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ABSTRACT

This paper suggests a method for normalization of D* for SPRITE detectors with respect to MTF-limiting parameters, primarily
the diffusion spread. The purpose of the normalization is to obtain a single performance parameter for the SPRITE detector to
make it more objectively comparable with conventional detectors with discrete elements.

The recalculation ratio is the rms noise calculated with a filter that compensates the impulse response back to a square pulse
divided by the mis noise of the SPRITE element with no compensating filters. In this paper two filters are used: one that fully
compensates back to a square impulse response, and one that compensates the MTF at two selected frequencies.

The recalculation ratio is calculated as a function of diffusion length with the ratio element length/(carner life time*scan speed)
(L/vt) as a parameter. The results show very little variation with L/vt, so the results should be valid for most applications for the
SPRiTE detector.

1. INTRODUCTION

SPRITE is an acronym for Signal PRocessing In The E1ement.12 The detector was introduced some ten years ago and is at
present one of the most widely used detector in high performance thermal imagers operating in the 8 to 12 im waveband. The
main advantages with the SPRITE detector is that is has a time-delayed integration (ThI) implemented in the element. This
feature saves the external electronics that would otherwise have performed the TDI. Furthermore, the sensitive area of the element
array is compressed, which enables efficient cold shielding.

The key figure of merit for most infrared detectors is the detectivity, or D*. For a SPRITE detector, D* alone is not a very good
descriptor of the detector's performance, because the detector is reducing the system's MTF not only by the subtense of the read-
out length, but also by diffusion spread along the element. So, if D* is to be used as the sole figure of merit for aSPRITE
detector, the performance-degrading effects of the diffusion must be considered when specifying D*.

To make the D* of a SPRITE detector an objective performance parameter that could be used when comparing the detector
against conventional detectors with discrete elements, the measured value of D* must be recalculated into a square-pulse impulse
response. In the literature, expressions for the spatial resolution and number of equivalent background-limited elements along a
SPRITE bar have been derived13.

This paper proposes that the noise of a SPRITE detector is recalculated into what it would have been if the impulse response had
been a square pulse, which is the case for a conventional detector with discrete elements. The D* is then recalculated accordingly.
In the text below, two methods for doing this noise normalization are presented. They both include a compensating filter in the
rms noise calculation. In the first case, the filter fully compensates the SPRITE-detectors impulse response back to a square
pulse. Such a filter cannot be practically implemented as is shown in this paper. So, the second method concerns a filter that
compensates the SPRITE-detector MTF at two spatial frequencies. The methods are called "the square impulse compensation"
and the "two-point boost compensation" respectively.
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2. COMPENSATION FILTERS FOR THE D* normalization

2.1 The SPRITE detector MTF

The SPRITE detector has two properties which reduce its spatial resolution, namely the readout length and the diffusion spread.
The readout geometry for SPRITE detectors is not entirely rectangular. Instead the readout zone has a slight tapering.5 The MTF
for this geometry has previously been denved6 and is given by

= Y 1-cos(2irka)e + jsin(2irka)e
1-e y+j2irk

(1)

where MTFr iS the readout transfer function, k is a spatial frequency (cy/mm), a is the readout length (mm), and y is the tapering

factor of the readout zone (1/mm). The other MTF-limiting factor of the SPRITE detector is the diffusion spread during the
charge transfer along the filament. The MTF for diffusion spread can also be found in the literature37 and it is given by

1-ex1(1+(27rkQ)L_]MTFq(k) = vt
[1-i42irkQ)] { lxp(L)] (2)

where MTFq is the MTF contribution from diffusion spread, Q is the diffusion length (mm), L is the total length of the element

(mm), v is the scan speed along the element (mm/s), and t is the carrier lifetime (s). The factor L/vt is an important parameter.
It is essentially the filament length over the carrier drift length and it contains such application-specific parameters as the scan
speed and the anamorphic ratio,45 which is the focal length along line scan divided by the focal length across scan. The scan
speed is in itself a combination of a variety of sensor parameters; see Eq (3).

