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Abstract

Sampling MiT defined in Park,' Hock,2 and de Luca,3 as an x and y sampling, can be generalized for
image data not along x and y directions. For a given sampling lattice (such as in a laser printer, a scene
projector, or a focal plane array), we construct a two-dimensional sampling MiT based on the distance
between nearest samples in each direction. Because the intersample distance depends on direction, the
sampling MiT will be best in the directions of highest spatial sampling, and poorer in the directions of
sparse sampling. We compare hexagonal and rectangular lattices in terms of their equivalent spatial
frequency bandwidth. We filter images as demonstration of the angular-dependent two-dimensional
sampling MTF.
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1. Introduction

In this paper, the effect of two-dimensional sampling on image quality is investigated
with two different lattice structures. A finite-sized sampling lattice yields discrete image-sampling
directions and a sample-to-sample distance that varies with direction. Angles with close nearest neighbors
will have high resolution while other angles will produce poorer resolution. The number of angles and the
distance between samples will determine the image quality resulting from the sampling process. As we
increase the number of lattice points, the number of possible discrete angles will increase and the total
resolution will increase. In the first section the mathematical development for average sampling MiT in
one dimension is derived. Next we describe the derivation as a nonseparable two-dimensional sampling
MiT from the definition of the one-dimensional average sampling MTF. The process of obtaining the
MiT is then demonstrated on two different lattices, rectangular and hexagonal. An equivalent bandwidth
for the MTF is defined in the next section on the basis of noise-equivalent bandwidth. This figure of merit
is used for comparison of different lattice sizes and configurations. We then present a simulator of these
results on a test image.

2. Average Sampling MTF

Previous work in sampling MiT 13 has been performed only in the context of x- and y-domain sampling.
Here we consider both the two orthogonal directions and all other possible directions. Any sampling grid
has different spatial sampling rates in different directions. This paper presents the sampling MiT as a
two-dimensional sampling system. This analysis has applications to laser-printers systems, infrared scene
projectors, and focal-plane arrays.

In the case of one-dimensional sampling MiT, two MiT functions are involved in the sampling
process2 : the MTF as result of the pixel size, MTFpixei, and the MTF caused by the spatial sampling rate,

MTFS.
For a rectangular pixel, the pixel MTF is given by the well-known sinc-function formula

MTFpixei = sinc( p) (1)

where sinc(x) = (sin tx)/(itx) , is the image spatial frequency, and p is the pixel size. The square pixel
is the most common shape for imaging-array applications, although other shapes are possible such as
circular, hexagonal,4 or tapered.5
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The MTF in Eq. (1) does not account for the distance between the samples. We derive the
sampling MiT from the pixel MTF [Eq. (1)]. The independence of these two processes allows us to
multiply these two MTFs to derive the total MiT of the sampling process and spatial average. In this
paper we will concentrate on the sampling MTF.

The sampling MiT results from a reduction in measured modulation depth because the image
data can exist at a random location with respect to the sampling sites. Park' performs an average MTF
calculation over all relative positions of the image data with respect to the sampling sites. This statistical
approach performs an average of the shift-variant image quality that is seen in sampled data systems, to
define a shift-invariant average MTh. The derivation of the one-dimensional sampling MiT is based on
statistical treatment of the intensity sampled by the array of pixels.'3 The image-quality effect of sampling
is equivalent to a convolution of the image data with a rectangular function, whose width is equal to the
sampling interval.1 Thus, the sampling MTF is a sinc function, with first zero equal to the inverse of the
1/(sampling interval).

The sinc function1, can be obtained in a simple intuitive manner. Assume a sinusoid, with a
spatial period X and unity amplitude. We calculate the expected value of the modulation depth M of this
sinusoid as a function of spatial sampling interval A and the spatial frequency = 1/X. The sampling grid
can have statistically any phase p with respect to the maxima and minima of the sinusoid.

We can begin with the expression for modulation depth,3

M(,4,q) = (AmaxAmin )12 (2)

Where Amax and Amin are respectively the maximum and the minimum sampled values. If we define p as
the smallest distance between the sampling grid and the positive crest of the sine waves, measured from
this crest, ( vanes between p = -EI2 and tI2.
Two extreme cases for the value M can be obtained from the sampling process. The maximum value is
obtained for p = 0, Mmax 1 while the minimum value, Mmin 5 obtained for p = p = -A/2 or p = p
= &2 . The value of Mmjn can be found using simple trigonometric identity,

A
Mn 2 cos(2ic --/ 2 = cos(it A) , (3)

