emanating from a square aperture is expressed as

p ( 2 rec4- rect*, (6)
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where L is the measure of each side of the square aperture. Substituting Eq. (6) into eq. (2) we find the conunuous
autocorrelation to be

I (4 x ,4 y ) = (I)IL1 + SinCA 2LLlY j (7)

This is illustrated in Fig. 3 (solid line) for a single dimension with the bias level, (I )2, subtracted out. The autocorrelation
was normalized so the correlation values would range from 0.0 to 1.0. Each value on the solid line in Fig. 3 is transformed
by finding the corresponding value in Fig. 2. This was done to form the three new curves (dotted lines) which represent the
thresholded autocorrelations for different threshold values.

For the second case the amplitude of the field emanating from the double-slit aperture is expressed as

I
P ( ,ri ) 12 rect- rect-2- * [-s6(- )] , (8)

where ii and 12 are the width and height, respectively, of each rectangle and L is their separation distance in x. The
continuous autocoiTelation is given by Eq. (2);

. 'ji Ltx'\ ,(liiy
Rj(x4y)=(I)1+sinc1 A.7 )sinc1 )cos(7rLz1tx) . (9)

Once again, the thresholded autocorrelation can be determined using Eq. (9) and the correlation mappings in Fig. 2. The
resulting thresholded autocorrelations for three different threshold values are shown in Fig. 4. Only the 'ix' axis is plotted
because the cosine term in Eq. (9) is in 'Ax'.

The predominant change seen in the transformation of continuous-to-thresholded autocorrelation is the addition of a
correlation bias, which results from a reduction in the uniqueness of the individual speckles. Consider the speckle intensity
on a single dimension. The continuous speckles differ from each other in maximum intensity, length, and the rate that the
intensity rises to and falls from the maximum intensity. Because each speckle is unique, the correlation tends to zero for
large separation distances. The thresholded speckle intensity appears like a 'boxcar' signal with each speckle represented by a
single box. The speckles all have the same intensity value and only differ in length. Since, each box 'looks' like every other
box except for scaling, there will always be some bias correlation. This effect can be seen in Figs. 3 and 4. The amount of
bias is equal to exp(-b) which can be determined by evaluating Eq. (5) for R ,(zi x 4 y ) = 0

C

c\2

C

1 2 3
L1x / Xz

Fig. 4. Autoconelation function of the laser
speckle intensity resulting from a double-slit
aperture.
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Fig. 3. Autocorrelation function of the speckle
intensity resulting from a square aperture.



3, POWER SPECTRUM OF THRESHOLDED LASER SPECKLE

The power spectral density i the frequency domain counterpart of the autocorrelation function. This relationship is

deScribed by the Wiener-Kinchine theorem4 and is expressed as

S1(vv)= fF{R1(zlx4y)}. (10)

The power spectral density describes the amount of power that exists at each spatial frequency in the laser-speckle intensity
distribution. Thresholding the speckle intensity may distort this distribution considerably if the correct threshold level is not
chosen. An optimal threshold level occurs when the mean-squared error between the continuous and thresholded power
spectrum is minimized. Where the continuous and thresholded power spectrums follow the terminology convention defined in
the second section.

The continuous power spectrum for the square seattering area can be calculated by Fourier transforming Eq. (7) which
yields

S 1(v ,v, ) = (I)2118 (v ,v>, ) +(4L)2A(4-v)A(4-v,)] (11)

This expression is the reference from which the mean-squared error will be determined. The reference curve is shown as a
solid line in Fig. 5. To find. the thresholded power spectrum the thresholded autocorrelation is Fourier transformed
numerically. This was done for three different threshold values (Fig. 5, dotted lines). The impulse function at the origin in
Fig. 5 comes from the correlation bias described at the end of the section 2.

An analysis of Fig. 5 shows that the thresholded curves approach the shape of the continuous reference curve as the
threshold level is increased from b=1.0 to b=1.45. As the threshold level is increased further, the thresholded curve moves
away from the reference. To determine it exactly, the mean-squared error in the power spectral density from nx =0 to nx =
200L/lz was calculated for threshold values between b=1.0 and b=3.0 (Fig. 6) . A value of b=1.45 was determined as the
absolute minima and subsequent optimal threshold for the square aperture.
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Fig. 6. Mean-squared error found in power
spectral density of square aperture as a
function of threshold value, b.
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Fig. 5 Power spectral density of the laser
speckle intensity resulting from a square
aperture. Area refers to the strength of the
impulse function.



The same technique was applied to the doub!slit aperture. From Eq. (9) the reference power spectnim is

S '(v,v) =
(i)2{s(VV)+(2]{4z-]

+ (1 )2 ]A{4:vI
(12)

+ )2 j)JA[4v]}.
The thresholded power spectrums for three threshold values are given in Fig. 7. Although the lines are closely spaced, further
inspection shows that the thresholded power spectrum exhibits the same behavior seen in the first case. The mean-squared
eor calculation in the power spectral density was calculated from nx = L/21z to nx = 3L/21Z. This limited range was used so
that the optimal threshold value would be associated with the least amount of distortion in the outer triangle. The result was
an optimal threshold value of b=1.535 (Fig. 8).
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Fig. 7. Power spectral density of the laser Fig. 8. Mean-squared error found in power
speckle intensity resulting from a double-slit spectral density of double-slit aperture as a
aperture. Area refers to the strength of the function of threshold value, b.
impulse function.

4. THRESHOLDED LASER SPECKLE SIMULATION

To verify the shape of the power spectral density for the optimal threshold values obtained in section 3, a Monte-Carlo
simulation was performed. The simulation began by numerically propagating light, with unit magnitude and uniformly
disthbuted (-ir;r) phase, from each generating aperture. This created a large continuous one-dimensional data record
containing simulated laser speckle. The record was then separated into several segments of equal length. The power specirum
was calculated for each segment and averaged together to form an estimate of the continuous power spectrum for the entire
recorcL

To calculate estimates for the thresholded power spectrums the original data record was first thresholded at the optimal
threshold value. The resulting binarized record was segmented and the estimates were calculated as before.

The results of the simulation are given in Figs. 9 and 10. The raw data was plotted as single points in both figures. The
solid lines are the results determined in Section 3 for the optimal threshold values. The data show an increase of deviation
with a decrease in frequency. This effect was expected, because the record is of fmite length and there are less low frequency
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speckles with which to form an average. A decrease in deviation is often seen in simulations of this type as the number of
segments averaged is increased.

5. CONCLUSIONS

The results presented here show that thresholding performed at the optimal level is a viable method for data reduction.
We have shown that, for the MTF application, the important information is contained in the placement and size of the
speckles and not in the intensity fluctuation between them. The thresholding operation preserves the important information
and discards the rest, which is the methodology behind all data-reduction techniques. Implementation of this technique would
result in an 8-to-i savings in digital storage space.
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Fig. 9. Power spectral density of simulated
laser speckle generated with square aperture
and thresholded at b = 1.45. Area refers to
the strength of the impulse function.
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Fig. 10. Power spectral density of simulated
laser speckle generated with double-slit
aperture and thresholded at b = 1.535. Area
refers to strength of impulse function.