=i&4NiNpi Ac
N11 3 Tx (3)

where fR is the frame rate (Hz), N11 is the number of elements in parallel scan, 4/3 is the aspect ratio, N1 is the totalnumber of

lines per frame, N1 is the number of presented lines per frame, T is the line scan efficiency, A is the anamorphic ratio89

(-, dimensionless), and c is the line distance in the focal plane (mm).

2.2 Filter transfer function for the square-impulse compensation

In the previous section it has been shown that the SPRITE-detector MTF does not correspond to a square impulse response. For
the SPRITE-detector D* objectively compatible with detectors with discrete elements, it should have a square impulse re-
sponse. The width of the square response should be 62,5 tm, which is generally the detector width used when determining D*.

The transfer function of this "perfect" compensation filter is given by the transfer function of a square with the width 62,5 j.tm
divided by the actual MTFs for the readout zone and the diffusion spread. The latter are given by Eqs (1) and (2) above. Con-
sequently, the transfer function of the square pulse-compensation filter becomes

G(k) = C sinc(irka0) = C sinc(irka0)

MTFr(k)MTFq(k)
1ex1{(1+(21rkQ)2] y 1-cos(2irka)e + jsin(2irka)e

[i +(27tkQ)2] [1expL)] 1 -e y + j2itk
(4)
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where G(k) is the transfer function of the compensation filter, a is the detector width used when normalizing D* (generally 62,5
tm), L is the total length of the element (mm), and C is a constant to normalize the average output signal measured over one
readout length.

The transfer function of a filter that compensates for the response of a SPRITE detector back to a square pulse will have a rather
complicated expression [see Eq (4)]. In Fig 1 ,the transfer function is plotted against the product spatial freqency in the focal
plane with the diffusion length as a parameter. The application factor L/vt is set to 3, the tapering factor is set to 28.5 1/mm6,
and both the reference (a0) and the actual readout length are set to 62,5 pm. The transfer curves below have been calculated with

parameters that are fairly typical to a long-bar application in the 8 to 12-pin region. However, the technique is equally applicable
in the 3 to 5-pm waveband, where the diffusion spread is larger and the need for compensation is greater.

Spatial frequency (cy/mm)

Figure 1. Filter transfer function for the square impulse compensation

In Fig 1, the filter transfer function has been plotted only up to 16 cy/mm, which corresponds to a spatial frequency of 1 cy/read-
out width. Regrettably, the transfer function of the compensation filter for the square impulse technique will have infinite
response at higher spatial frequencies, and, as will be shown later, the noise spectral density after compensation filtering does not
roll off to zero. Consequently the mis noise cannot be calculated by integrating the noise spectrum over all frequencies.

The spatial-frequency range that the square impulse compensation filter covers must be limited. A suitable cutoff frequency for it
is 1 cycle/readout length. This corresponds to an ideal anti-aliasing filter for a system that samples twice per readout length. The
limited spatial frequency range will result in ringing in the impulse response. The impulse response after attempted square pulse
compensation is calculated with an inverse Fourier transform in accordance with

1/a0
h(x) = C a0

J- 1/a0

sinc(irka)
Jl/ao

ei2ltkxdk C a0 sinc(kaJ&2'dk
-1/a0

(5)

where h(x) is the impulse response, x is a coordinate along the element (mm), a0 is the desired square width of the impulse

response, and C is to normalize the average output signal over one readout length. In this study the desired average is unity.

For a conventional element, the detector output does not vary over the element. We intend to recalculate the SPRITE detectivity
into what it would have been for a square pulse, instead of the diffusion-degraded point response that it actually has. To perform
normalization as fairly as possible, the average of the compensated signal taken over one readout length has been normalized,
rather than the maximum amplitude after attempted restoration.
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Eq (5) shows that the impulse response after attempted square pulse restoration will depend only on the desired width of the
impulse response. Figure 2 shows the result. The coordinate along the SPRITE element is given in IFOVs, or detector widths.
The target is a function that is unity between detector widths and zero elsewhere.