Between extreme cases MTh,j and MTF are many different MTFs that can be derived from different
values of the phase p between the sine wave and the sampling grid. It is possible to obtain the average
MiT by performing averaging over all possible locations of the sampling lattice with respect to the
waveform. The assumption is that the random variable p is equally distributed between p = -A/2 and
max iI2 with a uniform probability density function

11/A, for
JCq() = , elswhere

(4)

The average MTF (AMTF) is defined by the integral,

L\/2 1 E/2
AMTFsamp(,A) ffp((p)M(,A,q)d(p =— 5cos(itp)dp = sinc(A), (5)

-i/2
The result of Eq. (5) can be interpreted as follow. For a nonzero sampling interval of i, we will not obtain
the true maxima and minima of the sinusoid on an average basis, but rather will obtain an average
maximum and average minimum value of the sinusoid that are the average values of the waveform over
the interval A. The maximum average value of the waveform is the average of the peak of the sinusoid
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over an interval i, while the minimum average value of the waveform is the average of the valley of the
sinusoid over the same interval. This conceptual model yields the main result of Park,1 namely the sinc
function with the first zero location utoff 111 Even for very sparse sampling, where the spatial
sampling interval A is less than the Nyquist requirement of 1/2X, the notion of an average maximum
value and average minimum value is still valid, even when the averaging is performed over an interval A
that is greater than half the period of the waveform. Obviously, as A increases (sparser sampling) because
the difference between maximum and minimum average values will decrease, both averages have already
taken averages over more than half of the sinusoid.

The result of Eq. (5) can be modified for the case of two-dimensional sampling by representing
the MTF for the two orthogonal axes x and y,

MTF() = SflC(Lx )
sin(c . . x)

(6a)
(it . . Ax)

sin(it .11 •Ay)
MTF(r) = Sinc(l1Lty ) (6b)

(ic .y1 •Ay)

where and r are the spatial frequencies in the x and y axes respectively and A and A are the sampling
interval in the x and y axes respectively. We allow the MTF to be a bipolar function rather than using the
magnitude.

It should be noted that these equations do not imply a separable two-dimensional MTF as the
product of Eqs. (6a) and (6b). The sampling interval and associated sampling MiT for spatial frequencies
not along x or y will be calculated separately.

3. Definition of a nonseparable two-dimensional sampling MTF

In this section the main steps of deriving the sampling MiT for both rectangular and hexagonal lattices
are described. We develop the MiT not only along the and r but also along the other directions that are
involved in the sampling process. For any given lattice with a finite size and shape, a finite number of
directions (angles) carry information after the sampling process. These directions can be derived from all
of the possible lines that can be reproduced by the lattice. We assume that each of these lines passes
exactly through the center of sampling points in the grid. The main extension of our work from that of
previous authors is that we use the sinc function of Eq. (5) as valid for any sampling direction in a two-
dimensional lattice. This allows us to calculate a sampling MiT in any direction of the lattice.

We show portions of the two sampling lattices (rectangular and hexagonal) investigated in Fig.
1(a) and (b). We define the distance between two adjacent points of the rectangular lattice in the x and y
directions as A. If we take the lower left point of the grid as the origin of the lattice, then any other point
in the lattice has a certain distance from origin point A9 which is a function of A and 8 , the angle
between the point and the positive direction of the x axis. For example, the sampling distance for the five

. . . . . . . (IO A A A
highest-resolution directions in the lattice in a sector of iu are tx o = tx900 = A , x450

= .

and L26.56° = Lt63.44° = 'J' L . For other angles, the sampling is less frequent, and the sinc
function associated with the sample-to-sample distance will have a correspondingly lower cutoff
frequency. The sinc function MTF of Eq. (5) can be generalized to a nonseparable equation in terms of a

two-dimensional spatial frequency where the wavevector for any particular spatial frequency is along
the 0 direction,

MTF(J) = sinc(A0 )= sin(ti0 )/(icoAo). (7)



In Fig. 1(b) the same analysis is implemented for the hexagonal lattice. Let us set the sampling
distance along the x direction z =A to be equal for both the square lattice and the hexagonal lattice. We
construct the hexagonal lattice from the rectangular lattice by moving the odd rows a distance of &2 to

the right, and setting the distance between rows in the vertical direction to A . This configuration

provides us a symmetric lattice within a 600 sector. This kind of lattice is particularly appropriate for
printing applications because it is the most compact lattice6 for round pixels.

For the hexagonal lattice of Fig. 1(b), the minimum sample distance is t = b6o . The highest-
resolution directions in the 600 sector with their sampling distances are L0o Li60o L

3O ' and '19.1° = 49.1° The MiT here is also a function of the sampling

direction as in Eq. (7).
The application of Eq. (7) will yield a nonseparable MiT with sinc functions in each direction. This
function is difficult to visualize because of its discontinuous variation with angle.