In that diagram, the restored square impulse response is also calculated with larger cutoff frequencies for the compensation filter.
However, increasing the cutoff frequency further does not improve the impulse tremendously. The curves have all been normal-
ized to set the average for the compensated signal measured over one readout length to unity. The correction factor C was 1.052,
1.027, and 1.018 for the cut-off frequencies 1, 2, and 3 cy/readout length respectively.
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Figure 2. Impulse response after attempted square impulse restoration

2.3 Filter parameters for the two-point boost compensation

The compensation filter in the previous section that gives the near-square impulse response for the SPRITE detector cannot
easily be physically implemented. So, in practical cases, where there is an interest to measure a recalculated D*, a number of
discrete frequencies for compensation must be selected. In this analysis two such frequencies will be chosen. The amplification of
the compensating filter, which in effect is similar to a high-frequency boost filter, are calculated with Eq (4) above.

In most SPRITE-based sensors, a high frequency boost filter in the electronics enhances the spatial resolution and overcomes the
performance degradation that results from diffusion spread. The cost for the high-frequency boost is ringing in the output signal
and a loss in sensitivity caused by noise amplification. An attempt to optimise the boost-filter parameters together with the
anamorphic ratio has been previously performed.10

In a typical application of a military thermal imager, the spatial frequencies for target detection and recognition are somewhere
around 0.5 cycles/vertical IFOV. Since the standard SPRITE detector width is 62.5 jim,thecritical spatial frequency becomes 8
cy/mm. To make it analytically possible to derive the two boost-filter parameters, resonance frequency and relative damping, the
two selected spatial frequencies must be fairly close to each other. In this paper, the two critical spatial frequencies where the
boost filter is located to compensate back to the transfer function of a square pulse are 7.5 and 8.5 cy/mm.

The transfer function of a boost filter that compensates at two frequencies is given by the expression in Eq (6) below. The
amount of boost required to give the desired spatial-transfer function at the selected frequencies depends on the parameters in the
used detector and on the ratio L/vt [see Eq (4) above]s.

H(k)= C

1 + j2-k (k)2k0k (6)
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where k0 is the resonance frequency (cy/mm), is the relative damping for the boost filter and C is a constant to normalize the

average compensated signal measured over one readout length.

The designing criteria for the compensating boost filter used in the recalculation of a SPRITE detectofs D* is that at two spatial
frequencies it compensates back to the transfer function of a square with the width 62,5 pm. In terms of equations these criteria
can be expressed as:

IH(k: = C G(ki) , ki = 7.5 cy/mm (7)

IHcO2 C G(k2) , k2 = 8.5 cy/mm (8)

where H(k) is the boost-filter transfer function [Eq (5)1, and 0(k) is the transfer function of a filter that truly restores the
impulse response of the SPRITE detector into a square pulse [Eq (4) above]. The resonance frequency k in the boost-transfer

function in Eq (6) is determined by using the conditions in Eqs (7) and (8). After some algebraic manipulations, the following
expression for the boost resonance frequency emerges.

42 241_4_ kik2-kik20 2 2
k2 xi -k22+k12

G(ki)2 G(k2)2 (9)

wherek1 is a selected frequency (here 7.5 cy/mm), k2 is another selected frequency (here 8.5 cy/mm), and G is the required boost
amplification at the selected frequencies. The relative damping in the boost filter is subsequently derived from Eq (5) and given
by __________________

1 i(22
2k1 V G(ki)2 k0 (10)

where is the relative damping in the boost filter, k is the resonance frequency of the reference boost filter, k1 is a selected
frequency (here 7.5 cy/mm), and G(k1) is the required boost amplification at this selected frequency.

The two boost-filter parameters, resonance frequency and damping, can now be determined by using Eqs (9) and (10) together
with the filter design criteria in Eqs (7) and (8). The desired transfer function at the two selected spatial frequencies for a re-
storation of a square impulse response is taken from Eq (4). The normalization factor C in Eq (5) is determined by calculating the
average of the compensated impulse response measured over one readout length. The target value is unity.

In the diagram below, the detector transfer function after a two-point boost compensation is plotted against spatial frequency with
the diffusion length as a parameter. The transfer function of a true square pulse with the width 62.5 im is shown with the dashed
sinc curve, which is the target for the compensated transfer. The same assumptions regarding detector and application parameters
as in Fig 1 have been used. The amplitude normalization factor increases with diffusion length.

Note that the normalization factor C sets the average signal to unity. The average is taken over one readout length of the
SPRITE detector. The more diffusion spread there is, the larger the value of C. This is shown at the origin of the curves in Fig3
below, where the curves start at an amplitude equal to C, which increases with diffusion length. Because of the variation of C,
the curves will not match at the selected frequencies 7.5 cy/mm and 8.5 cy/mm. And remember that C is out when the resonance
frequency and the relative damping are calculated.
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M = sinc(ick)2 Io2
Jo 1 + (2ickQ)

(13)

where H(k) is the transfer function of the compensation filter.

The noise-equivalent bandwidths in this paper are expressed in spatial frequencies. Normally, it is given in temporal frequencies.
The conversion factor is simply the scan speed along the element. The scan speed depends on the application, [Eq (3)]. In the
analysis presented here it is more convenient to express the noise bandwidth in spatial frequencies that relate to the dimensions of
the SPRiTE detector. All application-specific parameters are lumped together in the ratio L/vt (filament length Iscan speed *
carrier lifetime). In the results shown below, L/vt will in most cases be used as a parameter.

3.2 D*norma1izations for the square impulse compensation

The compensation filter that truly restores the impulse response for a SPRITE detector back into a square pulse cannot be phy-
sically implemented, because it has mfmite response at higher spatial frequencies [see Eq (4) above]. However, if the compen-
sation has a limited frequency range and a cut-off frequency, the noise bandwidth can be calculated with numerical methods. In a
previous section, a suitable cut-off frequency has been found to be 1 cycle Ireadout length. The integral for determining the noise-
equivalent bandwidth is given in Eq (14) below:

1/a0

M = sinc(irk)2 C sinc(icka,)
2

1 + (2irkQ)2 1-exp[-(1+(2lrkQ?)-L] I 1-cos(2Eka)e + jsin(2icka)e
[1+(2kQ)] [1-xL)] 1 -e y + j2ik

0 vt (14)

where a0 is the detector width used when normalizing D* (generally 0,0625 mm) and C is an amplitude normalization factor.

When the cut-off frequency is 1 cy/detector width, the factor C becomes approximately 1.05.

The integral above can not be solved analytically, so numerical methods have to be employed. In the diagram below, the noise-
equivalent bandwidth has been calculated as a function of diffusion length with the application-dependent factor L/vt as a para-
meter. The following assumptions have been made: the tapering factor is set to 28.5 1/mm6 and both the reference (a0) and the
actual readout length are both set to 62.5 j.Lm.
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Figure 4. Noise-equivalent bandwidth after square impulse compensation

The D*reca1cu1tation factor can now be calculated by using the diagrams in Fig 4, the uncompensated noise bandwidth calculated
below Eq (12), and the defmition in Eq (11). In the diagram below, the D*recalculation factor after a square impulse
compensation with the fmite bandwidth filter is shown. The normalization factor is presented as a function of diffusion length
with the application-dependent ratio element length I carrier life-length (L/vt) as a parameter.
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Figure 5. D*normalization factor as a function of diffusion length after square impulse compensation

The curves above show that for a diffusion length of 30 pm, which is a fairly typical value for an 8 to 12-pm SPRITE detector,
the measured D* should be multiplied by about 0.5 to make it a performance parameter that is more "objectively" compatible
with the D* values quoted for conventional detectors with discrete elements. The ratio element length/carrier lifelength (L/vt) in
Fig 6 corresponds to the detectivity measuring conditions, and should correspond not to the sensor where the detector will be
useL

Fig 5 shows also that the measured value of D* for a SPRITE detector with zero diffusion length should be increased before it is
compared with D*values for conventional detectors. This is because the finite bandwidth of the compensation filter cuts Out
much of the high-frequency noise that is normally there. The result can appear surprising. However, diffusion lengths below
20 pm are not very likely.
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3.3 D*normalizations for the two-point boost compensation

By combining the expressions in Eqs (6) and (12) with the definition in Eq (13), the following is obtained for the relation
between the noise—equivalent spatial bandwidth and the parameters describing the SPRITE detector and the boost compensation
filter

M = I 5iflC(ltka)2)
C dk

Jo
(2i&Q) 1 + j2E1 - (k)2

(15)

The integral in Eq (15) can, after trigonometric manipulations in the nominator, be solved analytically by using residual
calculus.12 After a few substitutions to get a less complex integrand, the following expression for the noise-equivalent spatial
bandwidth, Af, emerges.