Figures 2(a) and (b) represent the three highest-resolution MTFs in the rectangular lattice and

the hexagonal lattice plotted as function of respectively.
We can obtain a more complete picture of the angular dependence of the MiT by using a top

view. In Fig. 3 we plot a line in each direction, whose length in that direction is equal to the distance
along o to the first zero of the sinc function in that direction. Figures 3(a) and (b) show the results in a
900 sector for a lO-by-lO lattice size for both rectangular lattice and hexagonal lattice respectively. A long
line in a certain direction represents high resolution in that direction. For each lattice, the MiT is a
discontinuous function of angle 9, with some directions having high resolution, some with low resolution,
and some directions having MTF = 0 (no sampling in that direction).

4. An equivalent-bandwidth figure of merit

In this section a useful measure for quantifying the sampling process will be defined. The
equivalent bandwidth of the sinc function for any direction in the lattice will be derived. A common
definition for equivalent bandwidth is the equivalent-noise bandwidth.7 We thus define angle-dependent
bandwidth:

BW =
MTF9 (0) [ MTF8 ()d , (8)

where MTh () is the MiT in a certain angle 0 relative to the x direction, and MTF9(0) is the
maximum value of the MiT, which is unity. To compare the image-quality performance for various lattice
sizes and configurations, we use the equivalent bandwidth (BW) of the sinc function as the MTF in Eq.
(8),

00
1

BW0 = fsin c( A9 )d =. (9)
0 A0

Equation (9) has the simple geometric interpretation as the distance to first zero (i/A9), which
defines the utoff of the sinc function, shown as the length of the line in the plot in Fig. (3).

We can write BW0 in each possible direction of the lattice as function of A, which is the basic
sampling interval along the x axis (ioo = A),
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Fig. 4. Scaling the cutoff frequency for doubling the lattice size, original 3 by 3 points
rectangular lattice (closed circles), 6 by 6 points rectangular lattice (open circles).
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BW9=—=k9•- (10)

where k9 is a constant representing the length of a certain line in Fig. (3) in units of 1/Es.
To construct a figure of merit for any given lattice, we sum up the BWs for all of the possible directions.
This will give a total BW, BWtotai, for the sampling lattice, and can be interpreted as the area in polar
coordinates under the curves plotted in Fig. (3),

9=90° 0=90°

BWtotai BW9 = k9 .1 K (11)
0=00 0=0°

where K is the sum of all the k0 constants that exist between 0 = 00 and 9 = 900.
The new measure BWtotai allows us to investigate the influence of increasing the lattice size on

the image quality. The difference in image quality in using a larger lattice is twofold: one increase is from
the larger number of angles for which there exists a nearest neighbor. This will tend to "fill in" the angles
for which the MTF is small but not exactly equal to zero. The second and most important reason for an
increase in image quality in using a larger lattice is that for a given image field size, more sampling
points imply a higher spatial sampling rate, with higher cutoff frequencies in all directions.

In Fig. 4 the influence of doubling the lattice size on the total frequency bandwidth of the
sampling system is demonstrated. The original rectangular lattice has a size of 3-by-3 points (close
circles) with sampling interval of A in the two main orthogonal axis x and y . The number of angles for
this case is 5 and they are marked by the thick arrows at 0°, 26.56°, 45°, 63.44°, and 90°. The higher-
resolution lattice shown as the 6-by-6 array of open circles, contains twice the number of points as the
lower-resolution lattice. The sampling rate increases by factor of 2 in these directions and the sampling
interval decreases from i to /2 in the x and y axes.

The second reason for increasing the resolution is the additional angles in the higher-resolution
lattice. More than 20 possible directions (thin short arrows) are seen as four new directions between each
two of the former directions. These angles contribute to the summation of BWe in the larger lattice

For comparison of different lattice configurations on this basis (square vs hexagonal) we keep the
total number of lattice points equal (100 points in a lO-by-lO square, and 100 points in the hexagonal).
This allows us to compare directly the BWtotai as a figure of merit. The results for this comparison are, for
the rectangular lattice, BWtotai 1 1 1 .44 [CyIL and for the hexagonal lattice, BWtotai 126.01 [Cyh\
There is a 13% benefit from using the hexagonal lattice compared to the rectangular lattice for a 10- by-lO
lattice size.

We investigate the influence of increasing the number of points of the lattice in one-dimension N
(lattice size equal to N x N), on the total number of angles.

Figure 5 represents the number of possible angles for both rectangular and hexagonal lattices as
function of N. We take the lower left point of the grid and consider it as the reference point for the all
other points in the lattice.