M = k C2 I
1 - cos(2a.x) dx0 j [i + (yx)2] ([i _ x2]2+ (J3x)2) ()2

(16)

with a = itak0 , B =2 , y= 2irQ1c , x = k/lc. The noise equivalent spatial bandwidth can now be calculated by using residual

calculus. The denominator of the integrand in Eq (16) has 8 poles. These are

X1,20 (17a)

x3,4 COS JSfl , =iarccos(1-22)
(17b)

x5,6 -cos jsin , = .i-arccos(1-22)
(17c)

X7 8, _1 (17d)

The integral in Eq (15) is solved by summing the residues in the poles in the upper half plane and the result becomes

Lk = 2a-s-
COS3 +ycos5S -e21co3-e)+ 'yco5&e)] _________

4a2 sin2S(1+y4+2ycos26) (1+)22 (18)

with e = 2acos where is defined in Eq (17b) and a, 3, y are substitutions given below Eq (16).

The parameters for the two-point boost-compensation filter can be calculated by the methods described in section 2.2. The noise-
equivalent bandwidth can then be calculated with Eq (18). Figure 6 presents below the result. The noise bandwidth is shown as a
function of diffusion length with the application-dependent ratio L/vt as a parameter. The amplitude normalization factor is
chosen so that the average of the output signal becomes unity when measured over one readout length.

Not surprisingly, the noise bandwidth increases with diffusion length, because the required boost amplification also increases
with diffusion. Larger values on L/vt, (element length/carrier drift length) correspond to worse diffusion and consequently the
noise bandwidth also increases with L/vt.
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The D*recalculation factor can now be calculated by using Figs 4 and 7 and the definition in Eq (11). In Fig 7 the D*
recalculation factor after a square impulse compensation with the finite bandwidth filter is shown. The normalization factor is
presented as a function of diffusion length with the application-dependent ratio element length Icarrierdrift length (L/vt) as a
parameter.
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Figure 7. D*normalization factor as a function of diffusion length after two-point boost compensation

The curves above show that for a diffusion length of 30 rim, which is a fairly typical value for an 8 to 12-jim SPRITE, the
measured D* should be multiplied by about 0.6 to make it a performance parameter that is more "objectively" compatible with
the D*values quoted for conventional detectors with discrete elements. The ratio element length Icarrier lifelength in Fig 7
corresponds to the detectivity measuring conditions, and not to the sensor where the detector will be used.

Again, the normalized D* should be somewhat increased in the case of zero diffusion. This is because the compensation filter
blocks out some of the high-frequency contents of the detector noise. This effect is less promoted with the boost compensation
than it was with the square-pulse technique. This is explained by the fact that the boost filter does not have a cut-off frequency.
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4. CONCLUSIONS

For a SPRITE detector, the detectivity (D*) alone is a not a very descriptive performance parameter. To make the D* of a
SPRITE more objectively compatible with D* for conventional detectors, it must be recalculated. A conventional detector has a
square pulse impulse response. The SPRITE detector has not, primarily due to diffusion spread. Consequently, the rms noise of a
square detector should be calculated after a compensatory filter that amplifies higher spatial frequencies to restore a "box-car"
impulse response.

It is suggested in this paper that D* is recalculated with the following expression:

D*D*-
mvM (11)

where D* is the recalculated value, D*m is the measured value, Af is the noise-equivalent bandwidth of the SPRITE detector

without a filter and M is the noise-equivalent bandwidth with a filter that compensates the impulse response back to a square

pulse.

The normalization ratio has been calculated with two types of filters and has been presented as a function of diffusion length. For
a diffusion length of 30 rim, the measured D* for a SPRITE detector should be reduced by some 40% - 50% to make it more ob-
jectively compatible with conventional detectors.
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