For both lattices, increasing the number of points of the lattice produces more possible angles.
However the rate of increase of possible angles in the case of the hexagonal lattice is higher than in the
case of the rectangular lattice. Analytical functions have been fitted for both the numerical functions in
Fig. 5, 0.58N2 for the rectangular lattice and 0.63N2 for the hexagonal lattice. This means that there are
8.6% of N2 more angles in the hexagonal lattice than in the rectangular lattice for the same number of
sampling points in the lattice.

Influence of N on BWtotai

Lets discuss now the influence of increasing the number N on the new measure BWtotai. The basis
for this calculation is to keep the lattice size at constant value and change only the number of points in the
lattice. By incrementing the number of lattice points, the sampling distance decreases and the spatial
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frequency is scaled each time to the new sampling rate. Figure 6 represents the results for BWtotai for both
the rectangular and the hexagonal lattice, where BWtotai is plotted as function of N .As expected, BWtotai
increases with increasing the value of N for both lattices, because both the sampling rate and the number
of possible angles increase. BWtotai 5 always higher for the hexagonal lattice. This result was expected
because 1) the distance between rows in the hexagonal lattice is smaller by 15.4% when compared to the
rectangular lattice; 2) the number of angles in the hexagonal lattice is higher. Analytical functions for the
dependence of BWtotai of N as been fitted to the numerical results. For the rectangular lattice, BWtotai is
1 .09N2 and for the hexagonal lattice, BWtotai is 1 .23N2. There is a 13% benefit to choosing the hexagonal
lattice for any lattice size.

5. Pictorial comparison/demonstration

We constructed the sampling MiT for a given lattice size and configuration. The original image
is 512 by 512 pixels. The degradation process is described by the block diagram in Fig. (7). The first step
is to derive all the possible directions for which information can be reproduced by the lattice in a sector of
900 (a quarter of the original sampling lattice size). For our purposes, the origin of the lattice is determine
to be the center point of the lattice. The next step is to associate a sinc function with each of these
directions and scale the cutoff of the sinc to correspond with the desired cutoff frequency. The MiT is
than multiplied by the Fourier transform of the original image. The degradation sampling is associated
only with decrease of the amplitude. The MiT is thus applied only on the magnitude of the image Fourier
transform. Thus, the original phase is kept while the amplitude is degraded by the MiT. The lines in Fig.
7 indicate the existing directions for a given lattice, where the amplitude is multiplied by the MiT. All
the other directions of the original image amplitude are set to zero. Using the degraded amplitude function
combined with the original phase function and taking the inverse Fourier transform gives us the degraded
image in the spatial domain.

The original image is plotted in Fig. 8; it is a black ring on a white background with a width of
10 pixels and inner radius of 90 pixels. The image is degraded by a sampling MiT corresponding to 100
by 100 lattice size of rectangular lattice and hexagonal lattice are presented in Fig. 9 a and b respectively.
The degraded image is unequally degraded in different angles. The blur size is not equal in all the
directions of the blurred image. In the image degraded by the rectangular lattice (Fig. 9(a)) the least
degraded directions are the x and y directions, indicating that these directions are more prominent than
the others. This phenomenon can be shown by the sharp edges of the thin lines in these directions. All the
other directions are more degraded and have smeared edges. Also it can be shown that the degraded image
is symmetrically degraded within a cycle of 90° sector.

In the image degraded by the hexagonal lattice (Fig. 9b) the x and y direction are also more
prominent than the other directions. It can be seen that the two lines perpendicular to the x direction are
sharper than the lines that perpendicular to the y direction. The reason is that in the hexagonal lattice the

resolution in the x direction is higher than the resolution in the y direction by factor of

6. Conclusions

An average MiT for the sampling process has been obtained by an average over the sampling
locations sampling of a sine wave. The result MTF is the sinc function with the first zero location at the
reciprocal of the sampling interval. The sinc function MiT has been generalized to a nonseparable MTF
in terms of a two-dimensional spatial frequency at all the possible directions of the sampling lattice. The
main extension of this work from that of previous authors is that we use the sinc function as valid for any
sampling direction in a two-dimensional lattice. The MTF derivation has been demonstrated for two
lattice configurations, rectangular lattice and hexagonal lattice. A useful quantitative measure as been
defined as the total equivalent bandwidth of the sampling lattice. This measure allows us to compare
different lattice configuration and size. A pictorial demonstration as been presented for two different
lattices.
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Fig. 8. Original Image.
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Fig. 9. Degraded image by a sampling MTF of 100 by 100 points lattice size, (a) Rectangular lattice (b)
Hexagonal lattice.


